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ABSTRACT feature space. The MOSK based speaker verification system

Th K | has b h b - I(was shown to significantly outperform other methods such
€ sequence kermel has been shown to be a promising Kefs e Gaussian mixture model (GMM) and the SVM with
nel function for learning from sequential data such as spee i

d DNA. H L labl ve d q ite-dimensional kernels.
an - However, itis not scalable to massive datasets due Although MOSK performs well in the speaker verifica-

to 'tﬁ T}:g? compu_tano_nal EOSL In this Eaperl, vhve _prorp])ose fon task, its computational complexity limits its use in appli-
method of approximating the sequence kernel thatis SNOWN t0, s \here real time processing is required. Specifically,

be computationally very ef“"“?”t- More specifically, we for- MOSK requiresN N’ vector kernel computations for mea-
mulate the problem_o_f appro?qmatl_ng the sequence kernel aﬁjring the similarity between two data sequences of length
th.e problem of obtaining pre-imagein a reproducing kerne.I N and N, respectively. The goal of this paper is to develop
I—_||Ibe_rt space. The eff_ecnven_e ss of the proposed approximay computationally efficient alternative to the MOSK for real
t!on IS der_nonstratgd in text-independent speaker |dent|f|cql—me speaker identification. The first step in our approach is to
tion experiments with 10 male speakers—our approach pr%ipproximate the MOSK using-means clustering. Then, we
vides significant reduction in computation time with limited formulate the problem of approximating the sequence ,kernel
performance degradation. Based on the proposed method, WE the problem of obtaininggare-imagein a reproducing ker-
develop a r_eal-time k_ernel-based speaker identification SYSiel Hilbert space (RKHS) [2]. A pre-image is a vector in the
tem using Virtual Studio Technalogy (VST). input space mapped to the target feature vector in the RKHS.
Index Terms— Sequence kernelk-means algorithm, The practical effectiveness of the proposed method is in-
pre-image, Virtual Studio Technology (VST) vestigated in text-independent speaker identification experi-
ments with 10 male speakers. Results demonstrate that the
proposed method provides significant reduction in computa-
tion time while speaker identification accuracy is only mod-

. . T . . erately degraded. Furthermore, using the pre-image approx-
Automatic speaker |dent|f |ca't|on IS a c.rumal user 'nterfac.eimation we develop a real-time speaker identification system
technology and hgs applications in various areas, e.g., p"ﬂfsing Virtual Studio Technology (VST).
code-based security systems for mobile devices, conference
systems [1], and robotics. In these applications, speaker iden-
tification is expected to work in real-time. Thus, the time re- 2. PROBLEM FORMULATION
sponse, or time spent on identification should be minimized.

Kernel methods such as the support vector machin
(SVM) [2] and kernel logistic regression (KLR) [3] are suc-
cessful approaches in speaker identification, given that the ) -
kernel functions are designed appropriately. Recentiygan ~ 2-1. Kernel-based Text-independent Speaker Identifica-

operator sequence kern@WOSK) has been introduced for tion

speaker identification [4], which utilizes a sequence of framean, iterance sampl& pronounced by a speaker is expressed

level features for capturing long-term structure in phonesgg 4 set ofy mel-frequency cepstrum coefficient (MFJE)
syllables, words, and entire utterances. MOSK measures thectors of dimensiod:

similarity between two sequences by computing the inner
product between the means of the sequeioeticitly in the X = [x1,...,x5] € RN,

1. INTRODUCTION

In this section, we formulate the speaker identification prob-
lem based on the kernel logistic regression (KLR) model.



For training, we are given labeled utterance samples: where .
/ /
Z = {(Xs, u:) 1, k(z,z') = ¢(x) ¢(z')
is a ‘base’ vector kernel function.

