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ABSTRACT

Automatically annotating or tagging unlabeled audio files has
several applications, such as database organization and rec-
ommender systems. We are interested in the case where the
system is trained using clean high-quality audio files, but most
of the files that need to be automatically tagged during the test
phase are heavily compressed and noisy, perhaps because they
were captured on a mobile device. In this situation we assume
the audio files follow a covariate shift model in the acoustic
feature space, i.e., the feature distributions are different in the
training and test phases, but the conditional distribution of
labels given features remains unchanged. Our method uses
a specially designed audio similarity measure as input to a
set of weighted logistic regressors, which attempt to alleviate
the influence of covariate shift. Results on a freely available
database of sound files contributed and labeled by non-expert
users, demonstrate effective automatic tagging performance.

Index Terms— Importance, KLIEP, Acoustic signal anal-
ysis, Database query processing

1. INTRODUCTION

A fundamental challenge limiting widespread acceptance of
large, freely available internet audio archives is the difficulty
in organizing and accessing them. Traditionally, text-based
retrieval approaches are often employed, with the disadvan-
tage that it is impossible to search for unlabeled sound files.
To overcome this there has been much recent interest in re-
trieving unlabeled audio from text queries and the related
problem of auto-tagging, i.e., the ability to automatically
describe and label a sound clip based on its audio content.

An additional challenge in auto-tagging general audio
(non-music or speech) archives where the sound files are
contributed by a user-community is a large variation in the
types of files that are contributed. For example, an original
collection might contain exclusively CD quality (44.1kHz,
16 bit) or better sound files recorded on expensive equipment
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which is used for training the auto-tagging system. When
new sound files are contributed, that are possibly highly com-
pressed, e.g., low bit-rate MP3s and recorded with different
equipment these files could be very different in an audio
feature space and difficult for the system to automatically an-
notate. This situation is likely to arise when users contribute
audio files captured on their mobile phones to a previously
trained automatic tagging system.

Recent approaches to auto-tagging have achieved much
success including an ontological framework for connecting
words and sounds [1], a generative model for annotation and
retrieval of music and sound effects [2], tagging unlabeled
sounds with the labels belonging to their nearest neighbor in
an acoustic feature space [3], and a large scale comparative
study of text-based audio retrieval [4]. These approaches as-
sume that training and test data follow the same distribution,
which might not be the case when clean, uncompressed au-
dio is used for training, while low-quality compressed audio
possibly captured via a mobile phone is used for testing. To
overcome these possible shifts in the audio feature space we
propose a semi-supervised learning framework, where train-
ing and test data are related by a covariate shift model, which
has been successfully applied to improve session variation in
speaker identification in [5, 6]. In covariate shift the input dis-
tributions are different in the training and test phases but the
conditional distribution of labels (tags) remains unchanged.

In the present work we approximate trends in low-level
audio feature trajectories (does each feature stay constant, go
up, down, or vary in more complex ways), and use the dis-
tance between these low-level feature trends as a kernel func-
tion in a kernel logistic regression classification scheme. We
then apply importance weights [7] to overcome possible shifts
in the audio feature space between the training and test sets,
where weights are estimated using theKullback-Leibler im-
portance estimation procedure[8]. We test the performance
of our algorithm using data from theFreesoundproject [9],
a database of freely available sound recordings uploaded by
users of the site. We train classifiers using only uncompressed
high bit rate audio files, while our testing data contains only
low bit-rate compressed files. Results demonstrate how the
proposed method improves retrieval performance.



