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Abstract

Standard Reinforcement Learning (RL) aims
to optimize decision-making rules in terms
of the expected return. However, especially
for risk-management purposes, other crite-
ria such as the expected shortfall are some-
times preferred. Here, we describe a method
of approximating the distribution of returns,
which allows us to derive various kinds of in-
formation about the returns. We first show
that the Bellman equation, which is a recur-
sive formula for the expected return, can be
extended to the cumulative return distribu-
tion. Then we derive a nonparametric return
distribution estimator with particle smooth-
ing based on this extended Bellman equation.
A key aspect of the proposed algorithm is
to represent the recursion relation in the ex-
tended Bellman equation by a simple replace-
ment procedure of particles associated with
a state by using those of the successor state.
We show that our algorithm leads to a risk-
sensitive RL paradigm. The usefulness of the
proposed approach is demonstrated through
numerical experiments.

1. Introduction

Most reinforcement learning (RL) methods attempt to
find decision-making rules that maximize the expected
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return, where the return is defined as the cumulative
(discounted) total of immediate rewards. Most of the
theories in RL have been developed for working with
the expected return as the objective function.

However, users are sometimes interested in controlling
the risk. For example, since maximizing the expected
return may accept rare occurrences of large negative
outcomes, some users, especially those who plan to
apply a RL algorithm to practical applications, pre-
fer a policy avoiding (or constraining) small chances
of suffering a large loss (Geibel & Wysotzki, 2005;
Defourny et al., 2008). On another front, some users
will prefer a robust criterion against outlier events, as
in cases where an estimate of the expected return will
be severely affected by rare occurrences of those events
(Sugiyama et al., 2009).

In this paper, we describe an approach to handling var-
ious risk-sensitive and/or robust criteria in a unified
manner, where the distribution of the possible returns
is approximated and then the criteria are evaluated
based on the approximated distribution. In order to
achieve this, our approach is to first extend the Bell-
man equation for conditional expectations of the re-
turns to cover conditional cumulative distributions of
the returns, as shown in Section 3. We next describe in
Section 4 a nonparametric approach with particles to
solve the Bellman equations for distributions, which
can be regarded as an extension of the conventional
temporal-difference learning. In Section 5, we demon-
strate how to apply our approach to a risk-sensitive
RL scenario, by focusing on the expected shortfall,
also called conditional value-at-risk (CVaR), of returns
as an example of risk-sensitive criteria. In Section 6,
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numerical experiments show that the proposed algo-
rithms are promising for return distribution approxi-
mation and also in a risk-sensitive RL scenario.

2. Background of Value-based RL

We briefly review the framework of value-based RL
and our motivation to approximate the return distri-
butions.

2.1. Markov Decision Process (MDP)

An RL problem is usually defined on a discrete-
time Markov decision process (MDP) (Bertsekas, 1995;
Sutton & Barto, 1998). The MDP is defined by the
quintuplet (S,A, pT, PR, π), where S ∋ s and A ∋ a
are finite sets of states and actions, respectively. The
state transition probability pT : S × A × S → [0, 1] is
a function of a state s, an action a, and the successor
state s+1, i.e., pT(s+1|s, a) , Pr(s+1|s, a).1 Here, we
describe the state s+k and the action a+k as a state
and an action after k time-steps from the state s and
the action a, respectively. An immediate reward r ∈ R

is distributed according to the reward probability PR :
R × S × A × S → [0, 1], which is a function of r, s,
a, and s+1, i.e., PR(r|s, a, s+1) , Pr(R ≤ r|s, a, s+1).

2

The policy π : A×S → [0, 1] is a probability function
of a given s, which defines the decision-making rule
of the learning agent, i.e., π(a|s) , Pr(a|s). There
are various policy models with a value function, such
as the greedy, ε-greedy, or soft-max action selection
models (Sutton & Barto, 1998).

