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Abstract

We propose a general and efficient algorithm
for learning low-rank matrices. The proposed
algorithm converges super-linearly and can
keep the matrix to be learned in a compact
factorized representation without the need of
specifying the rank beforehand. Moreover,
we show that the framework can be easily
generalized to the problem of learning multi-
ple matrices and general spectral regulariza-
tion. Empirically we show that we can re-
cover a 10,000×10,000 matrix from 1.2 mil-
lion observations in about 5 minutes. Fur-
thermore, we show that in a brain-computer
interface problem, the proposed method can
speed-up the optimization by two orders
of magnitude against the conventional pro-
jected gradient method and produces more
reliable solutions.

1. Introduction

Explanation in addition to good prediction is valuable
in many application areas of machine learning.

Feature extraction/selection can be used as a prepro-
cessing step before applying a classification algorithm
to obtain interpretable results. Here our aim is to
also learn feature extractors jointly with a classifier
as a low-rank matrix. Learning low-rank matrices has
been studied in various contexts, namely, matrix com-
pletion (Srebro et al., 2005), multi-task learning (Ar-
gyriou et al., 2007), multi-class classification (Amit
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et al., 2007), and classification of matrices (Tomioka &
Aihara, 2007). In the matrix completion problem, the
low-rank decomposition of the “hidden” matrix cor-
responds to representation of the row/column objects
in a compressed low-dimensional feature space (Aber-
nethy et al., 2009). In the multi-task/multi-class prob-
lems the estimated low-rank matrix squeezes the input
data through a low-dimensional feature space shared
among several tasks. In the matrix classification prob-
lem, we learn a (small) set of row/column feature ex-
tractors, which for instance correspond to learning spa-
cial/temporal features.

The trace-norm regularization (see Fazel et al. (2001)
and all the references mentioned above) is a principled
approach to learning low-rank matrices through con-
vex optimization problems. It can be considered as
a generalization of ℓ1-regularization (Tibshirani, 1996;
Chen et al., 1998). In fact, it is shown in Candes &
Recht (2009) that under some conditions, a low-rank
matrix can be perfectly recovered from incomplete ob-
servations.

However, matrix-learning problems with spectral reg-
ularizations (which include the trace norm as a spe-
cial case) are significantly harder to optimize than
conventional vector-based learning problems, because
of the size of the problem and the possible non-
differentiability of the regularizers. For example, when
there are R tasks of size C, the size of the multi-task
learning problem is RC. Often a non-convex approx-
imation that factorizes the matrix to be learned at a
pre-specified rank is employed for the trace-norm mini-
mization (Abernethy et al., 2009; Weimer et al., 2008).
However, it is not clear how this approach can be ex-
tended to general spectral regularizations. Alterna-
tively a Majorization-Minimization (MM) algorithm,
which iteratively minimizes a quadratic upper bound
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of the trace norm, is proposed in Argyriou et al. (2007)
(see also Figueiredo et al. (2007) for detailed discus-
sion on MM algorithms). Although the MM approach
has the potential to be extended to more general
spectral regularizations (see Argyriou et al. (2008)),
it requires solving (full-rank) ridge-regularized mini-
mization, which can be demanding from a computa-
tional/storage point of view.

Recently researchers started to focus on spectral soft-
thresholding-based approaches, which have the advan-
tages of both convexity (no need to fix the rank be-
forehand) and low-rank preserving property. Cai et al.
(2008) proposed the singular-value thresholding (SVT)
algorithm for the problem of low-rank matrix comple-
tion. Ji & Ye (2009) proposed the accelerated gradi-
ent (AG) method for supervised learning with trace
norm regularization. These methods update the ma-
trix W t ∈ RR×C to be learned as follows:

W t+1 := STληt

(
W t + ηtY

t
)
, (1)

where λ is a regularization constant, ηt is a step-size,
and Y t is the direction of descent (which differs from
one algorithm to another). In addition, STλ denotes
the spectral soft-threshold operator (Cai et al., 2008;
Ji & Ye, 2009) defined as follows:

