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Abstract

Traditionally, popular synonym acquisition methods are based on the distributional
hypothesis, and a metric such as Jaccard coefficients is used to evaluate the similarity
between the contexts of words to obtain synonyms for a query. On the other hand,
when one tries to compile and clean a thesaurus, one often already has a modest
number of synonym relations at hand. Could something be done with a half built
thesaurus alone? We propose the use of spectral methods and discuss their relation
to other network-based algorithms in natural language processing (NLP), such as
PageRank and Bootstrapping. Since compiling a thesaurus is very laborious, we
believe that adding the proposed method to the toolkit of thesaurus constructors
would significantly ease the pain in accomplishing the task.
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1 Introduction

Since the usage of thesauri is known to improve the performance of various tasks in natural
language processing (NLP) [1] and information retrieval (IR) [2, 3], they are regarded as
one of the most important resources in these fields. However, thesauri are one of the most
laborious resources to create and maintain.

Imagine you are constructing a thesaurus and and you have just created a thesaurus
of a modest size. As we build thesauri from a scratch, all thesauri are rather small and
poorly designed at some point of their development. You wonder what other synonyms are
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missing from the thesaurus, and you would like a system that suggests you a next synonym
candidate you should consider adding to the thesaurus. While the traditional methods
for synonym acquisition collects statistics from a large corpus and compare contexts of
words for similarity, they do not use the thesaurus that you just compiled. What if you
follow synonym relations? Given a thesaurus entry, you may find two words that are
synonymous with the entry. Then maybe these words are likely to be synonymous to
each other as well. In the situation such as above, it is not clear what path you should
follow to find a synonym candidate. If you have enough entries in the thesaurus, it may
be better to observe the network of synonyms, where a node represents a word and an
edge is a synonym relation, and guess missing links in the network. While there are
studies on graph clustering involving synonyms, to the best of the authors’ knowledge,
there has been no research on thesaurus expansion based on link analysis of synonym
networks. On the other hand, if the network is not dense enough to suggest a synonym
candidate, it may be better to use more traditional synonym acquisition methods based
on the distributional hypothesis.

The objective of this paper is to explore the trade-off between network-based distance
measures to more traditional corpus-based synonym acquisition measures, and shed a
light on the conditions in which one is superior to the other. Our contribution is as
follows. First, we demonstrate that Graph Laplacian Embedding (GLE), a network based
method, performs quite well in assigning true synonym candidates a coordinate that is
close to that of the synonymous query, solely using the existing synonym network that
we intend to expand. This is surprising, as two synonyms of a word are not generally
synonymous to each other. To compare GLE with corpus based methods, we then vary the
density of the existing synonymous connection from the query words to the rest of words
in the network, and see how the performance of a network based method deteriorates as
the graph gets sparser and less informative. Even then, we find that GLE works better
than corpus based method until two thirds of connections are removed. This shows the
effectiveness of utilizing existing synonymous network as we expand a thesaurus. At
the same time, we discuss a number of network-based algorithms for NLP, and how the
proposed spectral methods provide a unified view. Specifically, we advocate the use of
non-principal eigenvectors of a transition matrix and give the interpretations of these
vectors.

The remainder of this paper is organized as follows: in Section 2, we review related
work on synonym acquisition and network-based methods in NLP. In Section 3, we discuss
the baseline and the spectral methods. We then review traditional corpus-based synonym
acquisition methods in Section 4. The experimental settings are described in Section 5.
Finally in Section 6, we discuss the results and conclude in Section 7.

2 Related Work

The topic of lexical similarity enjoys a long history of research; some of them are based
on dictionaries such as WordNet [4, 5], some of them on similarity/distance metrics and
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contextual features of a word [6, 7]. Although both approaches yield lexical similarity,
synonym acquisition is typically done without a dictionary, since the objective of syn-
onym acquisition is to construct or expand a thesaurus in a domain where such language
resources do not exist.

To acquire synonyms without dictionaries, methods usually assume the distributional
hypothesis [8] which states that semantically similar words share similar contexts. Based
on this hypothesis, a synonym acquisition method roughly implements the following pro-
cedure. First, given a target word, we extract useful features from the contexts of the
target. Features often include surrounding words or dependency structure. Second, to
evaluate the similarity of words, we choose a similarity/distance metric, and calculate the
similarity/distance between the contexts of two given words. Many studies [9, 10, 11, 12]
investigated a variety of distance and similarity metrics on synonym acquisition perfor-
mance. Among the ones considered in the literature, the examples of metrics known for
higher performance in synonym acquisition include cosine similarity, Jaccard coefficient
and vector-based Jaccard coefficient. Another notable metric is skew divergence, a metric
based on a Kullback-Leibler divergence. While not a synonym acquisition, other notable
related research include [13], who extended WordNet hyponym-hypernym relations.

