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Abstract

Matrix factorization into the product of low-
rank matrices induces non-identifiability, i.e.,
the mapping between the target matrix and
factorized matrices is not one-to-one. In this
paper, we theoretically investigate the influ-
ence of non-identifiability on Bayesian ma-
trix factorization. More specifically, we show
that a variational Bayesian method involves
regularization effect even when the prior is
non-informative, which is intrinsically dif-
ferent from the maximum a posteriori ap-
proach. We also extend our analysis to em-
pirical Bayes scenarios where hyperparame-
ters are also learned from data.

1. Introduction

The goal of matrix factorization (MF) is to find a low-
rank expression of a target matrix. MF has been used
for learning linear relation between vectors such as re-
duced rank regression (Baldi & Hornik, 1995; Reinsel &
Velu, 1998), canonical correlation analysis (Rao, 1965;
Anderson, 1984), and partial least-squares (Rosipal &
Krämer, 2006). More recently, MF is applied to collab-
orative filtering (CF) in the context of recommender
systems (Konstan et al., 1997; Funk, 2006) and mi-
croarray data analysis (Baldi & Brunak, 1998). For
this reason, MF has attracted considerable attention
these days.

Recently, the variational Bayesian (VB) approach
(Attias, 1999) has been applied to MF (Lim & Teh,
2007; Raiko et al., 2007). The VBMF method was
shown to perform very well in experiments. However,
its good performance was not completely understood
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beyond its experimental success. The purpose of this
paper is to provide new insight into Bayesian MF.

A key characteristic of MF models is non-identifiability
(Watanabe, 2009), where the mapping between pa-
rameters and functions is not one-to-one—in the con-
text of MF, the mapping between the target matrix
and the factorized matrices is not one-to-one. Previous
theoretical studies on non-identifiable models showed
that, when combined with full-Baysian (FB) esti-
mation, regularization effect is significantly stronger
than the MAP method (Watanabe, 2001; Yamazaki
& Watanabe, 2003). Since a single point in the func-
tion space corresponds to a set of points in the (re-
dundant) parameter space in non-identifiable models,
simple distributions such as the Gaussian distribution
in the function space produce highly complicated mul-
timodal distributions in the parameter space. This
causes the MAP and FB solutions to be significantly
different. Thus the behavior of non-identifiable mod-
els is substantially different from that of identifiable
models.

Theoretical properties of VB has been investigated
for Gaussian mixture models (Watanabe & Watanabe,
2006) and linear neural networks (Nakajima & Watan-
abe, 2007). In this paper, we extend these results
and investigate the behavior of the VBMF estimator.
More specifically, we show that VBMF consists of two
shrinkage factors, the positive-part James-Stein (PJS)
shrinkage (James & Stein, 1961; Efron & Morris, 1973)
and the trace-norm shrinkage (Srebro et al., 2005),
operating on each singular component separately for
producing low-rank solutions. The trace-norm shrink-
age is simply induced by non-flat prior information, as
in the MAP approach (Salakhutdinov & Mnih, 2008).
Thus, no trace-norm shrinkage remains when priors
are non-informative. On the other hand, we show a
counter-intuitive fact that the PJS shrinkage factor
still remains even with uniform priors. This allows
the VBMF method to avoid overfitting (or in some
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Figure 1. Matrix factorization model (H ≤ L ≤ M).

cases this might cause underfitting) even when non-
informative priors are provided.

We further extend the above analysis to empirical
VBMF (EVBMF) scenarios, where hyperparameters
in prior distributions are also learned based on the VB
free energy. We derive bounds of the EVBMF estima-
tor, and show that the effect of PJS shrinkage is at
least doubled compared with the uniform prior cases.

2. Bayesian Approaches to Matrix
Factorization

In this section, we give a probabilistic formulation of
the matrix factorization (MF) problem and review its
Bayesian methods.

2.1. Formulation

The goal of the MF problem is to estimate a target
matrix U (∈ RL×M ) from its n observations

Vn = {V (i) ∈ RL×M | i = 1, . . . , n}.