STλ(W ) = U max(S − λI, 0)V ⊤, (2)

where W = USV ⊤ is the singular-value decompo-
sition (SVD) of W . Both Cai et al. (2008) and Ji
& Ye (2009) use only first-order information for con-
structing the descent direction Y t. Generally speak-
ing, first-order methods perform many steps that have
small costs. In large-scale matrix-learning problems,
however, the cost of one soft-thresholding operation
(SVD) can be too high to perform many times.

In this paper, we propose a new soft-threshold-based
approach that uses an improved descent direction
Y t. The descent direction is obtained by solving a
smooth minimization problem. The resulting algo-
rithm converges super-linearly requiring a small num-
ber of SVDs. Moreover, it can be run preserving only
the set of “active” singular-values/vectors. Thus it can
be applied to large problems for which the full matrix
cannot fit in the RAM. Moreover, we extend the pro-
posed approach to general spectral regularization and
learning multiple matrices.

This paper is organized as follows. In Sec. 2, we intro-
duce our algorithm for the trace-norm regularization
problem. We show the convergence result and discuss
how to perform the computation preserving a factor-
ized representation. In Sec. 3 we show that the pro-
posed algorithm can be generalized to a class of spec-
tral regularizers. In Sec. 4, we demonstrate the effi-

ciency and high precision of the proposed algorithm in
a simulated matrix completion problem, and classifi-
cation of electroencephalography (EEG) time-series in
the context of brain-computer interface (BCI). Finally
we conclude the paper in Sec. 5.

2. Trace Norm Regularization

2.1. Matrix-Learning Problem

Given a loss function fℓ, let us consider the regularized
matrix-learning problem of the following form:

minimize
W∈RR×C ,b∈R

fℓ(A(W ) + b1m) + λ∥W ∥∗︸ ︷︷ ︸
=f(W ,b)

, (3)

where W is an R × C matrix to be learned, A :
RR×C → Rm is a linear (observation) operator, b ∈
R is an unregularized bias term, and 1m is an m-
dimensional vector with all one; λ ≥ 0 is the regu-
larization constant. Note that the operator A can be
highly structured; for example, in a matrix comple-
tion problem, A picks m elements of W and vector-
izes them into an m-dimensional vector. We assume
that the loss function fℓ is convex and its convex con-
jugate1 f∗

ℓ is twice differentiable. Finally the regular-
ization term is the trace norm of W , which is defined
as follows:

∥W ∥∗ =
r∑

j=1

σj(W ), (4)

where σj(W ) is the j-th singular-value of W and r is
the rank of W .

2.2. Dual Augmented Lagrangian Algorithm

We propose the Matrix-DAL (M-DAL) algorithm,
which is a extension of the dual augmented Lagrangian
algorithm (Tomioka & Sugiyama, 2009; Tomioka et al.,
2009) to the matrix-learning problem (3). The algo-
rithm can be described as follows:

1. Suitably initialize (W 1, b1) and choose a sequence
of step-sizes η1 < η2 < · · · .

2. Repeat until the relative duality gap (RDG) is less
than some tolerance ϵ:

W t+1 = STληt

(
W t + ηtA⊤(αt)

)
, (5)

bt+1 = bt + ηt1m
⊤αt, (6)

where A⊤ : Rm → RR×C is the adjoint operator of A
and STληt is the soft-threshold operation in Eq. (2); αt

is the minimizer of the inner-objective function ϕt(α)

1Convex conjugate of a function f is defined as f∗(y) =
supx∈Rn

`

y⊤x − f(x)
´

. If f is a closed proper convex func-
tion, f∗∗ = f .
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defined as follows:

ϕt(α) = f∗
ℓ (−α) +

1
2ηt

(
bt + ηt1m

⊤α
)2

+
1

2ηt

∥∥STληt(W t + ηtA⊤(α))
∥∥2

fro
, (7)

where f∗
ℓ is the convex conjugate of fℓ and ∥ · ∥fro

denotes the Frobenius norm.

