
Perceived Age Estimation under Lighting Condition Change
by Covariate Shift Adaptation

Kazuya Ueki
VALWAY Technology Center,

NEC Soft, Ltd.
Tokyo, Japan

ueki@mxf.nes.nec.co.jp

Masashi Sugiyama
Depertment of Computer Science,

Tokyo Institute of Technology
Tokyo, Japan

sugi@cs.titech.ac.jp

Yasuyuki Ihara
VALWAY Technology Center,

NEC Soft, Ltd.
Tokyo, Japan

ihara@mxk.nes.nec.co.jp

Abstract—Over the recent years, a great deal of effort
has been made to age estimation from face images. It has
been reported that age can be accurately estimated under
controlled environment such as frontal faces, no expression,
and static lighting conditions. However, it is not straightforward
to achieve the same accuracy level in real-world environment
because of considerable variations in camera settings, facial
poses, and illumination conditions. In this paper, we apply a
recently-proposed machine learning technique calledcovariate
shift adaptationto alleviating lighting condition change between
laboratory and practical environment. Through real-world age
estimation experiments, we demonstrate the usefulness of our
proposed method.
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I. I NTRODUCTION

In recent years, demographic analysis in public places
such as shopping malls and stations is attracting a great
deal of attention. Such demographic information is useful
for various purposes such as designing effective marketing
strategies and targeted advertisement based on customers’
gender and age. For this reason, a number of approaches
have been explored for age estimation from face images
[2], [3], [4], and several databases became publicly available
recently [1], [5], [6].

The recognition performance of age prediction systems
is significantly influenced, e.g., by the type of camera,
camera calibration, and lighting variations, and the publicly
available databases were mainly collected in semi-controlled
environment. For this reason, existing age prediction systems
built upon such databases tend to perform poorly in real-
world environment.

The situation where training and test data are drawn from
different distributions is calledcovariate shift[7], [8], [9].
In this paper, we formulate the problem of age estimation
in real-world environment as a supervised learning problem
under covariate shift. Within the covariate shift framework, a
method calledimportance-weighted least-squaresallows us

to alleviate the influence of environmental changes, by as-
signing higher weights to data samples having high test input
densities and low training input densities. We demonstrate
through real-world experiments that age estimation based
on covariate shift adaptation achieves higher accuracy than
baseline approaches.

II. PROPOSEDMETHOD

In this section, we describe our proposed method for age
prediction.

A. Formulation

Throughout this paper, we perform age estimation based
not on subjects’ real age, but on theirperceivedage. Thus,
the ‘true’ age of the subjecty is defined as the average
perceived age evaluated by those who observed the subject’s
face images (the value is rounded-off to the nearest integer).

Let us consider a regression problem of estimating the
agey∗ of subjectx (face features). We use the following
model for regression.

f(x;α) =

ntr∑
i=1

αiK(x,xtr
i ), (1)

where α = (α1, . . . , αntr )
⊤ is a model parameter and

K(x,x′) is a positive definite kernel.
Suppose we are given labeled training data

{(xtr
i , ytri )}ntr

i=1. A standard approach to learning the
model parameterα would beregularized least-squares.

min
α

[
1

ntr

ntr∑
i=1

(ytri − f(xtr
i ;α))2 + λ∥α∥2

]
, (2)

where∥ · ∥ denotes the Euclidean norm andλ(> 0) is the
regularization parameter to avoid overfitting.

Below, we explain that merely using regularized least-
squares is not appropriate in real-world perceived age pre-
diction and show how to cope with this problem.



Figure 1. The relation between subjects’ perceived agey∗ (horizontal
axis) and its standard deviation (vertical axis).