Throughout the paper, we assume L ≤ M . If L > M ,
we may simply re-define the transpose U⊤ as U so
that L ≤ M holds. Thus this does not impose any
restriction.

A key assumption of MF is that U is a low-rank ma-
trix. Let H (≤ L) be the rank of U . Then the ma-
trix U can be decomposed into the product of A =
(a1,a2, . . . ,aH) ∈ RM×H and B = (b1, b2, . . . , bH) ∈
RL×H as follows (see Figure 1):

U = BA⊤.

Assume that the observed matrix V is subject to the
additive-noise model

V = U + E ,

where E (∈ RL×M ) is a noise matrix. Each entry of E
is assumed to independently follow the Gaussian dis-
tribution with mean zero and variance σ2. Then, the
likelihood p(Vn|A,B) is given by

p(Vn|A,B) ∝ exp

(
− 1

2σ2

n∑
i=1

∥V (i) −BA⊤∥2Fro

)
, (1)

where ∥ · ∥2Fro denotes the Frobenius norm of a matrix.

2.2. Bayesian Matrix Factorization

We use the Gaussian priors on the parameters A,B:

ϕ(U) = ϕA(A)ϕB(B),

ϕA(A) ∝ exp
(
−
∑H

h=1 ∥ah∥2/(2c2ah
)
)
,

ϕB(B) ∝ exp
(
−
∑H

h=1 ∥bh∥2/(2c2bh)
)
.

c2ah
and c2bh are hyperparameters corresponding to the

prior variance of those vectors. Without loss of gen-
erality, we assume that the product cah

cbh is non-
increasing with respect to h.

The Bayes posterior p(A,B|Vn) can be written as

p(A,B|Vn) =
p(Vn|A,B)ϕA(A)ϕB(B)

⟨p(Vn|A,B)⟩ϕA(A)ϕB(B)
, (2)

where ⟨·⟩p denotes the expectation over p. The full-
Bayesian (FB) solution is given by the Bayes posterior
mean:

ÛFB = ⟨BA⊤⟩p(A,B|Vn). (3)

The hyperparameters cah
and cbh may be determined

so that the Bayes free energy F (Vn) is minimized.

F (Vn) = − log⟨p(Vn|A,B)⟩ϕA(A)ϕB(B). (4)

This method is called the empirical Bayes method
(Bishop, 2006).

2.3. Maximum A Posteriori Matrix
Factorization (MAPMF)

When computing the Bayes posterior (2), the expecta-
tion in the denominator of Eq.(2) is often intractable
due to high dimensionality of the parameters A and
B. A simple approach to mitigating this problem is to
use the maximum a posteriori (MAP) approximation.

The MAP solution ÛMAP is given by

ÛMAP = B̂MAPÂMAP⊤
,

where (ÂMAP, B̂MAP) = argmaxA,B p(A,B|Vn).

2.4. Variational Bayesian Matrix Factorization
(VBMF)

Another approach to avoiding computational in-
tractability of the FB method is to use the VB ap-
proximation (Attias, 1999; Bishop, 2006). Here, we
review the VBMF method proposed by Lim and Teh
(2007) and Raiko et al. (2007).
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For a trial distribution

r(A,B|Vn) =
H∏

h=1

rah
(ah|Vn)rbh(bh|Vn),

the VB free energy is defined as

F (r|Vn) =

⟨
log

r(A,B|Vn)

p(Vn, A,B)

⟩
r(A,B|Vn)

.

The VB approach minimizes the VB free energy with
respect to the trial distribution r(A,B|Vn). The re-
sulting distribution is called the VB posterior. The
VB solution ÛVB is given by the VB posterior mean:

ÛVB = ⟨BA⊤⟩r(A,B|Vn).

Applying the variational method to the VB free energy
shows that the VB posterior satisfies

rah
(ah|Vn) ∝ ϕah

(ah) exp
(
⟨log p(Vn|A,B)⟩r(\ah|Vn)

)
,

rbh(bh|Vn) ∝ ϕbh(bh) exp
(
⟨log p(Vn|A,B)⟩r(\bh|Vn)

)
,

where r(\ah|Vn) denotes the VB posterior except ah.