2.2. From expected returns to return
distributions

Let us define the return as the following time-
discounted cumulative reward with a discount rate
γ ∈ [0, 1),

η , lim
T→∞

T∑

t=0

γtr+t, (1)

where r+0 is the original r. Alternatively, the return

could be defined as η ,
∑T

t=0 γ
tr+t with a bounded

T and γ ∈ [0, 1] in an episodic problem. The return
is observed by the learning agent with (infinite)
time delay and usually is a random variable E,
reflecting randomness due to pT, PR, and π. Once

1 Although to be precise it should be Pr(S+1=s+1|S=
s,A=a) for the random variables S+1, S, and A, we often
write Pr(s+1|s, a) for simplicity. The same simplification
is used for other distributions.

2While r(s, a, s+1) may often be deterministic, we as-
sume r to be stochastic, in order to consider a more general
case of RL. All results presented here are applicable to the
deterministic reward case as well.

the policy is fixed, the MDP is regarded as a Markov
chain M(π) , {S,A, pT, PR, π, γ}. We write the
(conditional) cumulative distribution functions of
the returns as Pπ

E : R × S × A × M → [0, 1] and
P̄π
E : R × S × M → [0, 1], where M is a family of

Markov chains,

Pπ
E (η | s, a) , Pr(E ≤ η | s, a,M(π)),

P̄π
E (η | s) ,

∑

a∈A

π(a|s) Pr(E ≤ η | s, a,M(π)).

A statistic for the return from a state (or a state-
action pair) is called a value function of the state
(or the state-action pair). The objective of RL is
formalized as maximizing the value function over
the states. Although there would be various return-
statistics to be considered for the value function, in
most value-based RL problems, the expected return
conditioned on a state s or a state-action pair (s, a) is
used for the value function, such as

V π(s) , E
π[η | s],

Qπ(s, a) , E
π[η | s, a], (2)

where E
π[·] denotes the expectation over the Markov

chain M(π). The function Qπ(s, a) is called the state-
action value or Q-value function and often serves a
basis of the policy. However, decision making that re-
lies only on information on the expected return will
be insufficient for the control of the risk. These value
functions are often inappropriate for the risk-sensitive
criteria, as described in Section 1. In addition, the ex-
pected return is not robust against outliers, i.e., these
value functions can be severely affected by rare occur-
rences of large noises that could be included in the
reward or state observations (Sugiyama et al., 2009).

Altogether, the major drawback of the ordinary RL
approach follows from the fact that the approach ig-
nores all information about the return except for the
expectations. In actuality, if we have an approxima-
tion for the return distribution, this gives us access to
a lot of information about the return and allows us to
handle various risk-sensitivity or robustness criteria for
the return. This is why we focus on the approximation
of the return distribution.

2.3. Related work involving the return
distribution

There are several approaches to estimating other
statistics for the return distribution beyond the ex-
pected return. In the seminal paper of Dearden et al.
(1998), a recursive formula for the second moment
of the return is shown when the reward is de-
fined by a deterministic function of the state-action
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pair, E
π{η2|s} = r2 + 2γV π(s+1) + γ2

E
π{η2|s+1}.

They developed a Bayesian learning method in
which the return distribution is estimated with the
normal-gamma distribution. However, this approach
sometimes requires numerical integration and re-
quires extensive computation time, while our pro-
posed algorithm does not require any numerical in-
tegration. As a similar line to this work, some
mean-variance model-free RL algorithms were devel-
oped by Sato et al. (2001), Engel et al. (2005), and
Ghavamzadeh & Engel (2007), and were successful in
the variance penalized MDPs. However, these mean-
variance-based algorithms assume that the return dis-
tribution is Gaussian, which may not be true in prac-
tice. In contrast, our nonparametric approach using
particles has many degrees of freedom as regards the
return distribution model.

3. Distributional Bellman Equation for

Cumulative Return Distribution

We derive a Bellman-type recursive formula for the
return distribution, comparing it with the ordinary
Bellman equation for the Q-value function. From the
definitions of the return (Eq. (1)) and the Q-value
function (Eq. (2)), the following equation is derived
(Sutton & Barto, 1998),

Qπ(s, a) ,
∑

s+1∈S

pT(s+1|s, a)
{∫

r∈R

r dPR(r|s, a, s+1)

+ γ
∑

a+1∈A

π(a+1|s+1)Q
π(s+1, a+1)

}
.

