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Abstract

The local model fitting (LMF) method is one of the useful single-shot surface profiling
algorithms. The measurement principle of the LMF method relies on the assumption
that the target surface is locally flat. Based on this assumption, the height of the
surface at each pixel is estimated from pixel values in its vicinity. Therefore, we can
estimate flat areas of the target surface precisely, whereas the measurement accuracy
could be degraded in areas where the assumption is violated, because of curved sur-
face or sharp steps. In this paper, we propose to overcome this problem by weighting
the contribution of the pixels according to the degree of satisfaction of the locally
flat assumption. However, since we have no information on the surface profile be-
forehand, we iteratively estimate it and use this estimation result to determine the
weights. This algorithm is named the iteratively-reweighted LMF (IRLMF) method.
Experimental results show that the proposed algorithm, named Iteratively-Reweighted
LMF (IRLMF), works excellently.
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1 Introduction

Surface profiling using optical interferometry is useful because we can estimate the surface
profile of target objects accurately and fast without damaging them. Among various meth-
ods, the phase shift method [1] is popular and widely used to measure surface profiles. This
method uses multiple images (so it is called ‘multiple-shot’) taken by changing the relative
distance between the target object and the reference mirror. Although the measurement
accuracy of this method is very high, it could be degraded by disturbance such as vibration,
and measurement speed is not so fast because we have to take images several times.

To overcome these problems of the multiple-shot method, surface profiling methods which
only require a single image (i.e., ‘single-shot’) have been actively explored. A key idea of
single-shot surface profiling is to slightly tilt the reference mirror. Such a single-shot method
is robust against vibration, fast, and simple since mechanical devices such as piezo actuators
are not needed. For these reasons, various single-shot methods have been developed; for
example, the Fourier transform method [2], the spatial phase synchronization method [3],
the spatial phase-shift method [4, 5], and the local model fitting (LMF) method [6].

In particular, the LMF method [6] was shown to be useful since its locality allows one
to measure objects with sharp steps and/or covered with heterogeneous materials, which
is an advantage over the Fourier transform method and the spatial phase synchronization
method. Moreover, the tilting angle of the reference mirror could be arbitrary in LMF,
which is an advantage over the spatial phase-shift method. Finally, the LMF method can
be implemented in a simple and computationally efficient way.

The measurement principle of the LMF method relies on the assumption that the target
surface is locally flat. Based on this assumption, the height at each pixel is estimated from
pixel values in its vicinity by least-squares. Therefore, we can estimate flat areas of the target
surface precisely, whereas the measurement accuracy could be degraded in areas where the
assumption is violated, because of curved surface.

In this paper, we overcome the above limitation of LMF by weighting the contribution
of pixels in the vicinity of a target pixel according to the degree of satisfaction of the locally
flat assumption— more specifically, the difference of the height of the surface from the
target pixel. This weighting scheme allows us to suppress the influence of pixels which
strongly violate the assumption. However, since we have no information on the surface
profile beforehand, we can not directly implement this idea. To cope with this problem,
we iteratively estimate the surface profile and use this estimation result to determine the
weights. This algorithm is named the iteratively-reweighted LMF (IRLMF) method. The
practical usefulness of the IRLMF method is shown through experiments.

This paper is organized as follows. In Section 2, the original LMF method is briefly
reviewed. In Section 3, a drawback of the LMF method is pointed out and the IRLMF
algorithm is introduced. In Section 4, experimental results are reported. Finally, concluding
remarks are given in Section 5.
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2 The Local Model Fitting Algorithm

In this section, we review a single-shot surface profiling algorithm called the LMF method [6].
We tilt the reference mirror in an arbitrary angle. Then an interference pattern is modeled
as

g(x, y) := a(x, y) + b(x, y) cos (ϕ(x, y) + 2πfxx+ 2πfyy) , (1)

where a(x, y) and b(x, y) are the bias and the amplitude, ϕ(x, y) contains information on
the surface profile which we would like to extract, and fx and fy are the spatial carrier
frequencies along the x-axis and y-axis, respectively.