B. Incorporating Age Perception Characteristics

Human age perception is known to have heterogeneous
characteristics, e.g., it is rare to misregard the age of a 5-
year-old child as 15 years old, but the age of a 35-year-old
person is often misregarded as 45 years old. In order to
quantify this phenomenon, we have carried out a large-scale
questionnaire survey: we asked each of 72 volunteers to give
age labelsy to approximately 1000 face images. Figure 1
depicts the relation between subjects’ perceived agey∗ and
its standard deviation. This shows that the perceived age
deviation tends to be small in younger age brackets and
large in older age brackets.

In order to match characteristics of our age prediction
system to those of human age perception, we weight the
goodness-of-fit term in Eq.(2) according to the inverse
variance of the perceived age:

min
α

[
1

ntr

ntr∑
i=1

(ytri − f(xtr
i ;α))2

wage(ytri )2
+ λ∥α∥2

]
, (3)

wherewage(y) is the standard deviation of the perceived age
(see Figure 1 again).

C. Coping with Lighting Condition Change

When designing age estimation systems, the environment
of recording training face images is often different from the
test environment in terms of lighting conditions. Typically,
training data are recorded indoors such as a studio with
appropriate illumination, whereas in real-world environment,
lighting conditions have considerable varieties, e.g., strong
sunlight might be cast from a side of faces or there is no
enough light. In such situations, age estimation accuracy is
significantly degraded.

Let ptr(x) be the training input density andpte(x)
be the test input density. When these two densities are

different, it would be natural to emphasize the influence
of training samples(xtr

i , ytri ) which have high similarity
to data in the test environment. Such an adjustment can
be systematically carried out by weighting the goodness-
of-fit term in Eq.(3) according to theimportance function
wimp(x) = pte(x)/ptr(x) [7], [8], [9].

min
α

[
1

ntr

ntr∑
i=1

wimp(x
tr
i )

(ytri − f(xtr
i ;α))2

wage(ytri )2
+λ∥α∥2

]
.

The solution can be obtained analytically by

α̂ = (KtrW trKtr + ntrλIntr )
−1KtrW trytr, (4)

where Ktr is the kernel matrix whose(i, i′)-th element
is defined byK(xtr

i ,xtr
i′ ), W tr is the ntr-dimensional

diagonal matrix with(i, i)-th diagonal element defined by
wimp(x

tr
i )/wage(y

tr
i )2, Intr is thentr-dimensional identity

matrix, and ytr is the ntr-dimensional vector withi-th
element defined byytri .

When the number of training datantr is large, we may
reduce the number of kernel in Eq.(1) so that the inverse
matrix in Eq.(4) can be computed with the limited memory;
or we may compute the solution numerically by a stochastic
gradient-decent method.

D. Kullback-Leibler Importance Estimation Procedure
(KLIEP)

In order to compute the solution (4), we need the impor-
tance weightswimp(x

tr
i ) = pte(x

tr
i )/ptr(x

tr
i ). However,

since density estimation is a hard problem, a two-stage
approach of first estimatingptr(x) and pte(x) and then
taking their ratio may not be reliable. Here we describe
a method calledKullback-Leibler Importance Estimation
Procedure(KLIEP) [9], which allows us to directly estimate
the importance functionwimp(x) without going through
density estimation ofptr(x) andpte(x).

Let us modelwimp(x) using the following model:

ŵimp(x) =

b∑
k=1

βk exp

(
−∥ck − x∥2

2γ2

)
, (5)

Table I
PSEUDO CODE OFKLIEP. ‘./’ INDICATES THE ELEMENT-WISE

DIVISION . INEQUALITIES AND THE ‘ MAX ’ OPERATION FOR VECTORS

ARE APPLIED IN AN ELEMENT-WISE MANNER.

