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Abstract

In this paper, we propose a novel semi-supervised speaker identification method
that can alleviate the influence of non-stationarity such as session dependent vari-
ation, the recording environment change, and physical conditions/emotions. We
assume that the voice quality variants follow the covariate shift model, where only
the voice feature distribution changes in the training and test phases. Our method
consists of weighted versions of kernel logistic regression and cross validation and
is theoretically shown to have the capability of alleviating the influence of covari-
ate shift. We experimentally show through text-independent/dependent speaker
identification simulations that the proposed method is promising in dealing with
variations in voice quality.
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1 Introduction

Speaker identification methods are widely used in various real-world situations such as
access control of information service systems and speaker detection in speech dialog and
speaker indexing problems with large audio archives [1]. Recently, the speaker identifica-
tion and indexing problems in meeting attracted a great deal of attention.

Popular methods of text-independent speaker identification are based on the Gaussian
mixture model (GMM) [2] or kernel methods such as the support vector machine (SVM)
[3, 4]. In these supervised learning methods, it is implicitly assumed that training and
test data follow the same probability distribution. However, since the speech features
vary over time due to session dependent variation, the recording environment change,
and physical conditions/emotions, the training and test distributions are not necessarily
the same in practice. In the paper [5], the influence of the session dependent variation of
voice quality in speaker identification problems has been investigated and the identification
performance was shown to decrease significantly over 3 months—the major cause for the
performance degradation was the voice source characteristic variations.

To alleviate the influence of session dependent variation, it is popular to use several
sessions of speaker utterance samples [6, 7] or to use cepstral mean normalization (CMN)
[8]. However, gathering several sessions of speaker utterance data and assigning the
speaker ID to the collected data are expensive both in time and cost and therefore not
realistic in practice. Moreover, it is not possible to perfectly remove the session dependent
variation by CMN alone.

A more practical/effective setup would be semi-supervised learning, where unlabeled
samples are additionally given from the testing environment. In semi-supervised learning,
it is required that the probability distributions of training and test are related to each other
in some sense; otherwise we may not be able to learn anything about the test probability
distribution from the training samples. A common modeling assumption is called covariate
shift, where the input (feature) probability distributions are different in the training and
test phases but the conditional probability distribution of labels remains unchanged. In
many real-world applications such as robot control [9, 10, 11], bioinformatics [12, 13], spam
filtering [14], natural language processing [15, 16], brain-computer interfacing [17, 18], and
econometrics [19], the covariate shift model has been shown to be useful. Covariate shift is
also naturally induced in selective sampling or active learning scenarios [20, 21, 22, 23, 24].
For this reason, learning under covariate shift is receiving a great deal of attention these
days in the machine learning community [25].

In this paper, we formulate the semi-supervised speaker identification problem in the
covariate shift framework and propose a method that can cope with voice quality variants.
Under covariate shift, standard maximum likelihood estimation is no longer consistent.
The influence of covariate shift can be asymptotically canceled by weighting the log-
likelihood terms according to the importance [26]:

w(X) =
pte(X)

ptr(X)
,
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where pte(X) and ptr(X) are test and training input densities. We apply this weighting
idea in kernel logistic regression (KLR). The importance weight w(X) is unknown in
practice and needs to be estimated from data. For weight estimation, we utilize the
Kullback-Leibler importance estimation procedure (KLIEP) [27, 28] since it is equipped
with a built-in model selection procedure. The (regularized) kernel logistic regression
model contain two tuning parameters: the kernel width and the regularization parameter.
Usually those tuning parameters are optimized based on cross validation (CV). However,
ordinary CV is no longer unbiased due to covariate shift and therefore is not reliable as
a model selection method. To cope with this problem, we use importance weighted CV
[18] for unbiased model selection. The validity of our approach is experimentally shown
through text-independent/dependent speaker identification simulations.

The rest of this paper is structured as follows. Section 2 formulates the semi-supervised
speaker identification problem and review existing methods such as KLR and CV. In
Section 3, importance weighting techniques for covariate shift adaptation are introduced.
Experimental results are reported in Section 4. Section 5 concludes with a summary of
our contributions and possible future work.