We can easily show that g(x, y) is equivalently expressed as

g(x, y) = a(x, y) + ξc(x, y)φc(x, y) + ξs(x, y)φs(x, y),

where

ξc(x, y) := b(x, y) cosϕ(x, y), φc(x, y) := cos(2πfxx+ 2πfyy),

ξs(x, y) := b(x, y) sinϕ(x, y), φs(x, y) := − sin(2πfxx+ 2πfyy).

Suppose we have samples {gi}ni=1 at {(xi, yi)}ni=1 in the vicinity of a target point (x0, y0).
Our goal is to estimate ϕ(x0, y0) from {gi}ni=1. Here we make the following assumption:
a(x, y), b(x, y), and ϕ(x, y) are constant in the vicinity of (x0, y0), i.e., our local model is

ḡ(x, y) := a+ ξcφc(x, y) + ξsφs(x, y), (2)

where

ξc := b cosϕ and ξs := b sinϕ. (3)

Suppose we have reasonable estimates of the spatial carrier frequencies fx and fy, denoted

by f̂x and f̂y, respectively; f̂x and f̂y may be obtained from the image data of a flat area.
Note that the spatial carrier frequencies fx and fy are global quantities which do not depend
on the target object and are only determined by the (relative) tilting angle of the reference
mirror. Then the unknown parameters in the simplified model (2) are only a, ξc, and ξs. We
determine them by solving the following least-squares problem:

(â, ξ̂c, ξ̂s) := argmin
(a,ξc,ξs)

n∑
i=1

(
gi − ḡ(xi, yi)

)2

. (4)

Since the above model is linear with respect to the parameters a, ξc and ξs, we can analytically
obtain the least-squares solutions â, ξ̂c and ξ̂s as

(â, ξ̂c, ξ̂s)
⊤ = (A⊤A)−1A⊤g, (5)
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where

A =


1 φc(x1, y1) φs(x1, y1)
1 φc(x2, y2) φs(x2, y2)
...

...
...

1 φc(xn, yn) φs(xn, yn)

 , g =


g1
g2
...
gn

 .

Given ξ̂c and ξ̂s, we can obtain an estimate ϕ̂ of the surface profile at (x0, y0) by

ϕ̂ := arctan
(
ξ̂s/ξ̂c

)
+ 2mπ, (6)

where m is an unknown integer. Note that we can determine the value of arctangent up to
a 2π range by using the signs of cosϕ and sinϕ. Since b is always positive, the signs of cosϕ
and sinϕ could be estimated by the signs of ξ̂c and ξ̂s, respectively (cf. Equation (3)). m
may be determined by a phase-unwrapping algorithm [9].

3 The Iteratively-Reweighted LMF Algorithm

In this section, we first point out a drawback of the LMF method, and then propose a new
algorithm which can solve it.

3.1 Drawback of the LMF Method

The key idea of the LMF method was that a(x, y), b(x, y), and ϕ(x, y) are assumed to be
constant in the vicinity of (x0, y0), which enabled us to estimate unknown parameters in the
model. Although a(x, y) and b(x, y) would be almost locally constant, ϕ(x, y) is far from
constant when the local area is not flat. Then some measurement error would be incurred.
We first demonstrate this problem through computer simulations.

We prepared two target surfaces: a sharp bump and a sphere illustrated in Figure 1(a)
and Figure 2(a), respectively. The number of pixels is 100 × 100 = 10000. We generated
observed interference patterns by Equation (1), and added Gaussian noise with mean 0 and
standard deviation 0.1. Here the signal-to-noise ratio (the standard deviation of the signal
g(x, y) divided by that of the noise) of the bump and sphere are 50.02 and 50.00, respectively.
Figures 1(b) and 2(b) depict observed images g(x, y), while Figures 1(c) and 2(c) depict their
one-dimensional intercepts at y = 50. In the following simulations, we evaluate the accuracy
of estimation results by root mean squared error (RMSE).

We estimated surface profiles by the LMF method for the vicinity window size: 17× 17
and 5× 5. Recovered surfaces and their one-dimensional intercepts at y = 50 are illustrated
in Figures 1(d)(e)(g)(h) and 2(d)(e)(g)(h), respectively.