2.5. Empirical Variational Bayesian Matrix
Factorization (EVBMF)

The VB free energy also allows us to determine the
hyperparameters c2ah

and c2bh in a computationally
tractable way. That is, instead of the Bayes free energy
F (Vn), the VB free energy F (r|Vn) is minimized with
respect to c2ah

and c2bh . We call this method empirical
VBMF (EVBMF).

3. Analysis of MAPMF, VBMF, and
EVBMF

In this section, we theoretically analyze the behav-
ior of MAPMF, VBMF and EVBMF solutions. More
specifically, we derive analytic-form expression of the
MAPMF solution (Section 3.1), semi-analytic expres-
sions of the VBMF solution (Section 3.2) and the
EVBMF solution (Section 3.3), and we elucidate their
regularization mechanism.

3.1. MAPMF

Let γh (≥ 0) be the h-th largest singular value of V :

V =
1

n

n∑
i=1

V (i).

Let ωah
and ωbh be the associated right and left sin-

gular vectors:

V =
L∑

h=1

γhωbhω
⊤
ah
.
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Figure 2. Shrinkage of the ML estimator (6), the MAP esti-
mator (5), and the VB estimator (8) when n = 1, σ2 = 0.1,
cahcbh = 0.1, L = 100, and M = 200.

Then we have the following theorem.

Theorem 1 The MAP estimator ÛMAP is given by

ÛMAP =
H∑

h=1

γ̂MAP
h ωbhω

⊤
ah
,

where, for [c]+ = max(0, c),

γ̂MAP
h =

[
γh − σ2

ncah
cbh

]+
. (5)

The theorem implies that the MAP solution cuts off
the singular values less than σ2/(ncah

cbh); otherwise
it reduces the singular values by σ2/(ncah

cbh) (see
Figure 2). This shrinkage effect allows the MAPMF
method to avoid overfitting.

Similarly to Theorem 1, we can show that the maxi-
mum likelihood (ML) estimator is given by

ÛML =
H∑

h=1

γ̂ML
h ωbhω

⊤
ah
,

where

γ̂ML
h = γh for all h. (6)

Thus the ML solution is reduced to V when H = L
(see Figure 2):

ÛML =

L∑
h=1

γ̂ML
h ωbhω

⊤
ah

= V .

A parametric model is said to be identifiable if the
mapping between parameters and functions is one-to-
one; otherwise the model is said to be non-identifiable
(Watanabe, 2001). Since the decomposition U = BA⊤
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is redundant, the MF model is non-identifiable. For
identifiable models, the MAP estimator with the uni-
form prior is reduced to the ML estimator (Bishop,
2006). On the other hand, the MF model is non-
identifiable because of the redundancy of the decom-
position U = BA⊤. This implies that a single point
in the space of U corresponds to a set of points in the
joint space of A and B. For this reason, the uniform
priors on A and B do not produce the uniform prior
on U . Nevertheless, Eqs.(5) and (6) imply that MAP
is reduced to ML when the priors on A and B are
uniform (i.e., cah

, cbh → ∞).

More precisely, Eqs.(5) and (6) show that cah
cbh → ∞

is sufficient for MAP to be reduced to ML, which is
weaker than cah

, cbh → ∞. This implies that both
priors on A and B do not have to be uniform; only the
condition that one of the priors is uniform is sufficient
for MAP to be reduced to ML in the MF model. This
phenomenon is distinctively different from the case of
identifiable models.

When the prior is uniform and the likelihood is Gaus-
sian, the posterior is Gaussian. Thus the mean and
mode of the posterior agrees with each other due to
the symmetry of the Gaussian density. For identifi-
able models, this fact implies that the FB and MAP
solutions agree with each other. However, the FB
and MAP solutions are generally different in non-
identifiable models since the symmetry of the Gaus-
sian density in the space of U is no longer kept in the
joint space of A and B.

In Section 4.1, we further investigate these distinctive
features of the MF model using illustrative examples.

3.2. VBMF

Next, let us analyze the behavior of the VBMF esti-
mator. We have the following theorem.