2. MEASURING AUDIO SIMILARITY

Methods for ranking sounds in terms of perceptual simi-
larity, typically begin with the problem of acoustic feature
extraction. We compute our features using 40ms Hamming
windowed frames hopped every 20ms, and our chosen six-
dimensional feature set is described in [10]. This feature set
consists ofRMS level, Bark-weightedspectral centroid, spec-
tral sparsity(the ratio ofℓ∞ andℓ1 norms calculated over the
short-time Fourier Transform (STFT) magnitude spectrum),
transient index(the ℓ2 norm of the difference of Mel fre-
quency cepstral coefficients (MFCC’s) between consecutive
frames),harmonicity(a probabilistic measure of whether or
not the STFT spectrum for a given frame exhibits a harmonic
frequency structure), andtemporal sparsity(the ratio ofℓ∞

andℓ1 norms calculated over all short-term RMS levels com-
puted in a one second interval). In addition to its relatively
low dimensionality this feature set is also specifically tailored
to natural and environmental sounds while not being specif-
ically adapted to a particular class of sounds (e.g., speech),
which is incredibly important in diverse user-contributed
audio databases.

Once the feature extraction process is complete, we
represent a given sound file asX = {G, λ}, whereG =
[g⊤

1 , . . . ,g
⊤
d ] ∈ Rd×N is the feature matrix withd the num-

ber of audio features,N the number of frames, and⊤ denotes
the transpose. Utilizing the procedure in [11] we denote by
λ a hidden Markov model (HMM) automatically created for
every sound file by fitting constant, linear, and parabolic least
squares (LS) polynomials to each feature trajectory. The
first step in our similarity procedure is then to obtain the
log-likelihood valuesL(Xi, Xj) = log p(Xi|λj) by comput-
ing the likelihood of theith observation trajectory (feature
matrix) using thejth HMM. Details on the estimation ofλ
and computation of the likelihood using a HMM is described
in detail in [11]. Following [12] we compute the similarity
between soundsXi andXj as

B(Xi, Xj) =
1

Ni
[L(Xi, Xi)− L(Xi, Xj)]

+
1

Nj
[L(Xj , Xj)− L(Xj , Xi)]. (1)

Although the semi-metric in (1) does not satisfy the trian-
gle inequality, its properties are: (a) symmetryB(Xi, Xj) =
B(Xj , Xi), (b) non-negativityB(Xi, Xj) ≥ 0, and (c) dis-
tinguishabilityB(Xi, Xj) = 0 iff i = j.

As a final step in our audio similarity procedure, we use
local scaling[13] to create an affinity or Gram matrix:

K(Xi, Xj) = exp(−B2(Xi, Xj)/σiσj), (2)

whereσi = B(Xi, XiM ) andiM is theM th nearest neighbor
of soundi (M = 7 in this work) andσj is defined similarly.
Local scaling offers more flexibility in cases where acoustic
feature sets exhibit multi-scale behavior [14].

3. FORMULATION OF AUTOMATIC TAGGING
PROBLEM

We consider a vocabularyT containing |T | possible tags,
whose elements are denoted bytl ∈ T . For each sound file
Xi ∈ X , we use the binary vectoryi of dimension|T | as a
label vector. The elements of the label vector areyi,l = 1
if tag tl is relevant to the sound indexed byXi andyi,l = 0
otherwise. For training we are given a set ofn tagged audio
clipsZ = {(Xi,yi)}ni=1. In an effective auto-tagging system
relevant tags should have a higher score than irrelevant ones,
i.e.,

F (tl,Xi) > F (tj ,Xi) yi,l = 1, yi,j = 0,

whereF (t,X) ∈ R is a scoring function. As our scoring
function we use the approximate class-posterior probability

F (tl,X) = p(yi,l = 1 |X;Vl) =
exp f l

v1
(X)

exp fvl
0
(X) + exp fvl

1
(X)

,

whereVl = [vl
0,v

l
1]

⊤ ∈ R2×n is a parameter to be estimated
for each word, whilefvl

1
andfvl

0
are discriminant functions

for tagl corresponding to relevant and irrelevant, respectively.
This form is known as thesoftmaxfunction and widely used
in multiclass logistic regression. We use the following kernel
regression model as the discriminant functionfvl

k
:

fvl
k
(X) =

n∑
i=1

vlk,iK(X,Xi) k = 0, 1

wherevl
k = (vk,1, . . . , vk,n)

⊤ ∈ Rn are parameters corre-
sponding to tagl andK(X,X′) is the affinity function from
(2) used here as a kernel function.