As our proposed method is based on the eigenvectors of the graph Laplacian or transi-
tion matrix, we list a few applications of eigenvectors in NLP as well. Some applications of
eigenvectors are explicit in the form of PageRank. PageRank [14] is based on the power
method, an iterative algorithm for computing the principal eigenvector of a transition
matrix. It finds a number of applications, such as word sense disambiguation [15] and
automatic extractive summarization [16].

While there are many applications of the principal eigenvector, applications of the
non-principal eigenvectors of a transition matrix are few and far in between, with the
exception of [17]. As they are clearly useful, we believe they warrant more applications.
In our experiments, we show that the number of eigenvectors affects the performance of
the system.

3 Network-based Methods

We introduce two network-based methods in this section. In the first subsection, we
introduce Squared Affinity Matrix (SAM), which forms the baseline. Next we explain
Graph Laplacian Embedding (GLE) in the second subsection and provide a unified view
of graph structure defined by the graph Laplacian and transition matrix. As we advocate
using non-principal eigenvectors of a transition matrix, we state what they mean in detail.

The following is the notation common to all network-based models. Let n be the
number of words we are considering, and each word xi is represented by a vector xi where
i ranges from 1 to n. This includes the words in the thesaurus constructed so far and
other words under consideration for inclusion to the thesaurus. The set of words in an
arbitrary feature space are represented as a weighted undirected graph G = (V,E) where
the nodes xi, xj ∈ V of the graph are words, and an edge ei,j ∈ E is formed between
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every synonymous pair of words. Also, let W be an n by n sample-sample affinity matrix.
This symmetric matrix represents the synonym relations in the thesaurus. If the words
xi, xj are known to be synonymous so far, then Wi,j = 1. Otherwise Wi,j = 0. Note
that both network-based methods are unsupervised. They simply define a distance over
nodes in the network; they are not at all extensible to words outside the thesaurus, and
no supervised learning takes place.

Squared Affinity Matrix and Cubed Affinity Matrix

A simple method for predicting is to compute Y = WW , and find words xi, xj such that
Yi,j is non-zero. This is like saying my friend’s friend is my friend; two words that share
a synonym is predicted to be synonymous with each other. As the elements of W are
either zero or one, we initially treated the addition operator defined on the elements to
be a binary OR operation. Unfortunately, this operation does not take accounts of the
number of friends. In order to take accounts of the degree of friendship, we instead use
the ordinary addition defined over real number and normalize the resulting figure to be
between 0 and 1.

The computational complexity and required storage size of this approach in its naive
implementation is O(n3) and O(n2), respectively. However, since W is sparse, its compu-
tational cost and memory space is much less in practice. We also consider Cubed Affinity
Matrix (CAM) by computing Y = WWW . Once we obtain Y , given a query i, we sort
the value Yi,j for each candidate j and evaluate the ranked list for synonym retrieval
performance.

Graph Laplacian Embedding (GLE)

The next approach we take is based on Graph Laplacian Embedding (GLE) [18, 19].
In this approach, we aim to reduce the dimension d of xi to r (1 ≤ r ≤ d), such that

the respective projections of xi and xj, denoted by ϕ(xi) and ϕ(xj), are close to each
other if Wi,j is 1. The objective function is stated as follows:

min
ϕ(x1),...,ϕ(xn)

1

2

n∑
i,j=1

Wi,j∥ϕ(xi)− ϕ(xj)∥2,

which can be equivalently expressed after a few lines of calculation as

min
Φ=(ϕ(x1),...,ϕ(xn))

trace(ΦLΦ⊤),

where Φ = (ϕ(x1), . . . , ϕ(xn)) is an r by n matrix with i-th column representing the
projected vector ϕ(xi). L is an n by n graph Laplacian matrix, L = D −W, and D is an
n by n diagonal matrix with i-th diagonal element

∑n
j=1Wi,j.