Theorem 2 ÛVB is expressed as

ÛVB =
H∑

h=1

γ̂VB
h ωbhω

⊤
ah
. (7)

When γh ≤
√
Mσ2/n, γ̂VB

h = 0. When γh >√
Mσ2/n, γ̂VB

h is bounded as

[(
1−Mσ2

nγ2
h

)
γh−

σ2
√
M/L

ncah
cbh

]+
≤ γ̂VB

h <

(
1−Mσ2

nγ2
h

)
γh. (8)

The upper- and lower-bounds in Eq.(8) are illustrated
in Figure 2. In the limit when cah

cbh → ∞, the lower-

bound agrees with the upper-bound, and we have

lim
cah

cbh→∞
γ̂VB
h =

[(
1− Mσ2

nγ2
h

)
γh

]+
(9)

if γh > 0; otherwise γ̂VB
h = 0. This is the same form

as the positive-part James-Stein (PJS) shrinkage esti-
mator (James & Stein, 1961; Efron & Morris, 1973).
The factor Mσ2/n is the expected contribution of the
noise to γ2

h—when the target matrix is U = 0, the ex-
pectation of γ2

h over all h is given by Mσ2/n. When
γ2
h ≤ Mσ2/n, Eq.(9) implies that γ̂VB

h = 0. Thus, the
PJS estimator cuts off the singular components dom-
inated by noise. As γ2

h increases, the PJS shrinkage
factor Mσ2/(nγ2

h) tends to 0, and thus the estimated
singular value γ̂VB

h becomes close to the original sin-
gular value γh.

Let us compare the behavior of the VB solution (9)
with that of the MAP solution (5) when cah

cbh → ∞.
In this case, the MAP solution merely results in the
ML solution where no regularization is incorporated.
In contrast, VB offers PJS-type regularization even
when cah

cbh → ∞; thus VB can still mitigate overfit-
ting. This fact is in good agreement with the experi-
mental results reported in Raiko et al. (2007), where
no overfitting is observed when c2ah

= 1 and c2bh is
set to large values. This counter-intuitive fact stems
again from the non-identifiability of the MF model—
the Gaussian noise E imposed in the space of U pos-
sesses a very complex surface in the joint space of
A and B, in particular, multimodal structure. This
causes the MAP solution to be distinctively different
from the VB solution. In Section 4.2, we investigate
the above phenomena in more detail using illustrative
examples.

We can derive another upper-bound of γ̂VB
h , which de-

pends on hyperparameters cah
and cbh .

Theorem 3 When γh >
√
Mσ2/n, γ̂VB

h is upper-
bounded as

γ̂VB
h ≤

[√(
1− Lσ2

nγ2
h

)(
1− Mσ2

nγ2
h

)
· γh − σ2

ncah
cbh

]+
.

When L = M and γh >
√

Mσ2/n, the above upper-
bound agrees with the lower-bound in Eq.(8), and thus
we have

γ̂VB
h =

[(
1− Mσ2

nγ2
h

)
γh − σ2

ncah
cbh

]+
(10)

if γh > 0; otherwise γ̂VB
h = 0. Then the complete VB

posterior can be obtained analytically.
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Corollary 1 When L = M , the VB posteriors are
given by

rA(A|Vn) =
∏H

h=1 NM (ah;µah
, Σah

),

rB(B|Vn) =
∏H

h=1 NL(bh;µbh
, Σbh),

µah
= ±

√
cah

cbh
γ̂VB
h · ωah

, Σah
=

cah

2Mcbh
κIM ,

µbh
= ±

√
cbh
cah

γ̂VB
h · ωbh , Σbh =

cbh
2Mcah

κIM ,

κ =

√(
γ̂VB
h + σ2

ncah
cbh

)2
+ 4σ2M

n −
(
γ̂VB
h + σ2

ncah
cbh

)
,

where Nd(·;µ, Σ) denotes the d-dimensional Gaussian
density with mean µ and covariance matrix Σ, and
γ̂VB
h is given by Eq.(10).

