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ABSTRACT

The sequence kernel has been shown to be a promising ker-
nel function for learning from sequential data such as speech
and DNA. However, it is not scalable to massive datasets due
to its high computational cost. In this paper, we propose a
method of approximating the sequence kernel that is shown to
be computationally very efficient. More specifically, we for-
mulate the problem of approximating the sequence kernel as
the problem of obtaining apre-imagein a reproducing kernel
Hilbert space. The effectiveness of the proposed approxima-
tion is demonstrated in text-independent speaker identifica-
tion experiments with 10 male speakers—our approach pro-
vides significant reduction in computation time with limited
performance degradation. Based on the proposed method, we
develop a real-time kernel-based speaker identification sys-
tem using Virtual Studio Technology (VST).

Index Terms— Sequence kernel,k-means algorithm,
pre-image, Virtual Studio Technology (VST)

1. INTRODUCTION

Automatic speaker identification is a crucial user interface
technology and has applications in various areas, e.g., pin-
code-based security systems for mobile devices, conference
systems [1], and robotics. In these applications, speaker iden-
tification is expected to work in real-time. Thus, the time re-
sponse, or time spent on identification should be minimized.

Kernel methods such as the support vector machine
(SVM) [2] and kernel logistic regression (KLR) [3] are suc-
cessful approaches in speaker identification, given that the
kernel functions are designed appropriately. Recently, amean
operator sequence kernel(MOSK) has been introduced for
speaker identification [4], which utilizes a sequence of frame-
level features for capturing long-term structure in phones,
syllables, words, and entire utterances. MOSK measures the
similarity between two sequences by computing the inner
product between the means of the sequencesimplicitly in the

feature space. The MOSK based speaker verification system
was shown to significantly outperform other methods such
as the Gaussian mixture model (GMM) and the SVM with
finite-dimensional kernels.

Although MOSK performs well in the speaker verifica-
tion task, its computational complexity limits its use in appli-
cations where real time processing is required. Specifically,
MOSK requiresNN ′ vector kernel computations for mea-
suring the similarity between two data sequences of length
N andN ′, respectively. The goal of this paper is to develop
a computationally efficient alternative to the MOSK for real
time speaker identification. The first step in our approach is to
approximate the MOSK usingk-means clustering. Then, we
formulate the problem of approximating the sequence kernel
as the problem of obtaining apre-imagein a reproducing ker-
nel Hilbert space (RKHS) [2]. A pre-image is a vector in the
input space mapped to the target feature vector in the RKHS.

The practical effectiveness of the proposed method is in-
vestigated in text-independent speaker identification experi-
ments with 10 male speakers. Results demonstrate that the
proposed method provides significant reduction in computa-
tion time while speaker identification accuracy is only mod-
erately degraded. Furthermore, using the pre-image approx-
imation we develop a real-time speaker identification system
using Virtual Studio Technology (VST).

2. PROBLEM FORMULATION

In this section, we formulate the speaker identification prob-
lem based on the kernel logistic regression (KLR) model.

2.1. Kernel-based Text-independent Speaker Identifica-
tion

An utterance sampleX pronounced by a speaker is expressed
as a set ofN mel-frequency cepstrum coefficient (MFCC)[5]
vectors of dimensiond:

X = [x1, . . . ,xN ] ∈ Rd×N .



For training, we are givenn labeled utterance samples:

Z = {(Xi, yi)}ni=1,

whereyi ∈ {1, . . . ,K} denotes the index of the speaker who
pronouncedXi. The goal of speaker identification is to pre-
dict the speaker index of a test utterance sampleX based on
the training samples. We predict the speaker indexc of the
test sampleX following Bayes decision rule:

max
c

p(y = c |X).

For approximating the class-posterior probability, we use

p(y = c |X;V) = exp fvc(X)∑K
l=1 exp fvl

(X)
,

whereV = [v1, . . . ,vK ]⊤ ∈ RK×n is the parameter,⊤ de-
notes the transpose, andfvl

is a discriminant function cor-
responding to speakerl. This form is known as thesoftmax
function and widely used in multiclass logistic regression. We
use the following kernel regression model as the discriminant
functionfvl

:

fvl
(X) =

n∑
i=1

vl,iK(X,Xi) l = 1, . . . ,K,

wherevl = (vl,1, . . . , vl,n)
⊤ ∈ Rn are parameters corre-

sponding to speakerl andK(X,X′) is a kernel function.
We employ maximum likelihood estimation for learn-

ing the parameterV. The negative log-likelihood function
P log(V;Z) for the kernel logistic regression model is given
by

P log(V;Z) = −
n∑

i=1

logP (yi |Xi; V),

whereK = [K(Xi,Xj)]
n
i,j=1 is the kernel Gram matrix.