This equation is well-known as the Bellman equation
for the Q-value function. Similarly, we can derive
a Bellman-type recursive formula for the conditional
cumulative distribution of the returns given a state-
action pair, which we call the (cumulative) distribu-
tional Bellman equation for the returns.

Proposition 1 The (cumulative) distributional Bell-
man equation for the return η is given as

Pπ
E (η|s, a)
=

∑

s+1∈S

∑

a+1∈A

pT(s+1|s, a)π(a+1|s+1) (3)

×
∫

r∈R

Pπ
E

(η − r

γ
| s+1, a+1

)
dPR(r|s, a, s+1).

Proof: Here we use a strict notation only for the re-
turn distribution such as Pr(E≤η|s, a) := Pπ

E (η|s, a).
From the definition of the return in Eq. (1), the recur-
sive form with respect to the return is

η = r + γη+1.

The random variables R = r and E+1 = η+1 in the
above equation are conditionally independent given
the successor state s+1, since these are distributed as
r ∼ PR(r|s, a, s+1) and η+1 ∼ Pπ

E (η+1|s+1, a+1), re-
spectively, where “x ∼ PX(x)” means that x is dis-
tributed according to a probability function PX(x).
Therefore, by considering the convolution integral with
respect to r, this proposition (Eq. (3)) is proved as

Pr(E ≤ η | s, a)
= Pr(R+ γE+1 ≤ η | s, a)

=
∑

s+1∈S

∑

a+1∈A

pT(s+1|s, a)π(a+1|s+1)

×
∫

r∈R

Pr(γE+1 ≤ η − r | s+1)dPR(r|s, a, s+1)

=
∑

s+1∈S

∑

a+1∈A

pT(s+1|s, a)π(a+1|s+1)

×
∫

r∈R

Pr
(
E+1 ≤ η − r

γ
| s+1

)
dPR(r|s, a, s+1).

�

The distributional Bellman equation for the condi-
tional return distribution given a state-action pair
(Eq. (3)) is directly extended to that given a state as

P̄π
E (η|s) =

∑

a∈A

∑

s+1∈S

π(a|s)pT(s+1|s, a) (4)

×
∫

r∈R

P̄π
E

(η − r

γ
| s+1

)
dPR(r|s, a, s+1).

These conditional return distributions are in principle
evaluated by solving the distributional Bellman equa-
tions, just as the (ordinary) Bellman equation gives the
Q-value function (i.e., the conditional expected return
given a state-action pair) as its solution.

4. Return Distribution Approximation

with Nonparametric Model

To approximately solve the distributional Bellman
equations, we propose a nonparametric method based
on a particle smoothing (Doucet et al., 2001), called
the return distribution particle smoother (RDPS), in
which particles are used to approximate the return dis-
tributions. An eligibility trace technique for RDPS is
also discussed.

Note that, in this section, we will discuss an approx-
imation only for the conditional return distribution
given a state. However, these results are directly gener-
alized and applied to the case of the conditional return
distribution given a state-action pair.
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4.1. General view of return distribution
approximation with distributional
Bellman equation

A possible approach for approximating the return dis-
tribution would be to use a Monte Carlo sampling
technique. However, this would require an enormous
number of samples and have high computational costs
since each observation of the return has multiple time
delays. As an alternative, the distributional Bellman
equation as given in Section 3 illustrates the connec-
tion between the neighboring-time return distributions
and gives the return distributions as its solution.

For simplicity, the right-hand side of Eq. (4) is denoted
as ΠP̄π

E with the distributional Bellman operator Π as

ΠP̄π
E (η|s) ,

∑

a∈A

∑

s+1∈S

π(a|s)pT(s+1|s, a)

×
∫

R

P̄π
E

(η − r

γ
| s+1

)
dPR(r|s, a, s+1).

The distributional Bellman equations are expressed as
P̄π
E = ΠP̄π

E . When a probability function F (η|s) satis-
fies the distributional Bellman equations for all of the
states, the function F is the solution of the equations
and is equivalent to the conditional cumulative distri-
bution function of the return given a state. However,
it is hard to deal with the distributional Bellman equa-
tion in practice due to its numerous functional degrees
of freedom. To address this problem, we approximate
a solution in a nonparametric way using particles.