In the bump case, if we set the window size large, a lot of samples can be used for
estimation. Then the influence of noise is well suppressed, and the recovered surface becomes
smooth (see Figures 1(d)(g)). However, since the locally flat assumption is heavily violated
around edges, the sharpness of the bump tends to be lost. On the other hand, if we set the
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(d) LMF(17 × 17). RMSE =
0.1630 [rad]
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(e) LMF(5 × 5). RMSE =
0.1001 [rad]
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(f) IRLMF. RMSE =
0.0454 [rad]
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(g) LMF(17× 17) at y = 50
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(h) LMF(5× 5) at y = 50
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(i) IRLMF at y = 50

Figure 1: Simulation results for an artificial bump.

window size small, sharp edges can be successfully recovered (see Figures 1(e)(h)). However,
flat or smooth areas become rather noisy because the number of samples used for estimation is
small. A similar tendency can be also observed in the sphere case (see Figures 2(d)(e)(g)(h)).

3.2 The Iteratively-Reweighted LMF Algorithm

The above simulation results show that the window size control the trade-off between sharp-
ness and smoothness. However, it is not possible to achieve both as long as the window size
is common to all pixels globally. It seems more appropriate to determine the window shape
and size adaptively according to the local surface profile, i.e., the pixels whose height of the
surface is considerably different from the target height should be excluded from the vicinity.

To confirm the validity of this idea, we carried out the simulation of the LMF method
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(a) Sphere
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(b) Observed interference im-
age
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(d) LMF(17 × 17). RMSE =
0.0508 [rad]
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(e) LMF(5 × 5). RMSE =
0.0367 [rad]
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(f) IRLMF. RMSE =
0.0209 [rad]
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(g) LMF(17× 17) at y = 50
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(h) LMF(5× 5) at y = 50
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(i) IRLMF at y = 50

Figure 2: Simulation results for an artificial sphere.

with ‘ideal’ window shape and size, under the hypothetical setup that we know the true
surface of objects. Here the experimental setting is the same as Section 3.1. The results are
illustrated in Figures 3(a)–(c) and 4(a)–(c).

We first determined the window size as 17× 17, and excluded pixels whose difference of
the phase ϕ (recall that it is proportion to the height of the surface as mentioned in Section
2) from the target pixel is larger than 0.03. Figures 3(a) and 4(a) depict the determined
window shape. In these figures, the central point of each window expresses the target pixel,
and deep-colored points are pixels included as vicinity and light-colored points are excluded
pixels. For example, in the bump case, each window is determined not to stride over edges.

Recovered surfaces are illustrated in Figures 3(b) and 4(b), while their one-dimensional
intercepts at y = 50 are illustrated in Figures 3(c) and 4(c). We can see that the recovered
surfaces become more accurate than those shown in Section 3.1. The simulation results illus-
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(a) ‘Ideal’ window shape for
bump
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(b) LMF with ‘ideal’ window
shape. RMSE = 0.0090 [rad]
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(c) LMF with ‘ideal’ window
shape at y = 50
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(d) ‘Ideal’ weights for bump
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(e) WLMF with ‘ideal’
weights. RMSE =
0.0090 [rad]
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(f) WLMF with ‘ideal’
weights at y = 50

Figure 3: LMF with ‘ideal’ window shape and WLMF with ‘ideal’ weights for bump.

trate that the measurement accuracy of the LMF method can be improved by determining
the window shape adaptively according to the local surface profile.