P log(V;Z) is a convex function with respect toV and there-
fore its unique minimizer can be obtained using, e.g., the
Newton method [6].

2.2. Mean Operator Sequence Kernel [4]

The performance of KLR depends on the choice of the kernel
function. In this paper, we use themean operator sequence
kernel(MOSK) [4] as the kernel function since it allows us to
handle feature sequences of different length. For sequences
of d-dimensional feature vectors of lengthN andN ′,

X = [x1, . . . ,xN ] ∈ Rd×N ,

X′ = [x′
1, . . . ,x

′
N ′ ] ∈ Rd×N ′

,

MOSK is defined as

K(X,X′) =
1

N

N∑
p=1

ϕ(xp)
⊤ 1

N ′

N ′∑
p′=1

ϕ(x′
p′),

=
1

NN ′

N∑
p=1

N ′∑
p′=1

k(xp,x
′
p′),

where
k(x,x′) = ϕ(x)⊤ϕ(x′)

is a ‘base’ vector kernel function.
MOSK requiresNN ′ vector kernel computations for cal-

culating the similarity between utterancesX andX′. There-
fore, the MOSK computation is not suited for real-time appli-
cation whenNN ′ is very large.

3. APPROXIMATION OF MOSK

In this section, we provide an approximation method of the
MOSK computation. Below, we focus on the Gaussian kernel
as the base kernel function:

k(x,x′) = exp

(
−∥x− x′∥2

2σ2

)
.

3.1. Approximating Mean Operator Sequence Kernel by
Parts

ForD ≪ N , let us divide the samples{x1, . . . ,xN} into D
clusters{C1, . . . , CD} such that

Ci ∩ Cj = ∅ for i ̸= j,

C1 ∪ · · · ∪ CD = {x1, . . . ,xN}.

We may use thek-means clustering algorithm for this pur-
pose. Then,1N

∑N
p=1 ϕ(xp) can be expressed as

1

N

N∑
p=1

ϕ(xp) =
1

N

{ ∑
x∈C1

ϕ(x) + · · ·+
∑
x∈CD

ϕ(x)

}
.

=
π1

N1

∑
x∈C1

ϕ(x) + · · ·+ πD

ND

∑
x∈CD

ϕ(x), (1)

whereNi is the number of samples in clusterCi andπi =
Ni/N .

If we can approximate the mean1Ni

∑
x∈Ci

ϕ(x) by a sin-
gle pointϕ(µi), the computational cost of the mean in the fea-
ture space is reduced fromO(N) to O(D). To obtain a good
approximation pointµi, we minimize the following criterion:

Ji(µi) = ∥ϕ(µi)−
1

Ni

∑
x∈Ci

ϕ(x)∥2.

This is often called thepre-imageproblem in the context of
kernel methods [2]. For the Gaussian kernel, the above crite-
rion can be written as

Ji(µi) = 1− 2

Ni

∑
x∈Ci

k(µi,x) +
1

N2
i

∑
x,x′∈Ci

k(x,x′), (2)

where we used

k(µi,µi) = exp

(
−∥µi − µi∥2

2σ2

)
= 1.



Taking the derivative of Eq.(2) with respect toµ, we have

∂Ji(µi)

∂µi
=

∂

∂µi

[
− 2

Ni

∑
x∈Ci

exp

(
−∥µi − x∥2

2σ2

)]

=
1

σ2Ni

∑
x∈Ci

exp

(
−∥µi − x∥2

2σ2

)
(µi − x). (3)

Equating Eq.(3) to zero, we have:

µ̂i =

∑
x∈Ci

exp
(
−∥µi−x∥2

2σ2

)
x∑

x′∈Ci
exp

(
−∥µi−x′∥2

2σ2

) . (4)

We use Eq.(4) as a re-estimation formula, i.e.,µ̂i is updated
by Eq.(4) withµi in the right-hand side replaced by the cur-
rent estimatêµi and this is repeated until convergence.

Then Eq.(1) yields

1

N

N∑
p=1

ϕ(xp) ≈
D∑
i=1

πiϕ(µ̂i). (5)

Based on Eq.(5), MOSK can be approximated by

K(X,X′) ≈
D∑
i=1

πiϕ(µ̂i)
⊤

D′∑
i′=1

π′
i′ϕ(µ̂i′)

=
D∑
i=1

D′∑
i′=1

πiπ
′
i′k(µ̂i, µ̂i′). (6)

Following the k-means clustering algorithm, we call the
proposed method thek-means operator sequence kernel(k-
MOSK). The number of vectorial kernel computations in the
original MOSK isNN ′, while that ink-MOSK isDD′. Thus
k-MOSK would be computationally much more efficient than
MOSK given thatD andD′ are much smaller thanN and
N ′. It is clear thatk-MOSK satisfies positive definiteness;
thus it is a valid kernel function.