Note that the proposed update (Eqs. (5) and (6)) takes
a generalized form of Eq. (1) because the bias term b
can be considered to be thresholded by a regularization
constant zero in Eq. (2).

We can show that the inner objective (Eq. (7)) is twice
differentiable almost everywhere. In fact, we show in
Sec. 2.4 that the gradient of the ∥STλ(·)∥2

fro term in
Eq. (7) is the soft-threshold operation STλ(·), which is
continuous. The soft-threshold operator is nondiffer-
entiable when a singular-value of W crosses λ. How-
ever, this unlucky situation can be avoided by a small
perturbation of λ. Therefore, in general the solution of
Eq. (7) lies on a differentiable point. This motivates us
to use a Newton-type method for the minimization of
Eq. (7). More specifically, we use the L-BFGS quasi-
Newton method (Nocedal & Wright, 2006) for large
scale problems (see Sec. 4.1) and the Newton method
for medium scale problems (see Sec. 4.2 and 4.3).

2.3. Super-Linear Convergence

In this subsection, we show that the proposed M-DAL
algorithm converges super-linearly. More specifically,
we show that the distance from the solution obtained
after t-outer iterations (W t, bt) to the true minimizer
(W ∗, b∗) of Eq. (3) drops faster than exponential as
follows:√

∥W t − W ∗∥2
fro + (bt − b∗)2 ≤ O(exp(−ct)),

where ct is a sequence that increases faster than linear.

The M-DAL algorithm (Eqs. (5)-(7)) can be under-
stood in two ways. One way is to think of it as an aug-
mented Lagrangian (AL) method (Rockafellar, 1976;
Bertsekas, 1982) (also known as the method of multi-
pliers (Powell, 1969; Hestenes, 1969)) on the dual prob-
lem of Eq. (3) (Tomioka & Sugiyama, 2009). Another
way is to think of it as a proximal minimization (PM)
method in the primal (Tomioka et al., 2009), which
iteratively solves the following problem:

(W t+1, bt+1) = argmin
W∈RR×C

b∈R

(
f(W , b) +

1
2ηt

(b − bt)2

+
1

2ηt
∥W − W t∥2

fro

)
, (8)

where f(W , b) is the objective function in Eq. (3).
Equations (5)-(7) can be derived from Eq. (8) by
defining w = (vec(W )⊤, b)⊤ ∈ RRC+1 (vec(·) de-
notes the column-wise concatenation of a matrix),
φλ(w) = λ∥W ∥∗, STλ(w) = (vec(STλ(W ))⊤, b)⊤,
and following the derivation in Tomioka et al. (2009).
The general connection between AL method and the
PM method can be found in Rockafellar (1976).

The PM view in Eq. (8) is useful in theoretically an-
alyzing the M-DAL algorithm. In particular, general-
izing the result in Tomioka et al. (2009), we can show
that the proposed M-DAL algorithm converges super-
linearly, as follows:

Theorem 1. Let (W 1, b1), (W 2, b1), . . . be the se-
quence generated by the M-DAL algorithm (Eq. (5)),
and let (W ∗, b∗) be the unique minimizer of Eq. (3).
In addition, let us assume the following:

1. The gradient of the loss function ∇fℓ is Lipshitz
continuous with modulus 1/γ, i.e.,

∥∇fℓ(z) −∇fℓ(z′)∥ ≤ 1
γ
∥z − z′∥ (∀z, z′ ∈ Rm).

2. There is a positive constant σ such that for all t =
1, 2, . . .

f(W t+1, bt+1) − f(W ∗, b∗)

≥ σ∥W t+1 − W ∗∥2
fro + σ(bt+1 − b∗)2.