2 Problem Formulation

In this section, we formulate the speaker identification problem from a machine learning
point of view.

2.1 Kernel-based Speaker Identification

An utterance feature X pronounced by a speaker is expressed as a set of N mel-frequency
cepstrum coefficient (MFCC) [29] vectors of d dimensions:

X = [x1, . . . ,xN ] ∈ Rd×N . (1)

For training, we are given ntr labeled utterance samples

Z tr = {Xi, yi}ntr
i=1, (2)

where yi ∈ {1, . . . , K} denotes the index of the speaker who pronounced Xi. The goal of
speaker identification is to predict the speaker index of a test utterance sample X based
on the training samples. We predict the speaker index c of the test sample X following
the Bayes decision rule:

P (y = c|X) > P (y = i|X) ∀ i ̸= c. (3)

For approximating the class-posterior probability, we use the following parametric model
p(y = c|X,V):

p(y = c|X,V) = exp fvc(X)∑K
l=1 exp fvl

(X)
, (4)
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where V = [v1, . . . ,vK ]
⊤ ∈ RK×ntr is the parameter, ⊤ denotes the transpose, and fvl

is a discriminant function corresponding to the speaker l. This model is known as the
softmax function and widely used in multiclass logistic regression. We use the following
kernel regression model as the discriminant function fvl

[7]:

fvl
(X) =

ntr∑
i=1

vl,iK(X,Xi) l = 1, . . . , K, (5)

where vl = (vl,1, . . . , vl,ntr)
⊤ ∈ Rntr are parameters corresponding the speaker l and

K(X,X′) is a kernel function. In this paper, we use the sequence kernel [4] as the kernel
function since it allows us to handle features with different size; for two utterance sam-
ples X = [x1, . . . ,xN ] ∈ Rd×N and X′ = [x′

1, . . . ,x
′
N ′ ] ∈ Rd×N ′

(generally N ̸= N ′), the
sequence kernel is defined as

K(X,X′) =
1

NN ′

N∑
i=1

N ′∑
i′=1

k(xi,x
′
i′), (6)

where k(x,x′) is a vectorial kernel; we use the Gaussian kernel

k(x,x′) = exp

(
−∥x− x′∥2

2σ2

)
. (7)

Note that kernel logistic regression is a modeling assumption, thus the true class-
conditional probability may not be exactly realized by the kernel logistic regression model.
This implies that there exists a model error, i.e., even when the parameter is chosen
optimally, there remains an approximation error. This setup is not of course preferable,
but more or less there exists a model error in practice since it is not generally possible
to have an exact model in reality. Traditional machine learning theories often assume
that the model at hand is correct (i.e., no model error exists). However, this is not
realistic and not useful in practice, so in this paper we explicitly take into account model
misspecification.

2.2 Kernel Logistic Regression

Kernel logistic regression (KLR) is a kernelized variant of logistic regression. In KLR, we
map the input vector to a high-dimensional space (feature space) and solve the logistic
regression problem in the feature space; the similarity in feature space can be implicitly
computed via the kernel trick. The kernel trick allows one to non-linearize a linear al-
gorithm without sacrificing computational simplicity of the linear algorithm. Below, we
briefly review KLR following the paper [30].

We employ maximum likelihood estimation for learning the parameter V. The negative
log-likelihood function P log

δ (V;Z tr) for the kernel logistic regression model is given by

P log
δ (V;Z tr) = −

ntr∑
i=1

logP (yi|Xi,V) +
δ

2
trace(VKV⊤), (8)
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where trace(VKV⊤) is a regularizer to avoid overfitting, δ is the regularization parameter
that controls strength of regularization, and K = [K(Xi,Xj)]

ntr
i,j=1 is the kernel Gram

matrix. The negative log-likelihood function is convex and the unique minimizer can be
obtained by, e.g., the Newton method. In the Newton method, the parameter matrix V
is updated iteratively as

V← V − ϵ∆V, (9)

where ϵ is the step size and ∆V is defined as

vec∆V = [∇2P log
δ (V;Z)]−1vec∇P log

δ (V;Z). (10)

‘vec’ denotes the vectorization operator, ∇P log
δ (V;Z) is the gradient of Eq.(8) with respect

to V, and ∇2P log
δ (V;Z) is the Hessian of Eq.(8) with respect to V. The gradient and