3.3. EVBMF

Finally, we analyze the behavior of EVBMF, where
hyperparameters cah

and cbh are also estimated from
data. We have the following theorem.

Theorem 4 The EVB estimator is given by the fol-
lowing form.

ÛEVB =

H∑
h=1

γ̂EVB
h ωbhω

⊤
ah
. (11)

When γh < (
√
L +

√
M)σ/

√
n, γ̂EVB

h = 0. When

γh ≥ (
√
L+

√
M)σ/

√
n, γ̂EVB

h is upper-bounded as

γ̂EVB
h <

(
1− Mσ2

nγ2
h

)
γh. (12)

When γh ≥
√
7Mσ/

√
n (> (

√
L+

√
M)σ/

√
n), γ̂EVB

h

is lower-bounded as

γ̂EVB
h >

1− 2Mσ2

nγ2
h −

√
nγ2

h(L+M +
√
LM)σ2

γh
+.
(13)

Note that the inequality in Eq.(13) is strict.

As pointed out by Raiko et al. (2007), if cah
, cbh ,

A, and B are all estimated so that the Bayes pos-
terior is maximized (i.e., ‘empirical MAP ’; EMAP),
the solution is trivial (i.e., γ̂EMAP = 0) irrespective
of the observation. In contrast, Theorem 4 implies
that EVB gives a non-trivial solution (i.e., γ̂EVB

h > 0)

when γh ≥
√
7Mσ/

√
n. It is also note worthy that the

upper-bound in Eq.(12) is the same as that in Eq.(8).
Thus, even when the hyperparameters cah

and cbh are
learned from data, the same upper-bound as the fixed-
hyperparameter case holds.

Another upper-bound of γ̂EVB
h is given as follows.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
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B
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U=0
U=−1
U=−2

Figure 3. Equivalence class. Any A and B such that their
product is unchanged give the same matrix U .

Theorem 5 When γh ≥ (
√
L +

√
M)σ/

√
n, γ̂EVB

h is
upper-bounded as

γ̂EVB
h <

√(
1− Lσ2

nγ2
h

)(
1− Mσ2

nγ2
h

)
γh −

√
LMσ2

nγh
.

When L = M , the above upper-bound is sharper than
that in Eq.(12), resulting in

γ̂EVB
h <

(
1− 2Mσ2

nγ2
h

)
γh. (14)

Thus, the PJS shrinkage factor of the upper-bound
(14) of EVBMF is 2Mσ2/(nγ2

h). On the other hand,
as shown in Eq.(9), the PJS shrinkage factor of plain
VBMF with uniform priors on A and B (i.e., ca, cb →
∞) isMσ2/(nγ2

h), which is less than a half of EVBMF.
Thus, EVBMF provides substantially stronger regular-
ization effect than plain VBMF with uniform priors.

Furthermore, from Eq.(10), we can confirm that the
upper-bound (14) is equivalent to the VB solution
when cah

cbh = γh/M .

4. Illustration of Influence of
Non-identifiability

In order to understand the regularization mechanism
of MAPMF, VBMF, and EVBMF more intuitively, let
us illustrate the influence of non-identifiability when
L = M = H = 1 (i.e., U , V , A, and B are merely
scalars). In this case, any A and B such that their
product is unchanged form an equivalence class and
give the same value U (see Figure 3). When U = 0,
the equivalence class is a cross shape on the A- and
B-axes; otherwise, it forms a hyperbolic curve.
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Figure 4. Bayes posteriors with ca = cb = 100 (i.e., almost flat priors). The asterisks are the MAP solutions, and the
dashed lines indicate the modes when ca, cb → ∞.

4.1. MAPMF

When L = M = H = 1, the Bayes posterior
p(A,B|Vn) is proportional to

exp

(
− n

2σ2
(V −BA)2 − A2

2c2a
− B2

2c2b

)
. (15)

Figure 4 shows the contour of the above Bayes poste-
rior when V = 0, 1, 2 are observed, where the number
of samples is n = 1, the noise variance is σ2 = 1, and
the hyperparameters are ca = cb = 100 (i.e., almost
flat priors). When V = 0, the surface has a cross
shape and its maximum is at the origin. When V > 0,
the surface is divided into the positive orthant (i.e.,
A,B > 0) and the negative orthant (i.e., A,B < 0),
and the two ‘modes’ get farther as V > 0 increases.

