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Abstract. Model-free reinforcement learning (RL) is a machine learning
approach to decision making in unknown environments. However, real-
world RL tasks often involve high-dimensional state spaces, and then
standard RL methods do not perform well. In this paper, we propose
a new feature selection framework for coping with high dimensionality.
Our proposed framework adopts conditional mutual information between
return and state-feature sequences as a feature selection criterion, allow-
ing the evaluation of implicit state-reward dependency. The conditional
mutual information is approximated by a least-squares method, which
results in a computationally efficient feature selection procedure. The
usefulness of the proposed method is demonstrated on grid-world navi-
gation problems.

1 Introduction

Optimal decision making in unknown environment is a challenging task in the
machine learning community. Reinforcement learning (RL) is a popular frame-
work for this purpose, and has been actively studied. In RL, a policy (the decision
rule of an agent) is determined so that return (the sum of discounted rewards the
agent will receive) is maximized. So far, various RL approaches such as policy
iteration [1, 2] and policy search [3–5] have been explored and demonstrated to
be promising in small- to medium-sized problems.

However, when the dimensionality of the state space is high, existing RL
approaches tends to perform poorly. Unfortunately, this critically limits the range
of applicability of RL in practice since real-world RL tasks such as robot control
often involve high-dimensional state spaces. To cope with high dimensionality of
the state space, choosing a subset of relevant features from the high-dimensional
state variables, i.e., feature selection, is highly useful.

For example, let us consider developing a security guard robot that can deal
with a variety of tasks such as navigation, patrol, and intruder detection. For this
purpose, the robot is equipped with various types of sensors such as position,
orientation, distance, vision, sound, smell, and temperature sensors. However,
when a security guard robot is engaged in a particular task such as navigation,
all the sensors may not be needed. Since sensors necessary for solving a task are



different depending on the tasks, it is not possible to choose the subset of sensors
in advance. Thus, adaptive feature selection based on currently available data
samples is indispensable in this scenario.

Various feature selection strategies have been explored so far, which can be
categorized into the wrapper and filter approaches [6]. In the wrapper approach,
features are selected depending on the subsequent learning process such as least-
squares fitting of the value function [7–9]. A supervised dimensionality reduction
method called neighborhood component analysis [10] was applied to feature se-
lection in RL [7], while the decomposition of value function approximation error
into reward prediction error and transition prediction error was utilized for fea-
ture selection in [9]. These wrapper methods would be useful for specific RL
frameworks such as policy iteration, but they may not be directly employed in
other frameworks such as policy search.

On the other hand, in the filter approach, features are selected independently
of subsequent learning processes [11, 12]. More specifically, a subset of features
is chosen in an information-theoretic way that the remaining subset of features
is statistically independent of the outcome (typically, the rewards). Such an
information-theoretic approach is versatile as preprocessing of high-dimensional
data.

A supervised dimensionality reduction method called kernel dimension re-
duction (KDR) [13] was applied to feature selection in RL [11]. Based on the
Markov property of RL problems, their method evaluates the conditional in-
dependence between the entire state features and a state subset which directly
influences rewards at the next time-step. However, since RL deals with sequen-
tial decision making problems, there can exist an implicit dependency between
state features and rewards through the process of sequential decision making.
This is illustrated using a simple example in Figure 1. A feature s(2) influences
s(1) at the next time-step which have a direct effect on rewards. Thus, features
s(1) and s(2) can be selected by KDR. However, s(3) cannot be selected by KDR
since there is no dependency between s(1) and s(3) in a single time-step, although
it actually influences rewards in two time-steps through s(2) and s(1).

The implicit dependency in the sequential process can be detected in prin-
ciple by recursively evaluating the dependency between states and rewards [12].
However, such a recursive approach is computationally demanding particularly
when there exist cascaded dependency relations. For example, in Figure 1, two
recursions are needed to find the relevant features {s(1), s(2), s(3)}. First, s(2) is
selected due to its dependency to s(1), and then s(3) is chosen because of its de-
pendency to s(2). In addition, an assumption that the model of factored Markov
decision processes is available as a dynamic Baysian network was imposed in
[12], which may not be realistic.

In order to overcome the drawbacks of existing approaches, we introduce
a new framework of filter-type feature selection for RL. More specifically, we
propose to directly evaluate the independence between return and state-feature
sequences using the conditional mutual information [14]. In order to efficiently
approximate the conditional mutual information from samples, we utilize a least-
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Fig. 1. An example of implicit dependency between state features and rewards. Each
row represents the time-step (n, n + 1, n + 2, . . .), and columns represent reward(r)
and state features (s(1), s(2), s(3), s(4)). Arrows indicate the dependency between two

variables; for example, an arrow from s
(2)
n to s

(1)
n+1 exists if s

(1)
n+1 depends on s

(2)
n . In

this example, a state feature s(3) does not have direct influence on the next reward rn,
but has indirect influence on rn+2 through s

(2)
n+1 and s

(1)
n+2.

squares (un-conditional) mutual information estimator which was proved to pos-
sess the optimal convergence rate [15].