Hessian are given as

∇P log
δ (V;Z) = (P(V)− Y+ δV)K, (11)

∇2P log
δ (V;Z) =

ntr∑
i=1

(diag(p(Xi))− p(Xi)p(Xi)
⊤)⊗ k(Xi)k(Xi)

⊤ + (K⊤ ⊗ I), (12)

where

P(V) = [p(X1), . . . ,p(Xntr)] ∈ RK×ntr (13)

is a matrix whose n-th column is a vector of the class-posterior probabilities p(Xn),

p(X) = [p(y = 1|X,V), . . . , p(y = K|X,V)]⊤ ∈ RK (14)

denotes the class-posterior probabilities for all classes given X,

Y = [ey1 , . . . , eyN ] ∈ RK×ntr , (15)

whose n-th column eyn is a unit vector with all zeros except for element yn being 1,
diag(a, . . . , b) denotes the diagonal matrix with diagonal elements a, . . . , b,

k(X) = [K(X,X1), . . . ,K(X,Xntr)]
⊤ ∈ Rntr (16)

is a vector whose elements are given by the sequence kernel, ⊗ denotes the Kronecker
product, and I denotes the identity matrix.

In order to estimate the update matrix ∆V, the inverse of the Hessian needs to be
computed at every iteration. This is computationally expensive so we approximate ∆V
by the conjugate gradient method; an approximation ∆̂V can be estimated by solving the
following linear equation [30]:

∇2P log
δ (V;Z)vec∆̂V = vec∇P log

δ (V;Z). (17)
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Substituting Eqs.(11) and (12) into Eq.(17) and using the transformation

vec(ABC) = (C⊤ ⊗ A)vec(B), (18)

we have

ntr∑
i=1

(diag(p(Xi))− p(Xi)p(Xi)
⊤)∆̂Vk(Xi)k(Xi)

⊤ = (P(V)− Y+ δV)K.

(19)

2.3 Model Selection in KLR

The above KLR method includes two tuning parameters: the Gaussian width σ and the
regularization parameter δ. One of the popular approaches to model selection is cross
validation (CV).

Let us divide the training set Z tr = {(Xi, yi)}ntr
i=1 into k disjoint non-empty subsets

{Z tr
i }ki=1. Let ŷZtr

j
(X) be an estimate of a speaker of a test utterance sample X obtained

from {Z tr
i }i̸=j (i.e., without Z tr

j ). Then the k-fold CV (kCV) score is given by

R̂Ztr

kCV =
1

k

k∑
j=1

1

|Z tr
j |

∑
(X,y)∈Ztr

j

I(y = ŷZtr
j
(X)), (20)

where |Z tr
j | is the number of samples in the subset Z tr

j and I(·) denotes the indicator
function.

2.4 KLR, CV, and Covariate Shift

Here, we show potential limitations of KLR and CV in the light of model misspecification.
The use of KLR and CV could be theoretically justified when the training utterance

features and the test utterance features independently follow the same probability distri-
bution with density p(X) and the class label y follows the common conditional probability
distribution p(y|X) in the training and test phases. Indeed, if the above conditions are
met, KLR is shown to be consistent, i.e., the learned parameter converges to the optimal
value:

lim
ntr→∞

V̂ = V∗, (21)

where V̂ is the parameter learned by KLR and V∗ is the optimal parameter that minimizes
the expected prediction error for test samples:

V∗ = argmin
V

∫∫
I(y = ŷ(X|V))p(y|X)p(X)dydX. (22)
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ŷ(X|V) is an estimate of speaker of an utterance feature X for parameter V. Also, when
p(X) and p(y|X) are common in the training and test phases, kCV is (almost) unbiased
[31]:

EZtr

[
R̂Ztr

kCV −RZtr
]
≈ 0, (23)

where EZtr is the expectation over the training set Z tr and RZtr
is the expected prediction

error defined by

RZtr

=

∫∫
I(y = ŷ(X;Z tr))p(y|X)p(X)dydX. (24)

ŷ(X;Z tr) is a learned function from the training set Z tr.
However, in practical speaker identification, speech features are not stationary due to

time-dependent voice variation, the recording environment change, and physical condi-
tions/emotion. Thus, the training and test feature distributions are not the same. Then,
the above good theoretical properties are no longer true1.