However, when the local region is not really flat, the above procedure may result in a very
small window, yielding less accurate estimation. To cope with this problem, we propose to
weight the influence of pixels in the window according to their difference of the height from
the target pixel. Thus, we use a “soft” window to fully make use of the information brought
by surrounding pixels. More specifically, we replace Equation (4) by weighted least-squares
with weights {wi}ni=1:

(ã, ξ̃c, ξ̃s) := argmin
(a,ξc,ξs)

[
n∑

i=1

wi(gi − ḡ(xi, yi))
2

]
. (7)

We can still analytically obtain the weighted least-squares solutions ã, ξ̃c and ξ̃s as

(ã, ξ̃c, ξ̃s)
⊤ = (A⊤WA)−1A⊤Wg, (8)

where W is the n-dimensional diagonal matrix whose diagonal elements are {wi}ni=1:

W = diag(w1, w2, . . . , wn). (9)
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(a) ‘Ideal’ window shape for
sphere
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(b) LMF with ‘ideal’ window
shape. RMSE = 0.0233 [rad]
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(c) LMF with ‘ideal’ window
shape at y = 50
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(d) ‘Ideal’ weights for sphere
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(e) WLMF with ‘ideal’
weights. RMSE =
0.0128 [rad]
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(f) WLMF with ‘ideal’
weights at y = 50

Figure 4: LMF with ‘ideal’ window shape and WLMF with ‘ideal’ weights for sphere.

We call this algorithm the weighted LMF (WLMF) method.
Figures 3(d)–(f) and 4(d)–(f) show the simulation result of the WLMF method (this is

obtained under the ‘ideal’ setup). We determined wi, which is the weight at (xi, yi), by the
following equation:

wi = c
(
(ϕ(x0, y0)− ϕ(xi, yi))

2 + c
)−1

, (10)

where c is a constant to avoid divergence of the weight wi. We set it to c = 0.001. Figures
3(d) and 4(d) depict the determined weights. In these figures, each square and central point
expresses the window and the target pixel, respectively. Colors in each square illustrate the
weight values. Recovered surfaces are illustrated in Figures 3(e) and 4(e), while their one-
dimensional intercepts at y = 50 are illustrated in Figures 3(f) and 4(f). We can see that
the influence of noise is better suppressed and the recovered surface becomes smoother than
those of the “hard”-windowed counterpart, especially in the sphere case. The results show
that weighting (“soft”-windowing) is more sensible than thresholding (“hard”-windowing).

However, since we have no information on the true surface profile, the above “ideal”
procedure can not be directly implemented. To cope with this problem, we propose the fol-
lowing iterative algorithm: first we initialize the weights uniformly and execute the (W)LMF
method. Next we update the weights by using the estimation result. Then we execute the
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WLMF method again based on the current weights, and update the weights by using the
new estimation result. We iterate these height-estimating step and weight-updating step
until convergence, and we obtain the final estimation result.

We call this algorithm the iteratively-reweighted LMF (IRLMF) method. A pseudo-code
of IRLMF algorithm is summarized below.

1. Initialize the weights uniformly (w1 = w2 = · · · = wn = 1).

2. Estimate the surface profile by executing the WLMF method based on the current
weights.

3. Update the weights based on the estimated surface profile.

4. Repeat 2 and 3 until convergence.

We note that in preliminary experiments, we empirically found that repeating the above
IRLMF iteration only once (i.e., after the initial LMF estimation, weights are updated and
WLMF is performed only once) is sufficient for improving the estimation accuracy. For this
reason, the number of repetition is set to one in the experiments below. This brings another
practical advantage that the computation cost can be saved.

3.3 Computer Simulations of the IRLMF Method

We demonstrate the behavior of the IRLMF method through computer simulations. Here
the experimental setting is the same as Section 3.1. We used the estimation result by the
LMF method with window size 17×17 (see Figures 1(d)(c) and 2(d)(c)) as an initial solution,
and weights are determined as

wi = c
(
(ϕ̂(x0, y0)− ϕ̂(xi, yi))

2 + c
)−1

, (11)

where ϕ̂ is an obtained estimate of the phase ϕ and c = 0.001. Then we estimated the surface
profile by the WLMF method. Estimation results are evaluated by RMSE.

Recovered surfaces are illustrated in Figures 1(f) and 2(f), while their one-dimensional
intercepts at y = 50 are illustrated in Figures 1(i) and 2(i). We can see that the measurement
error is considerably reduced and the influence of noise is well suppressed. Figures 5(a) and
5(b) illustrate the weights determined by Equation (11) at the first iteration, which are
reasonably adjusted to the local surface profile.