MOSK requiresN N’ vector kernel computations for cal-
culating the similarity between utterancEsandX’. There-
fore, the MOSK computation is not suited for real-time appli-
cation whenV N’ is very large.

wherey; € {1,..., K} denotes the index of the speaker who
pronouncedX;. The goal of speaker identification is to pre-
dict the speaker index of a test utterance sa¥pleased on
the training samples. We predict the speaker index the
test sampl& following Bayes decision rule

maxp(y = ¢|X). 3. APPROXIMATION OF MOSK

For approximating the class-posterior probability, we use ) , i L
PP g P P y In this section, we provide an approximation method of the

ply=c|X;V) = exp fo. (X) : MOSK computation. Below, we focus on the Gaussian kernel
Zfil exp fu, (X) as the base kernel function:
whereV = [vy,...,vk]" € RE*" is the parameter, de- , |z — a'||?
notes the transpose, arfg, is a discriminant function cor- k(z, @) = exp | — 902 :

responding to speakér This form is known as theoftmax

function and widely used in multiclass logistic regression. We3 1. Approximating Mean Operator Sequence Kerel by
use the following kernel regression model as the discriminanb s

function f,,
n ForD <« N, let us divide the samplegey, ..., zx} into D
fo,(X) = sz,ﬂC(X,Xi) I=1,....K, clusters{Cy,...,Cp} such that
= - n C; N Cj = ( fori # 7
wherev; = (v1,...,v,) € R™ are parameters corre- ClU---UCh = {m1,.... 2N}

sponding to speakérand/C(X, X’) is a kernel function.

. We employ maximum likelihood estimation for learn- \we may use thé-means clustering algorithm for this pur-
ing the parameteV. The negative log-likelihood function pose. Thenl SN | é(x,) can be expressed as
Plog(V; Z) for the kernel logistic regression model is given W=

by 1 & 1
o - N 2 ¢@) = d(@)+---+ ), o)
7)1 g(V,Z):—ZlOgP(yL|X7,V), sz:; P N :1:;1 w;[)
=t 1 D
whereK = [K(X;,X;)]7;_, is the kernel Gram matrix. A > )+ + o > o), 1)
Plog(V; Z) is a convex function with respect % and there- =€l @€Cp
fore its unique minimizer can be obtained using, e.g., th§yhere N; is the number of samples in clustér and; =
Newton method [6]. N;/N.
If we can approximate the meq@ > wcc, $(x) by asin-
2.2. Mean Operator Sequence Kernel [4] gle pointy(u;), the computational cost of the mean in the fea-

The performance of KLR depends on the choice of the kernetfJre Space 1S redgced fro(‘ﬂ(]_\f_) t(.) O(D). To o_btam a g(.)Od_
proximation poinj;, we minimize the following criterion:

function. In this paper, we use timeean operator sequence ap
kernel(MOSK) [4] as the kernel function since it allows us to 1 )
handle feature sequences of different length. For sequences Ji(pi) = llo(mi) — N, Z o()[|.
of d-dimensional feature vectors of lengthand N’, zeC

X =[xy,...,zN] € RIXN This is often called th@re-imageproblem in the context of
kernel methods [2]. For the Gaussian kernel, the above crite-
rion can be written as

2 1
L& | N Ji(pi) =1— N > k(i) + N2 > k(za), (2)
IC(X,X’) — NZ‘M%)TW Z (,ZS(ZC;,), zeC; i paeC

where we used

_ ! .12
= WZ Z k(mp,mp/)7 k(ll/z,uz) — eXp (_ ||,“"7 l“"l“ ) — 1.

202

/ / ’ dx N’
X:[w17...7mN/]€R s

MOSK is defined as



Taking the derivative of Eq.(2) with respectig we have

Ji(pi) 0 2 i — |
opi opi | N g P\ T g0
1 wi —x||?
—aw Lo () -2 @
v xeC;

Equating Eq.(3) to zero, we have:

_lpi—=|?
202

ZwECi exp ( ) T
lpi—= ]2
Zm'eci exXp (_ 252 )

i (4)

We use Eq.(4) as a re-estimation formula, ii&. is updated

by Eq.(4) withpu; in the right-hand side replaced by the cur-

rent estimatgi; and this is repeated until convergence.
Then Eq.(1) yields

1 N D
DICHED BT 5)
p=1 i=1
Based on Eq.(5), MOSK can be approximated by
D D’
KX, X)) ~ chb(ﬁi)T Z T ¢ (Hir)
=1 i'=1
D D'
= Zzﬂzﬂ—;/k(ﬁ“ﬂl/) (6)

i=11=1

Following the k-means clustering algorithm, we call the
proposed method the-means operator sequence keriel

MOSK). The number of vectorial kernel computations in the

original MOSK isN N’, while that ink-MOSK is DD’. Thus

k-MOSK would be computationally much more efficient than

MOSK given thatD and D’ are much smaller thaiV and
N'. ltis clear thatk-MOSK satisfies positive definiteness;
thus it is a valid kernel function.