Under constraints that ΦDΦ⊤ = I (to avoid rank degeneracy; I denotes the identity
matrix) and ΦD1 = 0 (to remove a trivial solution; 1 denotes the vector with all ones),
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a solution of the above minimization problem can be analytically obtained as ϕ(xi) =
(ψ1(xi), . . . , ψr(xi))

⊤, where ψk(xi) is the i-th element of the k-th eigenvector Ψk and
Ψ1, . . . ,Ψr (∈ Rn) are r eigenvectors associated with the r smallest positive eigenvalues
(λ) of the following n-dimensional sparse generalized eigenproblem:

LΨ = λDΨ. (1)

Finally, given a query i for each candidate j, we compute the Euclidean distance be-
tween ϕ(xi) and ϕ(xj) and evaluate the ranked list of the candidates for synonym retrieval
performance. Given a fixed r, the computational complexity and memory requirement of
the algorithm in its naive implementation is both O(n2). However, since L is sparse, its
computational cost and required memory space is much less in practice (e.g., ARPACK).
Thus GLE is scalable to large datasets both in terms of computation time and storage
space and therefore would be suitable for the current task of synonym prediction.

In the next two subsections, we show the equivalence of GLE to other methods (Nor-
malized Cuts, Random Walk), to provide the unifying view of the graph based NLP
methods.

GLE and Normalized Cuts

To provide insights into what ϕ(xi) represents, we explain the relationship between the
eigenvector Ψ1 (which is often called the Fiedler vector in spectral graph theory) and
clustering based on normalized cuts. Suppose you would like to bi-partition a connected
graph into two sub-graphs A and B by removing the edges between them. The total
weight of edges to be removed is called cut: cut(A,B) =

∑
i∈A,j∈BWi,j.

Although clustering based on the minimum cut of a graph often produces reasonable
partitions, this clustering criterion tends to cut a small set of edges to isolated nodes
in the graph. To balance the size of partitions, Shi and Malik [20] have proposed the
following normalized cut criterion.

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
,

where assoc(A, V ) =
∑

i∈A,j∈V Wi,j is the total weight of nodes in A to all nodes in the
graph. After a little algebra, one arrives at

min
Ψ

Ψ⊤LΨ

Ψ⊤DΨ

subject to Ψ ∈ {1,−b}n, b =
∑

i∈A Di,i∑
j∈B Dj,j

and Ψ⊤D1 = 0. Once we relax Ψ to take on

real values, the objective is reduced to (1). Since a graph Laplacian L is known to have
zero as its minimum eigenvalue, the second minor eigenvector Ψ1 corresponds to the
relaxed solution for the partition assignments by normalized cuts. Thus graph Laplacian
embedding ϕ(xi) has this soft partition assignments in its first coordinate. Note that
other eigenvectors besides the second minor eigenvector could also be useful—after all,
the third minor eigenvector and so on also reduce the objective, and they could represent
the second best bi-partitioning, and so forth.
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GLE and Random Walk

We may also view the generalized eigendecomposition problem (1) in terms of random
walk. By normalizing the matrix W , we obtain the stochastic matrix P = D−1W whose
every row sums to 1. This matrix can be interpreted as defining a random walk on the
graph, and thus the transition probability from the vertex xi to xj in one time step:

Pr{v(t+ 1) = xj|v(t) = xi} = Pi,j,

where v(t) indicates the location of vertex at time t. Next we relate this random walk
view to the graph Laplacian. The solutions to the spectral problem

PΨ = λΨ (2)

corresponds to (1) via the following proposition [21] : I
¯
f (λ,Ψ) is a solution of (2), then

((1 − λ),Ψ) is a solution of (1). This result allows us to analyze the graph Laplacian
embedding using the eigenvectors of P [22]. Let p(t, xj|xi) be the probability of random
walk landing at a vertex xj at time t given a starting vertex xi at time t = 0. If the
graph is connected, P is an irreducible and aperiodic Markov chain. It has the largest
eigenvalue equal to 1 and the remaining eigenvalues are strictly smaller than 1 in absolute
value. Then, regardless of the starting position xi, there is a stationary distribution ϕ0(xj)
such that

lim
t→∞

p(t, xj|xi) =
Dj,j∑
kDk,k

= ϕ0(xj).