3. The minimization of ϕt at each step is solved to the
following precision:

∥∇ϕt(αt)∥2 ≤ γ

ηt

(
∥W t+1−W t∥2

fro+(bt+1−bt)2
)
. (9)

Then for every iteration we have the following rela-
tionship:

D(W t+1, bt+1) ≤ 1√
1 + 2σηt

D(W t, bt), (10)

where D(W , b) :=
√

∥W − W ∗∥2
fro + (b − b∗)2.

Note that the coefficient in the right-hand side of
Eq. (10) is strictly smaller than one and decreases at
every iteration because we choose the step-size ηt to
be increasing; i.e., we have a super-linear convergence.

2.4. Factorizing W in a Principled Way

In this subsection, we show that we only need to keep a
low-rank factorization of W t to perform M-DAL algo-
rithm with a quasi-Newton method for the inner min-
imization (7).

Let us start from examining Eq. (5). In order to com-
pute the soft-threshold operation, we need the largest
singular values (to the threshold ληt) and their corre-
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sponding singular-vectors of a matrix W t
α defined as

W t
α := W t + ηtA⊤(α). This can be computed effi-

ciently because W t is low-ranked and A⊤(α) is often
structured. For example in the case of low-rank matrix
completion, A⊤(α) is a sparse matrix that has entries
only where we have observations. Note that instead of
forming W t

α explicitly, we can supply function handles
for computing left- and right-vector multiplications to
W t

α to an SVD solver (e.g., lansvd in PROPACK2).

Given a set of singular-values of W t
α that are larger

than ληt, it is straightforward to evaluate Eq. (7), be-
cause the squared Frobenius norm of a matrix is the
squared sum of its singular-values.

The remaining task is to compute the gradient of
Eq. (7) because we use a quasi-Newton method. Let
us denote the inner objective function in Eq. (7) by
ϕt(α). The gradient ∇αϕt(α) can be evaluated as
follows:

∇αϕt(α) = −∇αf∗
ℓ (−α) + 1m(bt + ηt1m

⊤α)

+ A(STληt(W t + ηtA⊤(α))), (11)

which can be obtained by following the line of Tomioka
et al. (2009). Clearly we only need the “active”
singular-values and singular-vectors of W t

α because of
the soft-threshold operation in Eq. (11).

We can also derive the Hessian of Eq. (7) to perform a
full Newton method; however this requires computa-
tion of both active and inactive singular-values/vectors
and is only suitable for medium-scale problems (see
Sec. 4.2 and 4.3).

Note that although the above factorization may sound
similar to the commonly used non-convex approxima-
tion strategy (e.g., Weimer et al. (2008)), the factor-
ization used here is a consequence of the augmented
Lagrangian formulation and does not require the num-
ber of components to be fixed beforehand.

2.5. Practical Issues

For the SVD of large (but structured) matrices in
Sec. 4.1 (see also Sec. 2.4), we use the Lanczos bidi-
agonalization algorithm with partial reorthogonaliza-
tion (Simon, 1984) implemented in PROPACK2. For
the medium-scale problems in Sec. 4.2 and 4.3, we use
the MATLAB svd routine because the matrix W t

α

has no structure. Unfortunately, both SVD solvers
need the number k of singular-values that we want to
compute to be fixed. Therefore, we repeatedly call
the solvers with larger k until we find a singular-value
that is smaller than the desired threshold ληt in the

2http://soi.stanford.edu/~rmunk/PROPACK/

soft-threshold operation (see also Cai et al. (2008)).

In order to run the proposed algorithm efficiently, it
is important to avoid solving an inner minimization
problem that has a larger rank than the final solu-
tion. To this end, we use a simple warm-start strat-
egy. More specifically, we start from a sufficiently large
regularization constant λ and iteratively solve Eq. (3)
with the M-DAL algorithm (Eqs. (5)-(7)) for smaller
and smaller λ using the solution obtained from the
previous iteration. As a by-product, we obtain the
whole regularization path efficiently. A more intelli-
gent continuation (warm-start) strategy is a topic of
future study.