4.2. Return distribution particle smoother
(RDPS) algorithm

We suppose the usage of look-up table for the states
(or the state-action pairs). Each entry of the table has
a number of particles3, vs = {vs,1, . . . , vs,K}, where
the subscripts s and k of vs,k denotes the state and
the identifier, respectively. Each particle vs,k ∈ R rep-
resents a return η from the state s. For simplicity,
we also suppose each state has the same number K of
particles. The set VK ∈ R

|S|×K is the complete set of
particles {vs}, where |S| denotes the number of states.
The return distribution P̄π

E (η|s) is approximated by a
distribution of the particles vs, i.e., an estimate of the
cumulative probability distribution function of the re-
turn defined as

̂̄PE(η|s;VK) ,
1

K

K∑

k=1

I(vs,k ≤ η), (5)

3However, our approach can be extended to continuous
state space or feature vector space with neighborhood or
discretization approach, i.e., as long as particles around a
state can be gathered, our approach will be applicable.

where I is the indicator function, equal to 1 if vs,k ≤ η
and otherwise 0.

A key aspect of the proposed algorithm is to repre-
sent the recursion relation in the distributional Bell-
man equation by extending the conventional temporal-
difference learning to a particle smoothing approach,
where a simple replacement procedure of particles as-
sociated with a state with those of the successor state
is executed. We call this approach the Return Distri-
bution Particle Smoother (RDPS).

Given a state s, one can generate (a, s+1, r) according
to the policy π, the state transition probability pT, and
the reward probability PR. The quantity r + γη+1,
defined from a pair (r, η+1) with η+1 sampled from
P̄π
E (η+1|s+1), can be regarded as following (or being

drawn from) the distribution ΠP̄π
E (η|s). Thus, with in-

dependent paired samples (r(1), η
(1)
+1), . . . , (r

(N), η
(N)
+1 )

given a state s, this limit holds;

lim
N→∞

1

N

N∑

n=1

I(r(n)+γη
(n)
+1 ≤ η) = ΠP̄π

E (η|s).

Therefore, for satisfying the distribution Bellman
equation P̄π

E = ΠP̄π
E (Eq. (4)), the value r + γη+1 of

the paired samples (r, η+1) also has to be distributed
according to the distribution P̄π

E (η|s),
r + γη+1 ∼ P̄π

E (η|s).
This result suggests that an adjustment of the ap-

proximated return distribution is to allow ̂̄PE(η|s)
to explain the sample (r, η+1) appropriately. More
specifically in the particle case, (some of) the par-
ticles vs need to explain or contain {r + γvs+1

} =
{(r+ γvs+1,1), . . . , (r+ γvs+1,K)} to some extent. One
of the straightforward approaches would be to replace
a particle vs,k randomly chosen from vs by a value
r + γvs+1,k′ as defined by the observed reward and a
particle of the successor state. This approach has the
desirable property of using the Kolmogorov–Smirnov
statistic (distance) DKS{P (x), Q(x)} for a measure of
the difference of the two cumulative distribution func-
tions P (x) and Q(x), (Feller, 1948),

DKS{P (x), Q(x)} , sup
x

∣∣P (x)−Q(x)
∣∣.

Proposition 2 Let VK = {vs,k} be a complete set of
the particles and let all values of the particles, ex-
cept for the particles of the state s, be fixed. Also
let D∗

KS(s,VK) be a Kolmogorov–Smirnov statistic,

DKS{ ̂̄PE(η|s;VK),Π ̂̄PE(η|s;VK)}, for which the fol-
lowing replacement is iterated a sufficient number of
times, with the right-to-left substitution operator :=,

vs,k := r + γvs+1,l, (6)
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where k and l are integers independently drawn from
the uniform distribution U(1,K) generating an inte-
ger from 1 to K, and r and s+1 are drawn from the
model distributions PR and pT, respectively. Then
there are bounds for the asymptotic mean and vari-
ance of D∗

KS(s,K) in terms of the particle number K
as

E

[
lim

K→∞

√
KD∗

KS(s,K)
]
≤

√
π

2
ln(2),

V

[
lim

K→∞

√
KD∗

KS(s,K)
]
≤ 1

12
π(π − 6 ln2(2)),

where E[·] and V[·] denote the expectation and the
variance, respectively.