To estimate the parametersVl of each word-level clas-
sifier we use maximum likelihood estimation. The negative
regularized log-likelihood functionP log

δ (Vl;Z) for the ker-
nel logistic regression model is given by

P log
δl

(Vl;Z) = −
n∑

i=1

logP (yi,l |Xi; V
l)+

δl

2
tr(ΓlVlK(Vl)⊤),

whereδl

2 tr(ΓlVlK(Vl)⊤) is a regularizer introduced to avoid
overfitting,K = [K(Xi,Xj)]

n
i,j=1 is the Gram matrix, andΓl

is a2×2 diagonal matrix whose nonzero elements contain the
ratio of training samples with and without tagl, respectively.
SinceP log

δl
(Vl;Z) is a convex function with respect toVl

its unique minimizer can be obtained by, e.g., the Newton
method. The values of the regularization parametersδl are
determined automatically using a three-fold cross validation
procedure [5, 6].

4. IMPORTANCE WEIGHTING TECHNIQUES FOR
COVARIATE SHIFT ADAPTATION

In the absence of covariate shift, the expectation over test
samples can be computed by the expectation over training



samples since they are drawn from the same distribution.
However, under covariate shift, the difference of input distri-
butions should be explicitly taken into account.
Importance Sampling: A basic technique for compensating
for the distribution change isimportance sampling, i.e., the
expectation over training samples is weighted according to
their importance in the test distribution. Indeed, based on the
importance weight

w(X) =
pte(X)

ptr(X)
,

wherepte(X) andptr(X) are test and training input densities,
the expectation of some functionQ(X) over the probability
densitypte(X) can be computed by

Epte(X)[Q(X)] = Eptr(X)[Q(X)w(X)].

Importance Weighted Kernel Logistic Regression: If the
importance sampling technique is applied in KLR, we have
the following importance weighted KLR (IWKLR):

P̃ log
δl

(Vl;Z) =−
n∑

i=1

w(Xi) logP (yi,l |Xi; V
l)

+
δl

2
tr(ΓlVlK(Vl)⊤).

Note thatP̃ log
δl

(Vl;Z) is still convex and thus the global so-
lution can be obtained, e.g., by the Newton method. Here,
three-foldimportance weighted cross validation (IWCV)[15]
is used to determine the parametersδl.

Importance Weight Estimation: As shown above, the im-
portance weightw(X) plays a central role in covariate shift
adaptation. However, the importance weight is usually un-
known, so it needs to be estimated from samples. Here, we
assume that in addition to the training input samplesX tr =
{Xtr

i }ntr
i=1 drawn independently fromptr(X), we are given un-

labeled test samplesX te = {Xte
i }nte

i=1 drawn independently
from pte(X) (i.e., the semi-supervised setup).

Under the semi-supervised setup, the importance weight
may be simply estimated by estimatingptr(X) and pte(X)
from training and test samples and then taking their ratio.
However, density estimation is known to be a hard problem
and taking the ratio of estimated quantities tends to magnify
the estimation error. Thus such a two-shot process may not be
reliable in practice. Below, we introduce a method called the
Kullback-Leibler Importance Estimation Procedure (KLIEP)
[8], which allows us to directly learn the importance weight
function without going through density estimation.

Let us model the importance functionw(X) by the fol-
lowing linear model:

ŵ(X) =

b∑
k=1

αkφ(X,Ck),

where{αk}bk=1 are parameters to be learned from data sam-
ples,{Ck}bk=1 are template points randomly chosen from the
test input set{Xte

i }nte
i=1, andφ(X,X′) is a basis function cho-

sen as the locally scaled kernel function (2). We determine
the coefficient{αk}bk=1 by maximum likelihood estimation,
which is formulated as

max
{αk}b

k=1

[
nte∑
i=1

log

(
b∑

k=1

αkφ(X
te
i ,Ck)

)]

s.t.
ntr∑
i=1

b∑
k=1

αkφ(X
tr
i ,Ck) = ntr and αk, . . . , αb ≥ 0.