In this paper, we explicitly deal with such changing environment via the covariate
shift model [26]—the input distributions change between the training and test phases,
ptr(X) ̸= pte(X), but the conditional distribution p(y|X) remains unchanged.

3 Importance Weighting Techniques for Covariate

Shift Adaptation

In this section, we show how to cope with covariate shift.

3.1 Parameter Learning and Model Selection under Covariate
Shift

Here we show how KLR and CV could be extended and justified even under covariate
shift.

3.1.1 Importance Sampling

In the absence of covariate shift, the expectation over test samples can be consistently
estimated by the expectation over training samples since they are drawn from the same
distribution. However, under covariate shift, the difference of input distributions should
be explicitly taken into account. A basic technique for compensating for the distribution

1If the KLR model is exactly correct, consistency of KLR and almost unbiasedness of CV still holds
even when the feature distributions change between the training and test stages. However, the correct
model assumption is not satisfied in reality.
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change is importance sampling [32], i.e., the expectation over training samples is weighted
according to their importance in the test distribution. Indeed, for the importance weight

w(X) =
pte(X)

ptr(X)
, (25)

the expectation of some function F (X) over the probability density pte(X) can be com-
puted by

Epte(X)[F (X)] =

∫
F (X)pte(X)dX =

∫
F (X)w(X)ptr(X)dX = Eptr(X)[F (X)w(X)]. (26)

3.1.2 Importance Weighted Kernel Logistic Regression

If the importance sampling technique is applied to LKR, we have the following importance
weighted KLR (IWKLR) [26]:

P̃ log
δ (V;Z tr) = −

ntr∑
i=1

w(Xi) logP (yi|Xi,V). (27)

IWKLR is consistent even under covariate shift:

lim
ntr→∞

Ṽ = V∗, (28)

where Ṽ is the parameter learned by IWKLR and V∗ is the optimal parameter that
minimizes the expected prediction error for test samples:

V∗ = argmin
V

∫∫
I(y = ŷ(X|V))p(y|X)pte(X)dydX. (29)

In practice, we may include a regularizer:

P̃ log
δ (V;Z tr) = −

ntr∑
i=1

w(Xi) logP (yi|Xi,V) +
δ

2
trace(VKV⊤), (30)

where δ is the regularization parameter.
The Newton update rule for IWKLR is given by the same form as Eq.(9); the gradient

and Hessian of (30) are given by

∇P log
δ (V;Z) = {(P(V)− Y)W+ δV}K, (31)

∇2P log
δ (V;Z) =

ntr∑
i=1

w(Xi)(diag(p(Xi))− p(Xi)p(Xi)
⊤)⊗ k(Xi)k(Xi)

⊤ + (K⊤ ⊗ I), (32)

where

W = diag(w(X1), . . . , w(Xntr)) ∈ Rntr×ntr . (33)

An approximation ∆̃V of the update factor is given as the solution of the following linear
equation:

ntr∑
i=1

w(Xi)(diag(p(Xi))− p(Xi)p(Xi)
⊤)∆̃Vk(Xi)k(Xi)

⊤ = {(P(V)− Y)W+ δV}K. (34)
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3.1.3 Importance Weighted Cross Validation

In a similar way as IWKLR, CV could also be enhanced based on the importance weighting
technique [18]:

R̃Ztr

kIWCV =
1

k

k∑
j=1

1

|Z tr
j |

∑
(X,y)∈Ztr

j

w(X)I(y = ỹZtr
i
(X)). (35)

We refer to this method as k-fold importance-weighted CV (kIWCV). Even under covari-
ate shift, kIWCV is almost unbiased:

EZtr

[
R̃Ztr

kIWCV −RZtr
]
≈ 0. (36)

3.2 Importance Weight Estimation

As shown above, the importance weight w(X) plays a central role in covariate shift adap-
tation. However, the importance weight is usually unknown, thus it needs to be esti-
mated from samples. Here, we assume that in addition to the training input samples
X tr = {Xi}ntr

i=1, we are given (unlabeled) test samples X te = {Xi}nte
i=1 drawn independently

from pte(X) (i.e., the semi-supervised setup).
Under this setup, the importance weight may be simply approximated by estimating

ptr(X) and pte(X) from training and test samples separately and then taking their ratio.
However, density estimation is known to be a hard problem and taking the ratio of
estimated quantities tends to magnify the estimation error. Thus this two-shot process
is not reliable in practice. Below, we introduce a method that allows us to directly learn
the importance weight function without going through density estimation. The method
is called the Kullback Leibler Importance Estimation Procedure (KLIEP) [27, 28].