Proof Sketch: It can be proved that, after a suffi-
cient time iterations for the replacement of Eq. (6),
each particle value of the state s is a return drawn

from Π ̂̄PE(η|s;VK). Therefore, D∗
KS(s,VK) can be

regarded as the Kolmogorov–Smirnov statistic be-
tween an empirical distribution of K samples inde-

pendently drawn from Π ̂̄PE(η|s;VK) and the (hypoth-

esized) distribution Π ̂̄PE(η|s;VK). With the results
in Kolmogoroff (1941) and Feller (1948), the limit,
limK→∞ Pr(D∗

KS(k,VK) ≤ z/
√
K) ≥ Φ(z), holds for

z ≥ 0, and the limit is equal to zero for z < 0, where

Φ(z) , 1− 2

∞∑

υ=1

(−1)υ−1 exp(−2υ2z2).

The first and second order moments of z ∼ Φ(z) are
given as
∫

z∈[0,∞]

z dΦ(z) =

∞∑

υ=1

∫

z∈[0,∞]

8(−1)υ−1υ2z2exp(−2υ2z2)dz

=

∞∑

υ=1

π
1
2 (−1)υ−1

2
3
2 υ

=

√
π

2
ln(2),

∫

z∈[0,∞]

z2 dΦ(z) =
∞∑

υ=1

(−1)υ−1

2υ2
=

π2

12
,

respectively. Thus, Proposition 2 is proved. �

Proposition 2 indicates that the Kolmogorov–Smirnov

statistic DKS{ ̂̄PE,Π
̂̄PE} will be smaller as the num-

ber of the particles is increased. While the number of
replaced particles at each iteration in Proposition 2 is
assumed to be one, it will be possible to accelerate the
convergence speed for learning the particles by increas-
ing the number of replaced particles in each iteration.
Here we introduce a learning rate parameter α ∈ [0, 1],
which defines the number of particles, N , as

N = ⌈αK⌉,
where ⌈x⌉ , min{n ∈ Z|n ≥ x}. The resulting online
algorithm, termed RDPS, is described in Table 1.

Table 1. Online algorithm for nonparametrically approxi-
mating conditional return distribution given a state

Return Distribution Particle Smoother (RDPS) algorithm

Given
• a policy: π(a|s)
• a number of particles for each state: K
• a particle updating rate α ∈ [0, 1]
• a discount rate for the return: γ ∈ [0, 1)

Set
• initial values of all particles: VK ∈ R|S|×K

• an initial state: s0 ∈ {1, . . . , |S|} (∼ Pr(s0))
For t = 0 to T do
(Interaction with environment)
• choose and execute action at ∼ π(a|s)
• observe following state st+1 and reward rt
(Update particles)
For n = 1 to ⌈αK⌉ do
• choose index for updated particle: p ∼ U(1,K)
• choose index for targeted particle: q ∼ U(1,K)
• update particle of st: vst,p := rt + γvst+1,q

End
End

4.3. Eligibility trace technique for RDPS

Here, we extend the one-step distributional Bellman
equation (Eq. (4)) to the multi-step t version,

P̄π
E (η|s)
=

∑

a,s+1,...,a+t−1,s+t

π(a|s)pT(s+1|s, a) · · · π(a+t−1|s+t−1)

× pT(s+t|s+t−1, a+t−1)

×
∫

r,...,r+t−1

P̄π
E

(η −∑t−1
k=0 γ

kr+k

γt
| s+t

)

× dPR(r|s, a, s+1) · · · dPR(r+t−1|s+t−1, a+t−1, s+t)

, ΠtP̄π
E (η|s) (7)

Based on Eq. (7), we can use the particles of the
various successor states, vs+1

, . . . ,vs+t
, to update

the particles of the current state, vs. We simply
employ the eligibility trace technique for RL with
an eligibility decay rate λ ∈ [0, 1) (Sutton & Barto,
1998) to use a set of multi-time-step particles, instead
of the one-time-step particles vs+1

, where the target
distribution for updating the particles vs is

lim
T→∞

(1− λ)

T∑

t=1

λt−1Πt ̂̄PE(η|s+t;VK),

for a nonepisodic task. In the episodic task case, with
λ ∈ [0, 1], the target distribution is

(1−λ)
T∑

t=1

λt−1Πt ̂̄PE(η|s+t;VK)+λT−1 ̂̄PE(η|s+T ;VK).
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This can be implemented easily by carrying over some
of the particles chosen for the update to the next
successor state. This ratio of carrying particles over
is λ. This carrying-over process is repeated until
there is no particle to be carried over or an absorbing
state is reached in the episodic task. The proposed
RDPS algorithm could be regarded as an extension of
the temporal-difference learning with eligibility traces,
TD(λ), for approximating the return distribution.