ϕ0(xj) corresponds to the eigenvector associated with the largest eigenvalue (equal to 1)
of P . We now consider the following distance between nodes xi and xj at time t.

dist2t (xi, xj)=
n∑

k=1

(p(t, xk|xj)− p(t, xk|xi))2w(xk)

with specific choice of w(xk) = 1/ϕ0(xk). This choice allows us to put more weights on
low density points. Nadler et al. [22] call this diffusion distance. They also defined the
diffusion map at time t, ϕt(xi) = ((1 − λ1)

tψ1(xi), . . . , (1 − λr)
tψr(xi)) and showed that

the diffusion distance is equal to the Euclidean distance in the diffusion map space with
all (n− 1) eigenvectors.

dist2t (xi, xj) =
n−1∑
k=1

(1− λk)
2t(ψk(xi)− ψk(xj))

2

= ∥ϕt(xi)− ϕt(xj)∥2.

GLE is equivalent to the diffusion map at time t = 0. This is what we use in our
experiments.

The analysis also shows the relation of our method (GLE) to PageRank. While PageR-
ank [14] computes the principal eigenvector of a transition matrix, we mainly make use
of non-principal eigenvectors, which corresponds to the diffusion distance.
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4 Corpus-based Methods

In this section, we describe the corpus-based synonym acquisition methods based on the
distributional hypothesis, explaining the preprocessing of data and features, as well as
various metrics we used to find the lexical similarity between target words.

4.1 Features

Since effectiveness of grammatical dependencies for synonym acquisition is well-known
[23, 7], we use a syntactic parser called RASP Toolkit 2 (RASP2) [24] to extract contextual
features for synonym acquisition. RASP2 analyzes the sentence and outputs the extracted
dependency structure as n-ary grammatical relations [25]. After we identify contextual
features of a word using the parser, for each pair of word x and contextual feature φ, we
compute the raw co-occurrence count N(x, φ) from one whole year of New York Times
articles (1997)1. New York Times articles (1997) consist of approximately 202 thousand
documents and 131 million words.

While one whole news paper corpus may yield more than 100,000 of contextual feature
types, many of them just occurs once or twice. Since a large number of dimensions render
similarity calculation impractical, we apply simple frequency cutoff to reduce the number
of contextual features and synonym candidates we consider. Specifically, we remove any
word x such that

∑
φN(x, φ) < 20 and any feature φ such that

∑
xN(x, φ) < 20 from the

co-occurrence data. Once we apply this cut-off, we are left with 27,688 word types and
83,029 features. To assign weights to the features, we use pointwise mutual information:
PMI(x, φ) = log(P (x, φ)/(P (x)P (φ))). Then the weight of a feature is: wgt(x, φ) =
max(PMI(x, φ), 0). As negative values are reported to lower the performance [10], we
bound PMI by 0.

4.2 Similarity and Distance Metrics

As a baseline, we compare three similarity metrics (cosine similarity, Jaccard coefficient,
vector-based Jaccard coefficient (Jaccardv)) and two distance metrics (Jensen-Shannon
divergence (JS), skew divergence (SD99)).

Before we describe the metrics, we define some notations: Let xi be the feature vector
corresponding to word xi, i.e., xi = [wgt(xi, φ1) ... wgt(xi, φd)]

⊤, where φj is a contextual
feature. Let F (x) be the set of contextual features that co-occur with word x, that is,
F (x) = {φ|N(x, φ) > 0}.

Cosine Similarity:
x⊤
1 x2

||x1|| · ||x2||
.

1New York Times we use is a portion of the English Gigaword corpus obtainable from Linguistic Data
Consortium. http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2003T05
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Jaccard Coefficient:∑
φ∈F (x1)∩F (x2)

min(wgt(x1, φ),wgt(x2, φ))∑
φ∈F (x1)∪F (x2)

max(wgt(x1, φ),wgt(x2, φ))
.

Vector-based Jaccard Coefficient (Jaccardv):

x⊤
1 x2

||x1||+ ||x2|| − x⊤
1 x2

.

Jensen-Shannon Divergence (JS):

1

2
{KL(p1||m) +KL(p2||m)}.

To define Jensen-Shannon divergence, we need to map a word xi to a probability distribu-
tion: pi(φ) = N(xi, φ)/

∑
φ′ N(xi, φ

′) and m = (p1 + p2)/2. Jensen-Shannon divergence
(JS) is a symmetric version of the Kullback-Leibler (KL) divergence which measures the
distance between two probability distributions. Although the KL divergence suffers from
the so-called zero-frequency problem, this version naturally avoids it.

Skew Divergence (SD99):

KL(p1||αp2 + (1− α)p1).