For finite ca and cb, the MAP solution can be expressed
as

ÂMAP = ±

√
ca
cb

[
|V | − σ2

ncacb

]+
,

B̂MAP = ±sign(V )

√
cb
ca

[
|V | − σ2

ncacb

]+
,

where sign(·) denotes the sign of a scalar. In Figure 4,
the MAP estimators are indicated by the asterisks;
the dashed lines indicate the modes of the contour of
Eq.(15) when ca, cb → ∞. When V = 0, the Bayes
posterior takes the maximum value on the A- and B-
axes, which results in ÛMAP = 0. When V = 1, the
profile of the peaks of the Bayes posterior is hyper-
bolic and the maximum value is achieved on the hy-
perbolic curves in the positive orthant (i.e., A,B > 0)
and the negative orthant (i.e., A,B < 0); in either

case, ÛMAP ≈ 1. When V = 2, a similar multimodal
structure is observed. From these plots, we can visu-
ally confirm that the MAP solution with almost flat
priors (ca = cb = 100) approximately agrees with the

ML solution: ÛMAP ≈ ÛML = V .

Furthermore, these graphs explain the reason why
cacb → ∞ is sufficient for MAP to agree with ML
in the MF setup (see Section 3). Suppose ca is kept
small, say ca = 1, in Figure 4. Then the Gaussian
‘decay’ remains along the horizontal axis in the profile
of the Bayes posterior. However, the MAP solution
ÛMAP does not change since the mode of the Bayes
posterior is kept lying on the dashed line (equivalence
class). Thus, MAP agrees with ML if either of ca and
cb tends to infinity.

If V = 0, 1, 2 are observed, the FB solutions (see
Eq.(3)) are given by 0, 0.92, 1.93, respectively (which
were numerically computed). Since the corresponding
MAP solutions are 0, 1, 2, FB and MAP were shown
to produce different solutions. This happened because
the Gaussian density in the space of U is no longer
symmetric in the joint space of A and B (see Figure 4
again), and thus the posterior mean and mode are dif-
ferent.

We can further show that the prior proportional to√
A2 +B2 (which is improper) corresponds to the Jef-

freys non-informative prior (Jeffreys, 1946) for the MF
model.

4.2. VBMF

Next, we illustrate the behavior of the VB estimator,
where the Bayes posterior is approximated by a spher-
ical Gaussian. In the current one-dimensional setup,
Corollary 1 implies that the VB posteriors rA(A|Vn)
and rB(B|Vn) are expressed as

rA(A|Vn) = N
(
A;±

√
γ̂VB

ca
cb
, ζ

ca
cb

)
,

rB(B|Vn) = N
(
B;±sign(V )

√
γ̂VB

cb
ca

, ζ
cb
ca

)
,

ζ =

√(
γ̂VB

2
+

σ2

2ncacb

)2

+
σ2

n
−
(
γ̂VB

2
+

σ2

2ncacb

)
,
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Figure 5. VB posteriors and VB solutions when L = M =
1 (i.e., the matrices V , U , A, and B are scalars). When
V = 2, VB gives either one of the two solutions shown in
the bottom row.
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Figure 6. EVB posteriors and EVB solutions when L =
M = 1. Left: When V = 2, the EVB posterior is the
delta function located at the origin. Right: The solution is
detached from the origin when V = 3.

γ̂VB
h =


[(

1− σ2

nV
2

)
|V | − σ2

ncacb

]+
if V ̸= 0,

0 otherwise.

Figure 5 shows the contour of the VB posteriors
rA(A|Vn) and rB(B|Vn) when V = 0, 1, 2 are ob-
served, where the number of samples is n = 1, the
noise variance is σ2 = 1, and the hyperparameters are
ca = cb = 100 (i.e., almost flat priors).