The computation of thek-means clustering algorithm for
every utterance in the test phase is expensive. So we compute
the kernel between a training sampleX and a test sampleX′ =
{x′

1, . . . , x
′
N ′} as

K(X,X′) =
1

N ′

D∑
i=1

N ′∑
p=1

πik(µ̂i,x
′
p). (7)

4. EXPERIMENTS

In this section, we compare the performance of MOSK and
k-MOSK with different numbers of clustersD in a speaker
identification task.

Table 1. Training sentences and test words (in Japanese, writ-
ten using the Hepburn system of Romanization).

Contents
Training 1. seno takasawa hyakunanajusseNchi
sentences: hodode mega ookiku yaya futotteiru

2. oogoeo dashisugite kasuregoeni natte
shimau

3. tashizaN hikizaNwa dekinakutemo
eha kakeru

Testing 1. mouichido
words: 2. torikaeshi

3. teisei
4. horyuu
5. shoukai

4.1. System and Data Acquisition

The data for training and testing were collected from 10 male
speakers, where each speaker uttered several different words
as listed in Table 1.

The duration of an utterance for each training sentence
was approximately four seconds. Thus, the total duration of
utterances over three training sentences was approximately 12
seconds per speaker. For testing purposes, we use utterances
of 5 words recorded in three sessions over six months with no
time overlap to the training session. Thus the total number of
test words was 150 (10 speakers× 5 words× 3 sessions).

A feature vector of 26 dimensions, consisting of 12
MFCCs, normalized log energy, and their first derivatives, is
derived once every 10ms over a 25.6ms Hamming-windowed
speech segment. We divide each training utterance into
300ms disjoint segments, each of which corresponds to a set
of features of size26× 30. On the other hand, for testing, we
use the whole utterance of each word consisting of approxi-
mately 1000ms duration for computing MOSK andk-MOSK
since each word is treated as a single test sample.

4.2. Results

We evaluate the proposedk-MOSK with the several different
numbers of clustersD. The Gaussian widthσ in the base
Gaussian kernel is chosen from

{8, 10, 12, 14, 16}

by 10-fold cross-validation(CV). In our preliminary exper-
iments, we observed that the 10-fold CV scores tend to be
heavily affected by the random split of the training samples.
We conjecture that this is due to non-i.i.d. nature of the MFCC
features, which is different from the theoretical assumptions
of CV. In order to obtain reliable experimental results, we re-
peat the CV procedure50 times with different random data
splits and use the average score for model selection.
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Fig. 1. Speaker identification rates obtained using 30, 15, 10,
and 5 clusters, with selected kernel widths of 12, 14, 14, and
16, respectively.
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Fig. 2. The normalized computation time of MOSK andk-
MOSK in training and testing using a standard personal com-
puter with QuadCore 2.0GHz processor and 2GB memory.

Figure 1 depicts the speaker identification rates for the
test words using MOSK andk-MOSK with different num-
bers of clustersD. In Figure 2, we plot the computation time
of MOSK andk-MOSK in training and testing using a stan-
dard personal computer with a QuadCore 2.0GHz processor
and 2GB memory. The computation time for MOSK is nor-
malized to one. These results demonstrate thatk-MOSK is
computationally more efficient than the original MOSK with
mild degradation in identification accuracy.

Based onk-MOSK, we have developed a real-time kernel-
based speaker identification system using a Virtual Studio
Technology (VST) plugin (see Figure 3). A demo movie is
available athttp://dsp.syuriken.jp/demo/sid.html.

5. CONCLUSION

The mean operator sequence kernel (MOSK) is a useful ker-
nel function in speaker identification, but tends to be com-
putationally inefficient. In this paper, we provided an ap-
proximation scheme based on the pre-image in a reproduc-

Fig. 3. Five-speaker identification system implemented with
the VST plugin, where OctoMag is the waveplayer and the
SID system is the kernel-based speaker identification module.
Each LED lights when the corresponding speaker is speaking.

ing kernel Hilbert space. Through numerical experiments, the
proposed method was shown to be useful in text-independent
speaker identification when combined with kernel logistic re-
gression and cross validation. In the future, we plan to im-
plement the proposed speaker identification system in small
devices such as digital signal processors (DSP) for robotics,
conference systems, and human-computer interfaces.
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