The computation of thé&-means clustering algorithm for
every utterance in the test phase is expensive. So we comp
the kernel between a training samplend a test sampl§’ =

{zf,..., 2.} as
D N’
1 ~
i=1 p=1

4. EXPERIMENTS

Table 1. Training sentences and test words (in Japanese, writ-
ten using the Hepburn system of Romanization).

Contents

1. seno takasawa hyakunanajusseNch
hodode mega ookiku yaya futotteiru

2. oogoeo dashisugite kasuregoeni natte
shimau

3. tashizaN hikizaNwa dekinakutemo
eha kakeru

1. mouichido

2. torikaeshi

3. teisei

4. horyuu

5. shoukai

Training
sentences:

Testing
words:

4.1. System and Data Acquisition

The data for training and testing were collected from 10 male
speakers, where each speaker uttered several different words
as listed in Table 1.

The duration of an utterance for each training sentence
was approximately four seconds. Thus, the total duration of
utterances over three training sentences was approximately 12
seconds per speaker. For testing purposes, we use utterances
of 5 words recorded in three sessions over six months with no
time overlap to the training session. Thus the total number of
test words was 150 (10 speaker$ wordsx 3 sessions).

A feature vector of 26 dimensions, consisting of 12
MFCCs, normalized log energy, and their first derivatives, is
derived once every 10ms over a 25.6ms Hamming-windowed
speech segment. We divide each training utterance into
300ms disjoint segments, each of which corresponds to a set
of features of siz€6 x 30. On the other hand, for testing, we
use the whole utterance of each word consisting of approxi-
mately 1000ms duration for computing MOSK ald/IOSK
since each word is treated as a single test sample.

4.2. Results

evaluate the proposédMOSK with the several different
numbers of cluster®. The Gaussian widtlr in the base
Gaussian kernel is chosen from

{8,10,12,14, 16}

by 10-fold cross-validation(CV). In our preliminary exper-

iments, we observed that the 10-fold CV scores tend to be
heavily affected by the random split of the training samples.
We conjecture that this is due to non-i.i.d. nature of the MFCC
features, which is different from the theoretical assumptions

In this section, we compare the performance of MOSK anaf CV. In order to obtain reliable experimental results, we re-

k-MOSK with different numbers of cluster® in a speaker
identification task.

peat the CV procedurg0 times with different random data
splits and use the average score for model selection.
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Fig. 1. Speaker identification rates obtained using 30, 15, 10,

and 5 clusters, with selected kernel widths of 12, 14, 14, an
16, respectively.
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Fig. 2. The normalized computation time of MOSK ahel
MOSK in training and testing using a standard personal co
puter with QuadCore 2.0GHz processor and 2GB memory.

Figure 1 depicts the speaker identification rates for thefz]

test words using MOSK anéd-MOSK with different num-
bers of clusterd. In Figure 2, we plot the computation time
of MOSK andk-MOSK in training and testing using a stan-

dard personal computer with a QuadCore 2.0GHz processor

and 2GB memory. The computation time for MOSK is nor-
malized to one. These results demonstrate tABIOSK is
computationally more efficient than the original MOSK with
mild degradation in identification accuracy.

Based ork-MOSK, we have developed a real-time kernel-
based speaker identification system using a Virtual Studi
Technology (VST) plugin (see Figure 3). A demo movie is
available ahttp://dsp.syuriken.jp/demo/sid.html

5. CONCLUSION

fig. 3. Five-speaker identification system implemented with
the VST plugin, where OctoMag is the waveplayer and the
SID system is the kernel-based speaker identification module.
Each LED lights when the corresponding speaker is speaking.

ing kernel Hilbert space. Through numerical experiments, the
proposed method was shown to be useful in text-independent
speaker identification when combined with kernel logistic re-
gression and cross validation. In the future, we plan to im-
plement the proposed speaker identification system in small
devices such as digital signal processors (DSP) for robotics,
conference systems, and human-computer interfaces.
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The mean operator sequence kernel (MOSK) is a useful ker-
nel function in speaker identification, but tends to be com-
putationally inefficient. In this paper, we provided an ap-
proximation scheme based on the pre-image in a reproduc-