2.6. Learning Multiple Matrices

Let us consider a classification/regression problem in
which the input is provided as multiple matrices of
possibly different sizes. It is natural to consider how
one should combine those different sources of informa-
tion in an intelligent way (see Lanckriet et al. (2004);
Micchelli & Pontil (2005); Argyriou et al. (2005)).
We would further like to learn low-rank structure in-
side each group through the trace-norm regularization.
The M-DAL algorithm described above can be easily
generalized to handle this situation. In particular, we
use the regularizer that is defined as sum of the regu-
larizer in Eq. (4) for each matrix to be learned. This
is equivalent to learning a larger matrix that is formed
by concatenating the matrices to be learned on the di-
agonal and applying the regularization in Eq. (4) but
there is no need to form such a large matrix in our
approach.

3. General Spectral Regularization

The ℓ1-regularization is known to produce overly
sparse solution in some cases (Cortes, 2009; Kloft
et al., 2010). Therefore it is desirable to have a mech-
anism to control the level of sparsity in the solution
also for matrix-learning problems.

In this section, we consider the following generalized
regularization term:

φλ(W ) =
r∑

j=1

gλ(σj(W )), (12)

where σj(W ) is the j-th singular-value of W (r
is the rank of W ) and gλ is a symmetric one-
dimensional convex (possibly non-differentiable) func-
tion that takes value zero at the origin. λ is the reg-
ularization constant and we assume that ηgλ = gλη.
Note that it is also easy to generalize Eq. (12) to allow
for different gλ for each j.
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It can be shown that Eq. (12) is a convex function
of W . Moreover, we can show that we can naturally
generalize the soft-threshold operation in Eq. (2) as
follows:

STg
λ(W ) = argmin

X∈RR×C

(
φλ(X) +

1
2
∥X − W ∥2

fro

)
= Udiag(STg

λ(σ1), . . . , STg
λ(σr))V ⊤, (13)

where W = Udiag(σ1, . . . , σr)V ⊤ is the SVD of W
and STg

λ(σj) is a one-dimensional “soft-threshold” op-
eration defined as follows:

STg
λ(σj) = argmin

x∈R

(
gλ(x) +

1
2
(x − σj)2

)
. (14)

The inner-objective function ϕg
t (α) and its gradient

can be written as follows:

ϕg
t (α) = f∗

ℓ (−α) +
1

2ηt
(bt + ηt1m

⊤α)2

+
1
ηt

∑
j∈J+

{
g∗λt

(
STg∗

λt (σj(W t
α))

)

+
1
2

(
STg

λt(σj(W t
α))

)2

}
,

∇αϕg
t (α) = −∇αf∗

ℓ (−α) + 1m(bt + ηt1m
⊤α)

+ A(STg
λt(W t

α)),

where W t
α = W t +ηtA⊤(α) and λt = ληt are defined

for brevity; g∗λ is the convex conjugate of gλ and STg∗

λ

is the soft-thresholding with respect to g∗λ defined as
in Eq. (14). In addition, we define the set J+ as the
set of indices of the singular-values of the matrix W t

α

that are large enough so that STg
λ(σj(W t

α)) > 0.

Note that similarly to the observation in Sec. 2.4, we
only need to compute and store the “active” singular-
values (σj : j ∈ J+) and their singular-vectors if we
only use the first-order information of the inner objec-
tive function ϕg

t (α).