5. Using the Approximated Return

Distribution for Risk-Sensitive RL

Now we have a means to approximately evaluate the
return distributions, so we can formulate RL algo-
rithms with any criterion defined on the basis of a
return distribution. As a representative example,
in this section we develop an explicit formulations
of a SARSA-learning-type approach with Conditional
Value at Risk (CVaR) (Rockafellar & Uryasev, 2000;
Kashima, 2007) as the evaluation criterion, on the ba-
sis of the particle distributions for the approximation.

Since the upper-tail CVaR (CVaR+) of the return for
the state-action value function is defined with c ∈ [0, 1]
as

Qπ
CVaR+(s, a; c) , E

π
[
η |Pπ

E (η|s, a) ≥ 1− c
]
,

the policy based on this criterion will take a risk.
In contrast, a policy based on the lower-tail CVaR,
Qπ

CVaR−(s, a; c) , E
π[η | limε→0−Pπ

E (η+ε|s, a) ≤ c ],
will be risk averse. It is known that these risk-taking
and risk-aversion strategies lead to the exploration and
exploitation (robust) behaviors, respectively (Bagnell,
2004).

From Eq. (5), an estimate of CVaR with RDPS can
easily be computed as, for c ∈ (0, 1],

Q̂CVaR+(s, a; c) =
1

⌈cK⌉

K∑

k=1

vs,k I(P̂E(vs,k|s, a) ≥ 1−c),

or Q̂CVaR+(s, a; c = 0) = maxk{vs,k}. One possible
approach is to use the CVaR+ of the return for the
behavior policy for an efficient exploitation, while the
target policy (also called the estimation policy) is to
maximize the expected returns. In this scenario, the
off-policy learning, in which the importance sampling
is often used to adjust the learning rate (Precup et al.,
2000), is suitable. Our algorithm uses the importance
sampling to condition the number of updated particles,
i.e., learning rate α. This resulting algorithm, which
we call the distributional-SARSA-with-CVaR (or d-
SARSA with CVaR) algorithm, can provide a practical
risk-sensitive RL algorithm.

Figure 1. Task setting: There are fourteen (normal) states
and two special states A and B. State 5 is a start state.
Values near by arrows are rewards.

Note that, when c = 1, then CVaR is equivalent to
the expected value, Qπ

CVaR+(s, a; c = 1) = Qπ(s, a).
Accordingly, if ct of the CVaR+ at a time-step t
is scheduled as monotonically increasing to 1 over
time, the initial policy in learning tends to take risks
and then drive exploitation, while the final policy
tries to maximize the ordinary value function. Thus,
this scheduling of c will be useful if a big opportu-
nity for improvement is hidden in a distant state.
However, this type of agent will probably often be
trapped in states that have heavy noise in the reward.
It will be effectual to combine the RDPS with the
CVaR approach and the other exploitation RL algo-
rithm such as E3 or R-MAX (Kearns & Singh, 2002;
Brafman & Tennenholtz, 2003).

6. Numerical Experiments

6.1. Task setting of 14-state MDP

In this section, we investigated the performances of
the new algorithms through a simple, but very il-
lustrative, MDP. Fig. 1 shows the settings of this
MDP, which is based on (Sutton & Barto, 1998) and
(Sutton et al., 2009). There are fourteen (normal)
states {1, 2, . . . , 14} and two special states {A,B}.
Each normal state has two actions that cause left- and
right-transitions to neighboring states. The rewards
in each left- or right-transitions were zero or −1, re-
spectively, except for a transition into the right special
state B, for which a large reward of +30 was used.