3.2.1 Direct Importance Weight Estimation

Let us model the importance function w(X) by the following linear model:

ŵ(X) =
b∑

l=1

αlφ(X,Cl), (37)

where {αl}bl=1 are parameters to be learned from data samples, Cl is a template point
randomly chosen from the test input set {Xi}nte

i=1, and φ(X,X′) is a basis function chosen
as

φ(X,X′) =
1

NN ′

N∑
i=1

N ′∑
i′=1

k(xi,x
′
i′). (38)

We use the Gaussian kernel for k(x,x′):

k(x,x′) = exp

(
−∥x− x′∥2

2τ 2

)
. (39)
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Using the model ŵ(X), we can estimate the test input density pte(X) by

p̂te(X) = ŵ(X)ptr(X). (40)

Based on this, we estimate {αl}bl=1 so that the Kullback-Leibler divergence from pte(X)
to p̂te(X) minimized:

KL[pte(X)∥p̂te(X)] =
∫

pte(X) log
pte(X)

ptr(X)ŵ(X)
dX

=

∫
pte(X) log

pte(X)

ptr(X)
dX−

∫
pte(X) log ŵ(X)dX. (41)

The first term in the above equation is independent of {αl}bl=1, thus it can be ignored and
we concentrate on the second term; we define the second term as JKLIEP :

JKLIEP =

∫
pte(X) log ŵ(X)dX ≈

1

nte

∑
X∈X te

log ŵ(X), (42)

where the expectation over the test input distribution is approximated by the empirical
average of test input samples. Since p̂te(X) is a probability density, the following equation
should hold.

1 =

∫
p̂te(X)dX =

∫
ptr(X)ŵ(X)dX ≈

1

ntr

∑
X∈X tr

ŵ(X), (43)

where the expectation over the training input distribution is approximated by the empir-
ical average of training input samples. We determine the coefficient {αl}bl=1 by solving
the following optimization problem:

max{αl}bl=1

[ ∑
X∈X te

log

(
b∑

l=1

αlφ(X,Cl)

)]

s.t
∑

X∈X tr

b∑
l=1

αlφ(X,Cl) = ntr and α1, . . . , αb ≥ 0. (44)

This optimization problem is convex and thus the global solution can be obtained by
simply performing gradient ascent and feasibility satisfaction iteratively. Note that the
solution {α̂l}bl=1 tends to be sparse, which contributes to reducing the computational cost
in the test phase.

3.2.2 Model Selection of KLIEP by Likelihood Cross Validation

The choice of the Gaussian width τ in KLIEP heavily affects the performance of im-
portance weight estimation. Here, we explain a practical way to chose reasonable basis
functions from data samples. Since KLIEP is based on the maximization of the score
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JKLIEP , it is natural to select the model such that JKLIEP is maximized. The expecta-
tion over pte(X) involved in JKLIEP can be numerically approximated by likelihood cross
validation (LCV) as follows: First divide the test samples X te into K disjoint subsets
{X te

i }Ki=1. Then obtain an importance estimate ŵk(X) from {X te
j }j ̸=k (i.e., without X te

k )
and approximate the score JKLIEP using X te

k as

Ĵk =
1

|X te
k |

∑
X∈X te

k

log ŵk(X). (45)

This procedure is repeated for k = 1, . . . , K and the average of Ĵk over all k is used as an
estimate of J :

Ĵ =
1

K

K∑
k=1

Ĵk. (46)

For model selection, Ĵ is computed for all model candidates (the Gaussian width τ in the

current setting) and choose the one that maximizes Ĵ .
One of the potential limitations of CV in general is that it is not reliable in small

sample cases since data splitting by CV further reduces the sample size. A key advantage
of the LCV procedure described above is that, not the training samples, but the test
input samples are cross-validated. This contributes greatly to improving model selection
accuracy since the number of training samples is typically limited while a large number
of test input samples are available.