4. Experiments

4.1. Low-Rank Matrix Completion

We apply the proposed M-DAL algorithm to the prob-
lem of recovering a partially observed matrix under the
trace-norm regularization, which was studied in Cai
et al. (2008). In this problem, W ∈ RR×C is the ma-
trix to be recovered; no bias term b is used; the obser-
vation operator A picks (a small number of) elements
of W and vectorizes them into an m-dimensional vec-
tor; the adjoint operator A⊤, on the other hand, maps
an m-dimensional vector α into a R × C matrix with
the only the elements corresponding to the observa-

tions filled with the elements of α. Moreover, we use
the quadratic loss function: fℓ(z) = ∥z−y∥2/2, where
y ∈ Rm is the vector of observations; for the quadratic
loss we can easily compute the modulus of Lipshitz
continuity γ = 1; as is shown in Tomioka & Sugiyama
(2009), the convex conjugate of fℓ is fℓ itself (ignoring
constants).

We randomly generated a rank 10 matrix3 of
size 10,000×10,000 and randomly sampled its
m =1,200,000 elements (1.2%). We ran the
proposed M-DAL algorithm with a warm start
over the sequence of regularization constants λ =
(1000, 700, 500, 300, 200, 150, 100), which was empiri-
cally found to work the best. We used the initial step-
size η1 = 10 and increased ηt by the factor 2 at every
iteration. The simulation was repeated 10 times on a
computer with two dual core 3.3GHz Xeon processors
and 8GB of RAM.

The result is summarized in Table 1. Shown in the
table are, the CPU time, the number of outer itera-
tions (Eq. (5)), the number of inner (L-BFGS) steps,
and the number of SVDs spent at each optimization,
the rank and the subspace-root-mean-square error (S-
RMSE) obtained after each optimization, which is de-
fined as follows:

S-RMSE =
( 1

rr∗
∑

i,j(U
⊤U∗ − Ir,r∗)2i,j

+
1

rr∗
∑

i,j(V
⊤V ∗ − Ir,r∗)2i,j

)1/2

,

where (U , V ) and (U∗, V ∗) are the left- and right-
singular-vectors of the estimated matrix W (rank r)
and the true matrix W ∗ (rank r∗), respectively; Ir,r∗

is the r × r∗ matrix that has one for (i, i)-elements
(i = 1, . . . , min(r, r∗)) and zero in all other elements.

Cai et al. (2008) studied a noise-less (λ → 0) low-rank
matrix completion problem and proposed the singular-
value thresholding (SVT) algorithm. Run on an al-
most identical problem as our setting, SVT spent 123
iterations, which took 281 seconds. We consider our
result as comparable to their result because we obtain
a regularization path in a slightly longer time with a
smaller number of iterations, and we solve the prob-
lem (3) directly without introducing a small Frobenius-
norm regularization as in Cai et al. (2008).

4.2. Simulated Matrix Classification Problem

We simulate a classification problem over matrices sim-
ilar to the setting considered in Tomioka & Aihara

3This corresponds to the MATLAB command
W=randn(n,k)*diag(k:-1:1)*randn(k,n) with n =10,000
and k =10 but only computed implicitly.
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Table 1. Statistics of M-DAL algorithm applied to a 10,000×10,000 low-rank matrix completion problem. The rank of
the true matrix W ∗ is 10. The cumulative CPU time, the cumulative number of outer iterations, the cumulative number
of inner iterations, the cumulative number of SVDs spent to obtain the solution for each regularization constant λ, as
well as the rank and S-RMSE of the estimated matrix W are shown. Note that the cumulative CPU time and the
cumulative number of iterations are shown, because we use a warm start strategy. The numbers shown are the mean and
the standard-deviation (inside the parenthesis) of 10 random runs.