The skew divergence is an adaptation of KL divergence, which avoids the zero-
frequency problem by mixing the original distribution with the target distribution. The
parameter α is set to 0.99 in our experiments [26].

Again, given a query i for each candidate j, we compute the similarity/distance metric
between i and j. We then use the ranked list of the candidates for the evaluation.

5 Experimental Settings

To provide a good overall perspective before explaining experimental settings, we sum-
marize the two approaches in the previous section.

Corpus-based methods exploit a corpus to fill the affinity matrix W (= Y ), and it uses
only the affinity matrix by itself without a further modification. The advantage of these
methods is that the matrix is not as sparse as the affinity matrix for the network-based
methods, which contain handcrafted synonymous relations.

On the other hand, network-based methods use the handcrafted affinity matrix con-
taining known synonymous relations. As the existence of edges in such a network gives
away the answer to the queries, we assume that there are no such edges given before the
experiments, carefully constructing the training set and test set partitions. This prevents
us from simply using the affinity matrix and forces us to look at least one step further in
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Figure 1: Overlap between Test Set and Thesaurus

the affinity matrix, be it SAM, CAM, or GLE. However, being hand-made, the entries of
the affinity matrix are of much higher quality despite being sparse. This higher quality
allows us to exploit the synonymous relations to improve the performance.

We now go on to clarify how we create the affinity matrix for the respective approaches.

5.1 Thesaurus and the Test Set

As a starting point of thesaurus construction, we combine a portion of three thesauri into
one synonym network. We also choose the Longman Defining Vocabulary (LDV) as a set
of query words whose synonyms are known.

For each word in LDV, we consult three existing thesauri: Roget’s Thesaurus, Collins
COBUILD Thesaurus, and WordNet. We look up each LDV as a noun to obtain the union
of synonyms. After we remove words marked “idiom”, “informal” or “slang” and phrases
comprised of two or more words, the union is used as the reference set of query words. We
omit the LDV word for which we find no noun synonyms in any of the reference thesauri.
From the remaining 771 LDV words, we select 760 query words that had at least one
synonym in the corpus.

We consider the training set for the network-based methods to be a bipartite graph,
where in one partition L, there are 760 nodes (LDV entries in the thesaurus) and in the
other partition R, 5736 nodes (words known to be synonymous to the entries). Between
these partitions, there are 18,028 edges that represent synonymous relations. Thus, the
affinity matrix for network-based methods is very sparse, with only 18,028 entries filled
in it. To construct the test set outside LDV, we pseudo-randomly select 100 words with 5
or more synonyms and treat them as test queries, Q. Of these, we find 84 queries be also
in R. As these queries are in R, they are adjacent to some words in L. We find that we
have 318 edges between 84 words in Q ∩ R and 760 words in L. Let us call them bridge
pairs. The objective is to find 1010 words synonymous with the queries in Q, with the
condition that these 1010 words being outside L. Let this set of 1010 words be S. Since



Spectral Methods for Thesaurus Construction 10

there is no overlap between S and L, the synonyms to the queries Q are not given away
by the training set.

As there are some connections between 84 test queries and 5736 candidates in the
synonym network, these words with a connection to the synonym network have a chance
of synonym identification using GLE. Other words not connected to the network can
only be retrieved using the corpus-based methods. There are 26,928 words in the corpus
outside L, all of which is a synonym candidate to a word in Q. Note that, with this setting,
words in Q are possibly synonymous with another word in Q. The relations between the
training and test set is shown in Figure 1.

As the training set for the corpus-based methods includes no handcrafted synonym
relations, the corpus-based methods are free to use all words (27,688 word types) and
associate them with features (83,029 of them) extracted from news texts. The affinity
matrix for them is induced from this information instead of pre-built thesaurus.

The performance of corpus-based methods depends solely on the quality and quantity
of news corpus; the performance of the network-based methods depends on density of
the handcrafted synonymous relations. To show the trade-off between the corpus based
methods and GLE, we randomly partition these 318 bridge pairs into 10 sets and see how
the network-based methods perform as we remove the overlap between the thesaurus and
the test set. This reduces the density of the existing synonymous connection from the
query words to the words in the corpus, and the performance of GLE deteriorates as the
graph gets sparser and less informative.