For an episodic task, the special states are absorb-
ing (terminal) states. An episode begins in state
5 and continues until an absorbing state is reached.
When the absorbing state was reached, a new episode
restarts. In a nonepisodic case, both the special states
were identical to the start state, i.e., upon arrival to A
or B, the agent is teleported to the state ‘5’. Episodes
began in the state 5 and continued until a simulation
run was terminated.

6.2. Return distribution approximation

Here, we used a fixed policy that chose the left- or
right-transition action randomly with equal probabil-
ity, i.e., π(a|s) = 0.5, ∀a, ∀s. This type of MDP set-
ting can be regarded as a random-walk problem, which
is known as a useful RL benchmark to assess the prac-
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Figure 2. Evaluations of the RDPS algorithm with 1,000 particles compared with the Monte-Carlo estimation in the
episodic task: (A) Average Kolmogorov-Smirnov (KS) statistics of the state s = 10 at 500 time-steps over 500 independent
simulation runs, (B) and (C) Typical estimates at 250, 500, and 1,000 time-steps, where the particles or the instances of
the returns are converted to the probability density with the normal kernel density estimator.
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Figure 3. Average Kolmogorov-Smirnov statistics of the
state s=10 in the non-episodic task at 500 time-steps over
500 independent simulation runs.

tical utility of RL algorithms for value function regres-
sion, and which has been used often (Sutton & Barto,
1998; Sutton et al., 2009).

We confirmed that the return distribution approxima-
tor of the RDPS with λ ≃ 0.95 worked well for both
episodic and nonepisodic tasks, as shown in Figs. 2
and 3. The effect of the eligibility trace is very simi-
lar to the TD(λ) algorithm of (Sutton & Barto, 1998).
Therefore, our proposed RDPS algorithm can be re-
garded as a natural extension of the TD(λ) learning
from the expected return to the return distribution.

6.3. Policy learning

Here, we assess the performance of the (off-policy) d-
SARSA-with-CVaR algorithm. We also used the (nor-
mal) d-SARSA and LSTD-SARSA4 as the baseline al-
gorithms, the Q-value functions of which are estimated

4 Since it is better if all of the tested algorithm have
on the same setting (ε-greedy policy), we apply the LSTD-
SARSA, instead of the LSPI (Lagoudakis & Parr, 2003).

by the RDPS and the LSTDQ(λ) (Lagoudakis & Parr,
2003), respectively. The ε-greedy selection method
was used for the policy (Sutton & Barto, 1998), where
the action with the highest value is selected with prob-
ability ε + (1 − ε)/2 and one of the other actions is
selected with probability (1− ε)/2. The ε and the dis-
counted rate γ were set to 0.1 and 0.98, respectively.
The c parameter of RDPS with CVaR depended on
the time t as ct = min{t/3000, 1}.
Fig. 4 shows the average performances in the episodic
task over 300 independent simulation runs. This result
indicates that the d-SARSA-with-CVaR algorithm as a
risk-sensitive approach based on the RDPS algorithm
can handle risk as discussed in Section 5.

7. Conclusion

We proposed an approach for approximating the dis-
tribution of returns, which allows us to handle var-
ious criteria including risk-sensitivities in a unified
manner. The Bellman-type recursive formulas for
the conditional cumulative probability distributions of
the returns were derived. We proposed a nonpara-
metric method for approximating the return distribu-
tions with particles. We also presented a risk-sensitive
SARSA algorithm utilizing CVaR to explore effec-
tively. The numerical experiments on simple MDPs
indicated that the proposed algorithms are promising
for the return distribution approximation and also in
the risk-sensitive RL scenario.

Analyses of the proposed algorithms especially in
terms of their convergences and empirical studies with
some more challenging domains will be necessary to
more deeply understand the properties and efficiency
of our proposed approach to nonparametrically ap-
proximating the return distributions.
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Figure 4. Average performances in the episodic task over
300 independent simulation runs: Error bar represents the
standard deviation. (A) Deterministic reward setting, (B)
Stochastic reward setting, where the reward of the tran-
sition to the absorbing state A is drawn from the normal
distribution N(µ=0, σ=10) and the all other rewards are
set same as those in the deterministic setting.
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