λ time (s) #outer #inner #SVDs rank S-RMSE
1000 33.1 (±2.0) 5 (±0) 8 (±0) 32 (±0) 2.8 (±0.4) 0.0158 (±0.0024)
700 77.1 (±5.6) 11 (±0) 18 (±0) 71 (±0) 5 (±0) 0.0133 (±0.0008)
500 124 (±7.2) 17 (±0) 28 (±0) 110 (±0) 6.4 (±0.5) 0.0113 (±0.0015)
300 174 (±8.0) 23 (±0) 38.4 (±0.84) 150 (±3.0) 8 (±0) 0.00852 (±0.00039)
200 220 (±9.9) 29 (±0) 48.4 (±0.84) 189 (±3.0) 9 (±0) 0.00767 (±0.00031)
150 257 (±9.9) 35 (±0) 58.4 (±0.84) 230 (±3.0) 9 (±0) 0.00498 (±0.00026)
100 319 (±11) 41 (±0) 70 (±0.82) 276 (±2.7) 10 (±0) 0.00743 (±0.00013)

(2007) in order to compare the proposed M-DAL algo-
rithm against three state-of-the-art methods to solve
this kind of problem. These methods are the interior-
point (IP) method (Tomioka & Aihara, 2007), the pro-
jected gradient method (Tomioka & Sugiyama, 2008),
and the accelerated gradient (AG) method (Ji & Ye,
2009).

The problem setting is as follows. We define a random
low-rank classifier matrix W ∗ by taking the largest
and smallest k-eigenvalues and their corresponding
eigenvectors of a randomly drawn n×n symmetric ma-
trix4. The input matrices Xi ∈ Rn×n (i = 1, . . . ,m)
are sampled independently from the standard Wishart
distribution with n degrees of freedom. The output la-
bel yi for the i-th sample is generated by taking the
sign of 〈W ∗, Xi〉, where W ∗ is the true classifier ma-
trix. Since this is a classification problem, we use the
logistic loss function, which is defined as follows:

fℓ(z) =
m∑

i=1

log(1 + exp(−yizi)). (15)

The convex conjugate of the logistic loss is known to
be the following negative entropy function:

f∗
ℓ (−α) =

m∑
i=1

(αiyi log(αiyi) + (1 − αiyi) log(1 − αiyi)) ,

where 0 ≤ αiyi ≤ 1. By a simple calculation, we have
the modulus of Lipshitz continuity γ = 4.

For this experiment (and in the next experiment) we
also use the Hessian of ϕt(α) because it results in faster
convergence and computing the full SVD is cheap for
small matrices.

4We used the following MATLAB command:
W=randn(n,n); W=(W+W’)/2;.
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Figure 1. Comparison of the computational efficiency of ac-
celerated gradient method (AG) (Ji & Ye, 2009), interior-
point method (IP) (Tomioka & Aihara, 2007), projected
gradient method (Tomioka & Sugiyama, 2008), and the
proposed M-DAL algorithm. The three algorithms were
run on a simulated classification problem over symmetric
64×64 matrices with the trace-norm regularization. Num-
ber of samples m = 1, 000. The regularization constant
λ = 800. The shaded area shows the standard deviation
over 10 runs.

Figure 1 shows the decrease in the relative du-
ality gap (RDG, defined as (primal objective −
dual objective)/(primal objective); see Tomioka &
Sugiyama (2009)) of four algorithms against the CPU
time spent for the number of observations m = 1000,
the size of matrices n = 64, the true rank 2k = 16, and
the regularization constant λ = 800, which was chosen
to roughly recover the original rank 16. We used the
initial step-size η1 = 10−5 and increased ηt by the fac-
tor 2 at every iteration. Clearly the proposed M-DAL
approach is roughly 10 times faster than the previously
proposed methods.
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Table 2. Result on the BCI data-set. Three algorithms are compared, namely, the accelerated gradient (AG) method (Ji
& Ye, 2009), the projected gradient (PG) method (Tomioka & Sugiyama, 2008), and M-DAL. For each method, shown are
the cumulative number of iteration, the cumulative CPU time (in seconds), the relative duality gap (RDG), and the test
accuracy (ACC) in %. All three algorithms were applied to the classification problem over multiple matrices (Tomioka &
Müller, 2010) with increasingly smaller regularization constants shown at the left-most column of the table.