3.3 Illustrative Examples

Here, we illustrate the behavior of IWKLR, IWCV, and KLIEP in covariate shift adap-
tation.

Figure 1 illustrates a two-dimensional binary classification problem under covariate
shift. In this experiment, we define the optimal class posterior probability as follows:

p(y = +1|x) = 1 + tanh(x(1) −min(0, x(2)))

2
, (47)

p(y = −1|x) = 1− p(y = +1|x), (48)

where x = [x(1), x(2)]⊤ ∈ R2 is the input vector. Data samples were generated from
mixtures of Gaussian distributions as follows:

ptr(x) =
2∑

k=1

πtr
k N (X|µtr

k ,Σ
tr
k ),

pte(x) =
2∑

k=1

πte
k N (X|µte

k ,Σ
te
k ),
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Table 1: Setup of illustrative examples.

ptr(x) pte(x)
Mixture 1 Mixture 2 Mixture 1 Mixture 2

π 0.5 0.5 0.5 0.5
µ (−2, 2.5) (2, 2.5) (−3.5,−0.5) (0.5,−0.5)

Σ

(
0.5 0
0 2.5

) (
0.5 0
0 2.5

) (
0.5 0
0 0.5

) (
0.5 0
0 0.5

)

where πtr
k and πte

k are mixing coefficients of training and test distributions, and N (X|µ,Σ)
denotes the Gaussian density with mean µ ∈ R2 and covariance matrix Σ ∈ R2×2. In
this experiment, we set the mixing coefficients, means, and covariances as described in
Table 1.

Let the number of training and test samples be ntr = 1000 and nte = 2000. We use
KLR/IWKLR with the linear kernel and employ CV/IWCV for tuning the regularization
parameter δ. The value δ chosen by CV and IWCV for KLR and IWKLR were 10−6

and 1, respectively. The importance weights used in IWKLR and IWCV are learned by
KLIEP and LCV is used for choosing the Gaussian width τ in KLIEP. Figure 1 shows the
decision boundaries obtained by KLR+CV and IWKLR+IWCV. For references, we also
showed ‘OPT’, which is the optimal decision boundary given by Eqs.(47) and (48). As the
figure clearly shows, IWKLR+IWCV gives the decision boundary that is closer to OPT
for the test samples than plain KLR+CV. The correct classification rate of KLR+CV
is 93.6%, while that of IWKLR+IWCV is 96.1%. This illustrates that, under covariate
shift, the prediction performance can be improved by employing the importance weighting
techniques.

4 Experiments

In this section, we report the results of speaker identification in the light of covariate shift
adaptation.

4.1 Data and System Description

Training and test samples were collected from 10 male speakers, and we have conducted
two types of experiment—text-dependent and text-independent speaker identification. In
text-dependent speaker identification, the training and test sentences are common to all
speakers. On the other hand, in text-independent speaker identification, the training
sentences are common to all speakers, but the test sentences are different from training
sentences.

Each speaker uttered several Japanese sentences for text-dependent and text-
independent speaker identification evaluation. The following three sentences are used
as training and test samples in the text-dependent speaker identification experiments
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Figure 1: Decision boundaries obtained by IWKLR+IWCV and KLR+CV (red and blue
dashed lines) and the optimal decision boundary (black solid line). ‘◦’ and ‘×’ are positive
and negative training samples, while ‘2’ and ‘+’ are positive and negative test samples.
Note that the input-output test samples are not used in the training of KLR and the
output test samples are not used in the training of IWKLR—they are plotted in the
figure for illustration purposes.

(Japanese sentences written using the Hepburn system of Romanization):

• seno takasawa hyakunanajusseNchi hodode mega ookiku yaya futotteiru,

• oogoeo dashisugite kasuregoeni natte shimau,

• tashizaN hikizaNwa dekinakutemo eha kakeru.