When computing GLE, we solved a simplified problem LΨ = λΨ, not (1) since the re-
sults were almost the same. In addition, we used another trick to improve the performance,
which is to normalize the embedding by the following operation: ϕ(xi) := ϕ(xi)/||ϕ(xi)||

5.2 Evaluation Measure

To evaluate we make use of Mean Average Precision, Average Rank of Last Synonym and
TOP1 [27]. Every evaluation measure considered in this section analyzes a ranked list of
synonym candidates, sorted by predicted similarity in ascending order.

The Average Precision (APR) measure evaluates the precision at every recall where it
is defined, and finds the threshold that produces the maximum precision for each of these
recall values. Average precision is the average over all of the recall values greater than 0.
In our experiments, we measure average precision on each query, and report the mean of
each query’s average precision as the final metric. A perfect prediction translates to APR
of 1.0. The lowest possible APR is 0.0.

Average Rank of Last Synonym (RKL) measures how far down the ranked list we
must go to find the last true synonym. Note that the lower the figure, the better the
system is for this evaluation measure. If a query word has N synonyms in the ranked list,
then the highest obtainable RKL value for the query word is N . RKL near 26,927 (the
number of synonym candidates, in the current setting) indicates poor performance of a
synonym acquisition system.

TOP1 measures how likely we have correct synonyms at the top of the ranked list. To
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Table 1: Comparison of Corpus-based Methods

Metric APR RKL TOP1
Euclidean 0.00044 25556.89 0.0000
Manhattan 0.00041 25697.15 0.0000
Cosine 0.06954 12100.68 0.1900
Jaccard 0.07491 12630.72 0.2700
Jaccardv 0.07293 12313.08 0.2200
JS 0.00072 25685.60 0.0000
SD99 0.04848 11920.39 0.1800

calculate TOP1 of a metric, we first score each queries as follows. Given a query and a
metric, if the word closest to the query word is a synonym, then the score is 1. If there
are ties, all of the tied cases must be synonyms of the query. Otherwise, the score is 0.
TOP1 is an average of the scores above over all queries. Its value ranges from 1.0 to 0.0.
To achieve 1.0, perfect TOP1 prediction, a synonym acquisition system must place a true
synonym at the top of the ranked list in every query.

6 Results

Table 1 shows how various corpus-based methods perform in terms of APR, RKL and
TOP1. As the figures in bold format indicate, Jaccard performed best in two evaluation
measures APR and TOP1, and SD99 performed best in RKL. We take these metrics and
compare them to the performance of network-based methods as the number of bridge
pairs is increased from 31 to 318, by the increments of 10%. The performance of network-
based methods are shown in Table 2. As we examine a larger value for the parameter of
Graph Laplacian Embedding, which is the dimension of the projected space r, the APR
kept increasing, with the largest examined r being 600. TOP1, on the other hand, peaked
between 300 and 600.

The figures for Graph Laplacian Embedding are in bold if they are above the base-
line performance provided by Jaccard and SD99. We notice that as the number of the
bridge pairs increase, around 60%, with 190 nodes in the intersection, Graph Laplacian
Embedding starts to give a clear edge over Jaccard in terms of TOP1. RKL of network-
based methods are lower than those of corpus-based ones due to the sparseness of the
affinity matrix compared to the feature vectors. As the candidate words include all words
in the corpus, many completely unreachable from the thesaurus, this is expected. For
SAM, Table 2 shows two variants: one with (OR) uses OR operation for addition, and
the other (+) uses the ordinary addition operation and rescales the resulting number to
fit between 0 and 1 afterwards. While the simple heuristics of the squared affinity matrix
(+) generally outperforms in terms of APR, the Graph Laplacian Embedding method is
clearly better than SAM in terms of RKL. On the other hand, CAM (+) which compute
Y = WWW does not perform well at all.
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Table 3: Comparison of Network-based Methods on Connected Network

Network-based SAM (+) GLE (r=600)
# connected queries
(# connected words) APR RKL TOP1 APR RKL TOP1

23 (4959) 0.228 4742 0.217 0.194 2674 0.173
39 (4975) 0.241 4468 0.256 0.224 2839 0.230
50 (4986) 0.275 4493 0.300 0.237 2865 0.260
63 (4999) 0.284 4526 0.301 0.253 2755 0.333
68 (5004) 0.324 4566 0.323 0.261 2921 0.323
72 (5008) 0.364 4391 0.333 0.292 2528 0.333
76 (5012) 0.397 4231 0.381 0.327 2294 0.421
79 (5015) 0.413 4012 0.443 0.355 2310 0.493
81 (5017) 0.429 3856 0.444 0.367 2151 0.506
84 (5020) 0.440 3721 0.500 0.375 2105 0.500

The bold font indicates that the method shows statistically significant performance
compared to the other method.