Input: {xtr
i }

ntr
i=1, {x

te
j }

nte
j=1

Output: ŵ(x)

Choose{ck}bk=1 as a subset of{xte
j }

nte
j=1;

Aj,k ← exp
(
−∥ck − xte

j ∥2/(2γ2)
)

;

bk ← 1
ntr

∑ntr
i=1 exp

(
−∥ck − xtr

i ∥2/(2γ2)
)
;

Initialize β(> 0) andε (0 < ε≪ 1);
Repeat until convergence

β ← εA⊤(1./Aβ);
β ← β + (1− b⊤β)b/(b⊤b);
β ← max(0,β);
β ← β/(b⊤β);

end



Figure 2. Examples of face images under different lighting conditions
(left: standard lighting, middle: dark, right: strong light from the side)

where{ck}bk=1 is a subset of test input samples{xte
j }nte

j=1．
Using the modelŵimp(x), we can estimate the test input
densitypte(x) by

p̂te(x) = ŵimp(x)ptr(x). (6)

We determine the parametersβ = {βk}bk in the model (6)
so that the Kullback-Leibler divergence frompte to p̂te is
minimized:

KL(pte∥p̂te) =
∫

pte(x) log
pte(x)

p̂te(x)
dx

=

∫
pte(x) log

pte(x)

ptr(x)
dx−

∫
pte(x) log ŵimp(x)dx.

We ignore the first term (which is a constant) and impose
ŵimp(x) to be non-negative and normalized. Then we obtain
the following convex optimization problem:

max
β

nte∑
j=1

log

(
b∑

k=1

βk exp

(
−
∥ck − xte

j ∥2

2γ2

)) ,

s.t.


βk ≥ 0 for k = 1, . . . , b,

1

ntr

ntr∑
i=1

(
b∑

k=1

βk exp

(
−∥ck − xtr

i ∥2

2γ2

))
= 1.

A pseudo code of KLIEP is described in Table I. The tun-
ing parameterγ can be optimized based on cross-validation
[9].

III. E MPIRICAL EVALUATION

In this section, we apply the proposed age prediction
method to in-house face-age datasets and experimentally
evaluate its performance.

We use the face images recorded under 17 different
lighting conditions: for instance, average illuminance from
above is approximately 1000 lux and 500 lux from the front
in the standard lighting condition, 250 lux from above and
125 lux from the front in the dark setting, and 190 lux
from left and 750 lux from right in another setting (see
Figure 2). Images were recorded as movies with camera
at depression angle 15 degrees. The number of subjects is
approximately 500 (250 for each gender). We used a face
detector for localizing the two eye-centers, and then rescaled
the image to 64× 64 pixels. The number of face images

in each environment is about 2500 (5 face images× 500
subjects).

As pre-processing, a neural network feature extractor [10]
was used to extract 100-dimensional features from 64× 64
face images. The kernel regression model (1) with Gaussian
kernel was employed for the extracted 100-dimensional data:

Kσ(x,x
′) = exp

(
−∥x− x′∥2

2σ2

)
.

We constructed the male/female age prediction models only
using male/female data, assuming that gender classification
had been correctly carried out.

We split the 250 subjects into thetraining set (200
subjects) and thetest set(50 subjects). The training set was
used for training the kernel regression model (1), and the test
set was used for evaluating its generalization performance.
For the test samples{(xte

i , ytei )}nte
i=1 taken from the test set in

the environment with strong light from a side, age-weighted
mean square error (WMSE)

WMSE=
1

nte

nte∑
i=1

(ytei − f(xte
i ; α̂))2

wage(ytei )2

was calculated as a performance measure. The training set
and the test set were shuffled 5 times in such a way that
each subject was selected as a test sample once. The final
performance was evaluated based on the average WMSE
over the 5 trials.

We compared the performance of the proposed method
with the two baseline methods:

Baseline method 1:Training samples were taken only from
the standard lighting condition and age-weighted regularized
least-squares (3) was used for training.

Baseline method 2:Training samples were taken from all
17 different lighting conditions and age-weighted regularized
least-squares (3) was used for training.

The importance weights were not used in these baseline
methods. The Gaussian widthσ and the regularization pa-
rameterλ were determined based on 4-fold cross-validation
over WMSE, i.e., the training set was further divided into
a training part (150 subjects) and a validation part (50
subjects).