In the text-independent speaker identification experiments, the following three sentences
are used as training samples:

• seno takasawa hyakunanajusseNchi hodode mega ookiku yaya futotteiru,

• oogoeo dashisugite kasuregoeni natte shimau,

• tashizaN hikizaNwa dekinakutemo eha kakeru,

and the following five sentences are used as test samples:

• tobujiyuuwo eru kotowa jiNruino yume datta,

• hajimete ruuburubijutsukaNe haittanowa juuyoneNmaeno kotoda,

• jibuNno jitsuryokuwa jibuNga ichibaN yoku shitteiru hazuda,

• koremade shouneNyakyuu mamasaN bareenado chiikisupootsuo sasae shimiNni mic-
chakushite kitanowamusuuno boraNtiadatta,
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• giNzakeno tamagoo yunyuushite fukasase kaichuude sodateru youshokumo hajimat-
teiru.

The utterance samples for training were recorded in 1990/12, while the utterance
samples for testing were recorded in 1991/3, 1991/6, and 1991/9, respectively. Since the
recording time is different between training and test utterance samples, the voice quality
variation is expected to be included. Thus, the target speaker identification problem is a
challenging task.

The total duration of the training sentences is about 9 sec. The durations of the test
sentences for text-dependent and text-independent speaker identifications are 9 sec and
24 sec, respectively. There are approximately 10 vowels in the sentences for every 1.5 sec.

The input utterance is sampled at 16kHz. A feature vector consists of 26 components:
12 MFCCs, the normalized log energy, and their first derivatives. Feature vectors are
derived at every 10 ms over the 25.6-ms Hamming-windowed speech segment, and the
cepstral mean normalization (CMN) is applied over the features to remove channel effects.
We divide each utterance into 300-ms disjoint segments, each of which corresponds to a
set of features of size 26 × 30. Thus the training set is given as X tr = {Xi}411i=1 for text-
independent and text-dependent speaker identification evaluations. For text-independent
speaker identification, the sets of test samples for 1991/3, 1991/6, and 1991/9 are given
as X te1

1 = {Xi}907i=1, X te2
1 = {Xi}919i=1, and X te3

1 = {Xi}906i=1, respectively. For text-dependent
speaker identification, the sets of test data are given as X te1

2 = {Xi}407i=1, X te2
2 = {Xi}407i=1,

and X te3
2 = {Xi}412i=1, respectively.

We compute the speaker identification rate at every 1.5s, 3.0s, and 4.5s and identify
the speaker from the average posterior probability

p(Xt|V) =
1

m

m∑
i=1

p(Xt−i|V ), (49)

where m = 5, 10, and 15, respectively.

4.2 The Results of Speaker Identification under Covariate Shift

We compared GMM, KLR, and IWKLR by computing the speaker identification rates on
the 1991/3, 1991/6, and 1991/9 datasets (NTT dataset [33]), respectively. For GMM and
KLR training, we only use the 1990/12 dataset (inputs X tr and their labels).

For GMM training, the means, diagonal covariance matrices, and mixing coefficients
are initialized by the results of k-means clustering on all training sentences for all speakers;
then these parameters are estimated via the EM algorithm [34] for each speaker. The
number of mixtures is determined by 5-fold CV. In the test phase of GMM, we compare
the probability p(Xt|µk,Σk) =

∏p
j=1 p(xt−j|µk,Σk), k = 1, . . . , 10, where µk and Σk are

the means and covariance matrices for speaker k.
For IWKLR training, we use unlabeled samples X te1, X te2, X te3 in addition to the

training inputs X tr and their labels (i.e., semi-supervised). We first estimate the impor-
tance weight from the training and test dataset pairs (X tr, X te1), (X tr, X te2), or (X tr,
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X te3) by KLIEP with 5-fold LCV, and we use 5-fold IWCV to decide the kernel band
width σ and regularization parameter δ.

In our preliminary experiments, we observed that the kCV and kIWCV scores tend
to be heavily affected by the way the data samples are split into k disjoint subsets (we
used k = 5). We conjecture that this is due to non-i.i.d. nature of the MFCC features,
which is different from the theory. To obtain reliable experimental results, we decided to
repeat the CV procedure 50 times with different random data splits and use the highest
score for model selection.