AG (Ji & Ye, 2009) PG (Tomioka & Sugiyama, 2008) M-DAL (proposed)
λ #iter. time RDG ACC #iter. time RDG ACC #iter. time RDG ACC

6.16 32 1.77 0.0047 76 414 4.59 0.00095 75 5 0.6 0.00029 75
0.886 1263 15.8 0.0229 85 97304 1001 0.00093 84 39 10.2 0.00064 84
0.127 5850 65.4 0.0395 83 458954 4644 0.00355 83 89 43.1 0.00059 83
0.0183 18766 205 0.084 84 858954 8511 0.0108 81 155 118 0.00016 81
0.00264 49164 540 0.201 84 1.3×106 12328 0.0243 80 234 217 0.00028 80

4.3. Brain-Computer Interface Data-set

In this subsection, we demonstrate the ability of the
proposed M-DAL framework to handle the problem
of learning multiple matrices simultaneously. The
data-set is taken from a real brain-computer inter-
face (BCI) experiment, where the task is to predict
whether the upcoming voluntary finger movement is
either right or left hand from the electroencephalog-
raphy (EEG) measurements. The data-set is made
publicly available through the BCI competition 2003
(data-set IV) (Blankertz et al., 2004). More specif-
ically, the data-set consists of short segments of 28
channel multivariate signal of length 50 (500 ms long
at 100 Hz sampling). The training set consists of 316
input segments (159 left and 157 right) and we tested
the classifier on a separate test-set consisting of 100
test segments.

Following the preprocessing used in Tomioka & Müller
(2010), we compute three matrices from each segment.
The first matrix is 28×50 and is obtained directly from
the original signal by low-path filtering at 20Hz. The
second matrix is 28 × 28 and is derived by computing
the covariance between the channels in the frequency
band 7-15Hz (known as the α-band). Finally, the third
matrix is 28 × 28 and is computed similarly to the
second matrix in the frequency band 15-30Hz (known
as the β-band). We chose 20 log-linearly separated
values of λ from 10 to 0.001 and used a warm start
for all methods. Due to space limitation, only some
values of λ are shown in Tab. 2.

The accelerated gradient (AG) method was stopped
when the relative change of the function value fell
below 10−5 (Ji & Ye, 2009). The projected gradi-
ent (PG) and the M-DAL algorithms were stopped
when the relative duality gap fell below 10−3. Note
that PG method did not achieve the desired preci-
sion and had to be stopped after 100,000 iterations

for λ ≤ 0.207. For the M-DAL algorithm we used the
step-sizes ηt = 1, 2, 4, 8, 16, . . . for each λ.

In Tab. 2, the proposed M-DAL algorithm is compared
with the AG method (Ji & Ye, 2009) and the PG
method (Tomioka & Sugiyama, 2008). The M-DAL
algorithm is clearly two orders of magnitude faster
than the PG method. Remarkably the speedup ob-
tained by M-DAL against PG method seems to be
greater than the simulated problem in the last sub-
section. This extra speed-up can be explained by the
poorly conditioned nature of real EEG signals, which
DAL algorithm has shown to tolerate well (Tomioka
& Sugiyama, 2009). In addition, M-DAL also shows
higher precision than the PG method (smaller relative
duality gap). The AG method is slower than M-DAL
but the obtained solution is not very precise, which
can be seen from the higher RDG. In addition, it does
not show clear overfitting for small λ, because the ob-
jective is not minimized precisely.

5. Conclusion

In this paper, we have proposed an efficient algo-
rithm M-DAL for learning low-rank matrices with the
trace-norm regularization. We have shown that the
proposed algorithm converges super-linearly and can
be readily extended to general spectral regularization.
Experimental results on both simulated and real data-
sets have shown the efficiency and high precision of
the proposed algorithm in a matrix completion prob-
lem and classification problems over matrices. Future
work includes better continuation strategy and using
the M-DAL algorithm within a more general estima-
tion framework (e.g.,Wipf & Nagarajan (2008)).
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