In the proposed method, training samples were taken
from all 17 different lighting conditions (which is the
same as the baseline method 2). The importance weights
were estimated by KLIEP using the training samples and
additional unlabeled test samples; the hyper-parameterγ
in KLIEP was determined based on 2-fold cross-validation
[9]. We then computed the average importance score over
different samples for each lighting condition and used the
average importance score for training the regression model.
The Gaussian widthσ and the regularization parameter
λ were determined based on 4-fold importance-weighted
cross-validation over WMSE [8].



Table II
THE TEST PERFORMANCE MEASURED BYWMSE.

Male Female
Baseline method 1 2.83 6.51
Baseline method 2 2.64 4.40
Proposed method 2.54 3.90

Table II summarizes the experimental results, showing
that, for both female and male data, the baseline method
2 is better than the baseline method 1 and the proposed
method is better than the baseline method 2. This illustrates
the effectiveness of the proposed method.

IV. SUMMARY AND FUTURE WORKS

Lighting condition changeis one of the critical causes of
performance degradation in age prediction from face images.
In this paper, we proposed to employ a recently-proposed
machine learning technique calledcovariate shift adaptation
for alleviating the influence of lighting condition change.
We demonstrated the effectiveness of our proposed method
through real-world perceived age prediction experiments.

In principle, the covariate shift framework allows us to
incorporate not only lighting condition change, but also
various types of environment change such as face pose
variation and camera setting change. In our future work,
we will investigate whether the proposed approach is still
useful in such challenging scenarios.

REFERENCES

[1] The FG-NET Aging Database. http://www.fgnet.rsunit.com/.

[2] Y. Fu, Y. Xu, and T. S. Huang. Estimating human age by
manifold analysis of face pictures and regression on aging
features. Proceedings of the IEEE Multimedia and Expo,
pages 1383–1386, 2007.

[3] X. Geng, Z. Zhou, Y. Zhang, G. Li, and H. Dai. Learning
from facial aging patterns for automatic age estimation.
Proceedings of the 14th ACM International Conference on
Multimedia, pages 307–316, 2006.

[4] G. Guo, G. Mu, Y. Fu, C. Dyer, and T. Huang. A study on
automatic age estimation using a large database.International
Conference on Computer Vision in Kyoto (ICCV 2009), pages
1986–1991, 2009.

[5] P. J. Phillips, P. J. Flynn, W. T. Scruggs, K. W. Bowyer,
J. Chang, K. Hoffman, J. Marques, J. Min, and W. J. Worek.
Overview of the face recognition grand challenge.Proceed-
ings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2005), pages 947–954,
2005.

[6] K. J. Ricanek and T. Tesafaye. Morph: A longitudinal image
database of normal adult age-progression.Proceedings of the
IEEE 7th International Conference on Automatic Face and
Gesture Recognition (FGR ’06), pages 341–345, 2006.

[7] H. Shimodaira. Improving predictive inference under covari-
ate shift by weighting the log-likelihood function.Journal of
Statistical Planning and Inference, 90(2):227–244, 2000.

[8] M. Sugiyama, M. Krauledat, and K.-R. M̈uller. Covariate shift
adaptation by importance weighted cross validation.Journal
of Machine Learning Research, 8:985–1005, May 2007.

[9] M. Sugiyama, T. Suzuki, T., S. Nakajima, H. Kashima, P. von
Bünau, and M. Kawanabe. Direct importance estimation for
covariate shift adaptation.Annals of the Institute of Statistical
Mathematics, 60(4):699–746, 2008.

[10] F. H. C. Tivive and A. Bouzerdoum. A gender recognition
system using shunting inhibitory convolutional neural net-
works. Proceedings of the International Joint Conference on
Neural Networks (IJCNN ’06), pages 5336–5341, 2006.