Table 2 shows the text-independent speaker identification rates in percent for 1991/3,
1991/6, and 1991/9. IWKLR refers to IWKLR with σ and δ chosen by 5-fold IWCV,
KLR refers to KLR with σ and δ chosen by 5-fold CV, and GMM refers to GMM with the
number of mixtures chosen by 5-fold CV. The chosen values of these hyper-parameters
are described in the bracket. ‘Std’ in the bottom line refers to the standard deviation
of the estimated importance weights {w(Xi)}ntr

i=1; the smaller the standard deviation is,
the ‘flatter’ the importance weights are. Flat importance weights imply that there is no
significant distribution change between the training and test phases. Thus, the standard
deviation of the estimated importance weights may be regarded as a rough indicator of
the degree of distribution change.

As can be seen from the table, IWKLR+IWCV outperforms GMM+CV and KLR+CV
for all sessions. This result implies that importance weighting is useful in coping with the
influence of non-stationarity in practical speaker identification such as utterance variation,
the recording environment change, and physical conditions/emotions.

Table 3 summarizes the text-dependent speaker identification rates in percent for
1991/3, 1991/6, and 1991/9, showing that IWKLR+IWCV and KLR+CV slightly out-
perform GMM and are highly comparable to each other. The result that IWKLR+IWCV
and KLR+CV are comparable in this experiment would be a reasonable consequence
since the standard deviation of the estimated importance weights is very small in all
three cases—implying that there is no significant distribution change and therefore no
adaptation is necessary. This result indicates that the proposed method does not degrade
the performance when there is no significant distribution change.

Overall, the proposed method tends to improve the performance when there exists
a significant distribution change and it tends to maintain the good performance of the
baseline method when no distribution change exists. Based on these experimental re-
sults, we conclude that the proposed method is a promising approach to handling session
dependent variation.
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5 Conclusions

In this paper, we proposed a novel semi-supervised speaker identification method that can
alleviate the influence of non-stationarity such as session dependent variation, the record-
ing environment change, and physical conditions/emotions. Under such non-stationary
environment, standard machine learning techniques such as kernel logistic regression
(KLR) and cross validation (CV) or Gaussian mixture models (GMM) and CV do not
work properly due to changing environment.

Our assumption was that voice quality variants follow the covariate shift model—the
voice feature distribution changes between the training and test phases, but the condi-
tional distribution of the speaker index given voice features is unchanged. Under this
covariate shift model, we employed the importance weighted KLR (IWKLR) method,
where the importance weights are estimated by using the Kullback-Leibler importance
estimation procedure (KLIEP) with likelihood CV (LCV). By combining IWKLR and
KLIEP, classification accuracy under covariate shift is highly improved. Moreover, the
kernel width and the regularization parameter of IWKLR are tuned based on importance
weighted CV (IWCV), which is guaranteed to be almost unbiased even under covariate
shift. To verify the validity of our approach, we conducted text-independent/dependent
speaker identification simulations and experimentally found that the covariate shift for-
mulation with IWKLR, IWCV, and KLIEP is a promising approach.

Following the current line of research, there are several remaining issues to be pursued
for further improving the identification performance. For example, the IWCV method
appeared to be rather unstable in experiments when the degree of distribution shift is
very high. In such cases, further regularization of the IWCV method is expected to be
useful, e.g., following the line of the paper [35]. Another challenging issue is to weaken the
covariate shift assumption. The covariate shift model where only the input distribution
changes could be rather restrictive in practice—the conditional distribution may also
change in speaker identification tasks. In such cases, however, it is not possible to learn
well in principle in the semi-supervised setup since there is no information on the test
output distribution. To cope with this situation, we need to change the problem setup
from semi-supervised learning to transfer learning [36], where a small number of test
output samples are also available. We expect that a similar weighting approach is still
useful even in the transfer learning scenarios.

The proposed approach, IWKLR+IWCV, is a multi-class classification method. Thus,
in principle, it can be applied to identification of any number of speakers. In our exper-
iments, the proposed method was shown to work well for distinguishing 10 speakers.
Our future challenge is to investigate whether the same approach is still applicable to
larger-scale identification problems.
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