4 Actual Experiments

In this section, we report the experimental result of actual measurement.
We obtained interference images by using the optical surface profiler SP-500 by Toray

Engineering Co., Ltd.1, which allows a full-field measurement of 512 by 480 pixels (the actual

1See ‘http://www.cable-net.ne.jp/corp/torayins/SP-500.html’ for details.
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(b) Sphere

Figure 5: Weights at the first iteration.

size is 0.80 [mm] × 0.72 [mm]). Each pixel takes an integer value from 0 to 255 (i.e., 8-bit
intensity). The wavelength of the light source (here we used a narrow-band optical filter) is
603 [nm].

Figure 6(a) illustrates the surface profile of the target object. The height of the bump
is 67.7 ± 1.2 [nm] (which corresponds to 1.41 [rad] in phase). The number of pixels in the
measured area is 120 × 120 = 14400 (i.e., 0.19 [mm] × 0.18 [mm]). Figure 6(b) depicts the
observed image, and Figure 6(c) depicts the one-dimensional intercept at y = 60.

We compared the following three methods: LMF with window size 5 × 5, LMF with
window size 17×17, and IRLMF. In the IRLMF method, the vicinity size was set to 17×17
and weights were updated in the same way as Section 3.3. The number of iteration was set
to one.

Estimation results are depicted in Figure 6. Recovered surfaces are illustrated in Figures
6(d)–(f), while their one-dimensional intercepts at y = 60 are illustrated in Figures 6(g)–(i).
Note that the height of the bump was accurately estimated in all methods. However, in the
LMF method (17× 17) (see Figures 6(d)(g)), the recovered surface became so smooth that
the sharpness of the bump edge was lost. On the other hand, in the LMF method (5×5) (see
Figures 6(e)(h)), although sharp edges were well recovered, flat areas became rather noisy.
In contrast, in the IRLMF method (see Figures 6(f)(i)), both recovery of the sharpness of the
bump edge and suppression of the noise in the flat areas are successfully achieved. Figure 7
illustrates the weights at the first iteration in the IRLMF method, which reasonably reflect
the local surface profile. The computation time of the LMF (5 × 5), the LMF (17 × 17)
and the IRLMF methods was 1.84 [sec], 2.30 [sec] and 5.09 [sec] with our implementation
using Matlab, respectively. This shows that only with 2–3 times longer computation time,
the proposed IRLMF can significantly improve the estimation accuracy. We also found that
the computation time can be reduced by an order of magnitude by using a GPGPU, but we
do not go into detail here.
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(a) Target object (Illustra-
tion)
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(b) Observed interference im-
age
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(c) Intercept of the observed
image at y = 60
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(d) LMF (17×17). Estimated
height is 67.7 [nm].
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(e) LMF (5 × 5). Estimated
height is 67.7 [nm].
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(f) IRLMF. Estimated height
is 67.6 [nm].
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(g) LMF (17× 17) at y = 60
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(h) LMF (5× 5) at y = 60
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(i) IRLMF at y = 60

Figure 6: Actual measurement results of a real bump.

5 Conclusions

Single-shot surface profiling is useful in real-world situations since it is robust against exter-
nal disturbance such as vibration, and the measurement system is simple. In this paper, we
first reviewed a single-shot surface profiling algorithm called the LMF algorithm [6], and ex-
plained that the locally flat assumption in the LMF method enables us to estimate unknown
parameters in the model analytically.

However, some measurement error can be incurred when the locally flat assumption is
violated. We argued that this drawback can be avoided by determining each local window
adaptively by weighting the influence of each pixel according to the degree of satisfaction
of the assumption. Based on this idea, we proposed an improved single-shot surface profil-
ing algorithm called the iteratively-reweighted local model fitting (IRLMF) method, which
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Figure 7: Weights at the first iteration (real bump).

iteratively estimates the surface profile by the weighted local model fitting (WLMF) method
and update the weights by using the estimation result. We demonstrated high measurement
accuracy of the IRLMF method through computer simulations and actual experiments.
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