In order to remove the random effects caused by the unreachable words in the network,
we examine the performance of network-based methods using the connected portion of
the network. After all, if the network is not connected, we know that the network-
based methods are unworkable and we may opt to use corpus-based methods. Table
3 illustrates the difference between SAM (+) and GLE in this case. To evaluate the
statistical significance, we employed paired sample t-test. The bold font indicates that
SAM shows a statistically significant performance advantage in terms of APR. On the
other hand, GLE has significant advantage in terms of RKL throughout. While GLE
appears slightly better at TOP1, none of the figures were statistically significant. Notice
that when the graph is restricted to reachable nodes, the figure for RKL using GLE is
simply a half of the all connected nodes. This allows thesaurus constructor to examine
only a half entries of existing thesaurus find missing synonymous pairs.

7 Discussion

We observed that when network-based methods find synonyms for a query, they tend to
find a few of them at the same time. Perhaps due to the large number of contextual
features, Jaccard finds synonyms more evenly across queries. In addition, some words
seem to be distinctly easier for Graph Laplacian Embedding than Jaccard. For example,
for the query word “pedigree”, Graph Laplacian Embedding with 31 bridge pairs finds
6 synonyms at the top. The 6 synonyms are “parentage”, “bloodline”, “genealogy”,
“extraction”, “ancestry” and “lineage”. Jaccard finds none of them. This shows that
when synonym relations surrounding the target query word are obvious to thesaurus
constructors, but words themselves are rare, network-based methods work much better
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than Jaccard and other corpus-based synonym acquisition methods.
Another observation we made is the dismal performance of SAM when the addition

operation is a binary OR, and significantly higher performance of SAM when the addition
is over real numbers. These two observations indicate that the synonym relations tend
to form a cluster within the network, perhaps forming a dense or nearly complete sub-
graph, displaying a modular property of a network. Furthermore, Cubed Affinity Matrix
(CAM), instead of Squared Affinity Matrix, also shows a dismal performance in this
dataset. These observations indicate that the synonym relations tends to form a cluster
within the network, perhaps forming a dense or nearly complete sub-graph, displaying a
modular property of a network.

This explains the performance of GLE, which examines wider range of connections
than SAM. As GLE reaches beyond one edge, it is capable of identifying the words located
far to be synonyms, outperforming in terms of RKL. On the other hand, modularity of
the network strongly suggests that a word nearby is synonymous, and reaching farther
increases the inclusion of noises, thereby decreasing the overall performance, especially
apparent in terms of reduced APR. While SAM (Y = WW ) performs well, as we move to
CAM (Y = WWW ), it seems to quickly forget the nearby synonyms and becomes much
like a popularity vote instead of similarity one. Considering the difficulty of extending
SAM to CAM, GLE appears to be quite successful at using wider portion of the network,
reducing RKL. We postulate that this is due to the GLE’s ability to model diffusion,
keeping the essence of a similarity metric.

The thesaurus of the size we used in the experiment is modest, with less than 20,000
synonym pairs altogether. Since the study indicates perhaps only a half as much data
is required for network-based methods to be effective, they warrants an application for
those who are constructing a thesaurus. As recall is important for manual thesaurus
construction, GLE as well as SAM and the traditional corpus-based methods finds its
own place in this task.

8 Conclusion

We proposed a new approach that allows us to automatically expand existing small the-
saurus by suggesting synonym candidates for possible inclusions into the thesaurus. While
more traditional corpus-based methods use contextual features obtained from the corpus
outside the thesaurus to represent a word, to induce a similar vector representation of a
word, our proposed method uses the structure of a synonym network that the thesaurus
has.

Our experiments found that, with a modest size of an existing thesaurus, expanding it
is much easier with the proposed method based on Graph Laplacian Embedding than the
traditional synonym acquisition methods. This proves that if you can expect a reasonable
overlap between the existing synonym network and synonym candidates of the queries as
well as the bridge pairs, the proposed Graph Laplacian Embedding is the method of choice
for anyone who constructs a thesaurus and in need of a method with a high recall. We
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have also given unifying interpretations of eigenvectors to allow intuitive interpretations
of our method. Since the use of non-principal eigenvectors is still quite limited in NLP,
we hope that our exposition proves useful for many researchers.
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