This optimization problem is convex and thus the global so-
lution may be obtained by simply performing gradient ascent
and feasibility satisfaction iteratively. Note that the solution
{α̂k}bk=1 tends to be sparse, which contributes to reducing the
computational cost in the test phase.

5. EXPERIMENTS

In this section we test the performance of automatic audio
tagging when a system is trained on a small number of clean
uncompressed audio files and tested using low-quality com-
pressed audio files. Our dataset consists of sound files from
theFreesoundproject website [9]. The sound files were ran-
domly selected from among all files on the site containing
any of the 50 most used tags and between 3-60 seconds in
length. We then used 193 randomly selected uncompressed
audio files with a sampling rate greater than 44.1kHZ as our
training set, and 1612 randomly selected audio files stored in
a compressed format for testing. Our tag vocabulary consists
of the|T | = 129 tags that appeared on at least four sounds in
the testing set and one sound in the training set. As a baseline
system we estimate the score function parameters using KLR,
and compare the automatic tagging performance to IWKLR
with covariate shift.

Given an unlabeled sound from the testing set all 129 tags
in the vocabulary are ranked in order of decreasing score. A
tag is considered relevant if it was used by actual Freesound
users. We then truncate the ranked list to the topL words
and computerecall as the number of relevant tags ranked in
the topL divided by the total number of relevant tags, and
precisionas the number of relevant tags ranked in the topL
divided byL. It is trivial to maximize either precision or
recall independently, but a truly effective automatic tagging
system should achieve both objectives simultaneously. Fig-
ure 1 displays the precision-recall curves averaged over all
1612 sounds in the test set for both KLR and IWKLR where a
single precision-recall pair is obtained at each position in the
ranked list. From Figure 1 we see that IWKLR with covari-
ate shift improved precision most dramatically at recall values
between 0.2 and 0.4. This indicates that if we decide to au-
tomatically tag the test sound with all tags above a certain
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Fig. 1. Precision-recall curves for baseline KLR and IWKLR.

Table 1. Mean average precision (AP), mean area under the
ROC curve (AROC), and total AROC for all 1612 compressed
testing files.

KLR IWKLR
Mean AP 0.205 0.221

Mean AROC 0.729 0.735
Total AROC 0.643 0.667

position in the ranked list to include on average between 20-
40% of relevant tags, fewer of the automatically applied tags
will be irrelevant when using IWKLR as compared to KLR.

Table 1 numerically compares the performance of the
baseline KLR automatic tagging system to the proposed sys-
tem using IWKLR with covariate shift. Average precision
(AP) is found by averaging the precision values at all points
in the ranked list where a relevant tag is located. The area
under the receiver operating characteristics curve (AROC)
is found by integrating the ROC curve, which plots the true
positive versus false positive rate for the ranked list of output
tags. We compute the AP and AROC separately for each
sound in the test set, and then average over all sounds in the
test set to obtain the mean AP and mean AROC values. The
total AROC values are obtained by integrating a ROC curve
for all testing sounds simultaneously. In Table 1 IWKLR out-
performs KLR for all metrics, which implies that importance
weighting is useful in coping with the influence of recording
environment change and lossy file compression in automatic
audio tagging.

6. CONCLUSIONS

In this paper we demonstrated a semi-supervised approach to
automatic tagging of general audio files under a covariate shift
assumption. We evaluated the proposed approach on a testing
set of 1612 audio files tagged by actual users of an internet
audio archive. While initial results were promising, possi-

ble topics of future work include optimally choosing a small
yet representative training set to keep the computational cost
low during testing, while improving automatic tagging per-
formance.
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