When V = 0, the cross-shaped contour of the Bayes
posterior (see Figure 4) is approximated by a spherical
Gaussian function located at the origin. Thus, the VB
estimator is ÛVB = 0, which is equivalent to the MAP
solution. When V = 1, two hyperbolic ‘modes’ of the
Bayes posterior are approximated again by a spherical

Gaussian function located at the origin. Thus, the VB
estimator is still ÛVB = 0, which is different from the
MAP solution.

V =
√
Mσ2/n = 1 is actually a transition point of the

behavior of the VB estimator. When V is not larger
than the threshold

√
Mσ2/n, the VB method tries to

approximate the two ‘modes’ of the Bayes posterior
by a single Gaussian located at the origin. When V
goes beyond the threshold, the ‘distance’ between two
hyperbolic ‘modes’ of the Bayes posterior becomes so
large that the VB method chooses to approximate one
of the two modes in the positive and negative orthants.
As such, the symmetry is broken spontaneously and
the VB solution is detached from the origin. Note
that, as discussed in Section 3, Mσ2/n amounts to
the expected contribution of noise E to the squared

singular value γ2 (= V
2
in the current setup).

The bottom row of Figure 5 shows the contour of two
possible VB posteriors when V = 2. Note that, in
either case, the VB solution is the same: ÛVB ≈ 3/2.
The VB solution is closer to the origin than the MAP
solution ÛMAP = 2, and the difference between the VB
and MAP solutions tends to shrink as V increases.

4.3. EVBMF

Finally, we illustrate the behavior of the EVB estima-
tor. When L = M , the EVB estimators of cah

and cbh
can be analytically expressed (the details are omitted
due to lack of space). Combing the analytic expres-
sion and Corollary 1, we can explicitly plot the EVB
posterior (Figure 6).

When V = 2 ≤ (
√
L +

√
M)σ/

√
n = 2, the infimum

of the free energy is attained at Σa, Σb, ca, cb → 0
under Σa/ca = 1 and Σb/cb = 1. Thus, the EVB
posterior is the delta function located at the origin,
and the EVB estimator is (ÂEVB, B̂EVB) = (0, 0) (see
the left graph). On the other hand, when V = 3 ≥√
7Mσ/

√
n =

√
7 ≈ 2.65, the solution (ÂEVB, B̂EVB)

is detached from the origin (see the right graph). Note
that the EVB solution is not unique in terms of (A,B)
in this case, but is unique in terms of U = BA.

The graphs exhibit the stronger shrinkage effect of
EVB than VB with the almost flat priors.

5. Conclusion

In this paper, we theoretically analyzed the behav-
ior of Bayesian matrix factorization methods. More
specifically, in Section 3, we derived non-asymptotic
bounds of the maximum a posteriori matrix factor-
ization (MAPMF) estimator, the variational Bayesian
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matrix factorization (VBMF) estimator, and the em-
pirical VBMF (EVBMF) estimator. Then we showed
that MAPMF consists of the trace-norm shrinkage
alone, while VBMF consists of the positive-part James-
Stein (PJS) shrinkage and the trace-norm shrinkage.
An interesting finding was that, while the trace-norm
shrinkage does not take effect when the priors are flat,
the PJS shrinkage remains activated even with flat pri-
ors. We also showed that in EVBMF, the ‘strength’
of the PJS shrinkage is more than doubled compared
with VBMF with the flat prior. We illustrated these
facts using one-dimensional examples in Section 4.

The fact that the PJS shrinkage remains acti-
vated even with flat priors is induced by the non-
identifiability of the MF models, where parameters
form equivalent classes. Thus, flat priors in the space
of factorized matrices are no longer flat in the space
of the target (composite) matrix. Furthermore, sim-
ple distributions such as the Gaussian distribution
in the space of target matrix produce highly com-
plicated multimodal distributions in the space of fac-
torized matrices. As Gelman (2004) pointed out, re-
parameterization involving modification of conjugate
priors affects the behavior of statistical models. Al-
though such re-parameterization is often introduced
solely for computational purposes, its role is essential
in matrix factorization.
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