The rest of this paper is organized as follows. In Section 2, we mathematically
formulate the problem of RL. In Section 3, we describe our proposed feature se-
lection procedure. Experimental results are reported in Section 4, demonstrating
the effectiveness of the proposed method in grid-world navigation. Finally, we
conclude in Section 5 by summarizing our contributions and describing future
work.

2 Formulation of RL

In this section, we formulate the RL problem as a Markov decision process
(MDP).

2.1 Markov Decision Process

Let us consider an MDP specified by (S,A, pT, pI, R, γ), where S (∈ Rv) is a set
of v-dimensional states, A (∈ R) is a set of one-dimensional actions, pT(s

′|s, a)
(≥ 0) is the transition probability-density from state s to next state s′ when
action a is taken, pI(s) (≥ 0) is the probability density of initial states, R(s, a, s′)
(∈ R) is an immediate reward for transition from s to s′ by taking action a,
and γ (∈ (0, 1]) is the discount factor for future rewards. By following initial
probability pI, transition probability pT, and policy π, an MDP generates a
sequence of states, actions, and rewards as

s1, a1, r1, s2, a2, r2, s3, a3, r3, . . . ,



where the subscript indicates the time step. Let pπ(s|n) be the probability den-
sity of state s at time step n:

pπ(s|n = 1) = pI(s),

pπ(s|n = 2) =

∫∫
pI(s1)π(a1|s1)pT(s|s1, a1)ds1da1,

pπ(s|n = 3) =

∫∫∫∫
pI(s1)π(a1|s1)pT(s2|s1, a1)

× π(a2|s2)pT(s|s2, a2)ds1da1ds2da2,
...

2.2 Optimal Policy

Let ηn (∈ R) be the return which is the sum of discounted rewards the agent
will receive when starting from the n-th time step:

ηn ≡
∞∑

n′=n

γn
′−nR(sn′ , an′ , sn′+1).

Let pπ(η|s) be the probability density of return η when starting from a state s
and then following a policy π. Let V π(s) be the expected return:

V π(s) ≡
∫
ηpπ(η|s)dη.

The goal of RL is to learn the optimal policy π∗ that maximizes the expected
return V π(s):

π∗(·|s) ≡ argmax
π(·|s)

V π(s). (1)

2.3 Data Samples

We suppose that a dataset consisting of M episodes of N steps is available. The
agent initially starts from a randomly selected state s1 following the initial-state
probability density pI(s), and chooses an action based on a policy π(an|sn). Then
the agent makes a transition following pT(sn+1|sn, an), and receives a reward rn
(= R(sn, an, sn+1)). This is repeated for N steps—thus the training data Dπ is
expressed as

Dπ ≡ {dπn}Nn=1, (2)

where each time-step data dπn consists of M sets of 3-tuple elements observed at
each time step n as

dπn ≡ {(sπm,n, a
π
m,n, r

π
m,n)}Mm=1. (3)

Let ηπm,n be the return in the m-th episode defined by

ηπm,n ≡
N∑

n′=n

γn
′−nrπm,n′ . (4)
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Fig. 2. An example of dependency between state features and returns. State features
s(1), s(2) and s(3) influence returns at the same time-step, e.g., from s

(3)
n to ηn.

3 Feature Selection via Conditional Mutual Information

In this section, we describe our proposed feature selection method.

Let ηn and sn = (s
(1)
n , s

(2)
n , . . . , s

(v)
n ) be the return and the state features at

the n-th time step. For u (≤ v) being the number of features we want to select,

our goal is to find a ‘subset’ zn = (z
(1)
n , z

(2)
n , . . . , z

(u)
n )⊤ of the state features sn

such that
ηn ⊥ sn | zn, ∀n = 1, 2, . . . , N. (5)

This means that, for all time steps, the return ηn is conditionally independent
of the entire state features sn given the subset zn.

The criterion (5) allows us to capture an indirect dependency from state
features to rewards r since returns η contain all subsequent rewards. This is
illustrated using a simple example in Figure 2. A state feature s(3) does not
influence a reward r at the next time-step, but it does affect a return η at the
same time-step since the return is the sum of discounted subsequent rewards,
i.e., ηn = rn + γrn+1 + γ2rn+2 + · · · .

3.1 Conditional Mutual Information

Mutual information (MI) is a popular measure of independence between random
variables [14]. Here, we use a variant of MI based on the squared-loss [15] defined
by

Iπ(ηn; zn) ≡
∫∫ (

pπ(η, z|n)
pπ(η|n)pπ(z|n)

− 1

)2

pπ(η|n)pπ(z|n)dηdz, (6)

where Iπ(ηn; zn) denotes MI between return ηn and features zn at the n-th time
step when following a policy π. pπ(η, z|n) denotes the joint density of η and z
at the n-th time step, and pπ(η|n) and pπ(z|n) denote the marginal densities
of return η and features z at the n-th time step, respectively. Iπ(ηn; zn) is non-
negative and is equal to zero if and only if

pπ(η, z|n) = pπ(η|n)pπ(z|n),
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Fig. 3. An example of dependency between returns and elements of states. State ele-
ments s(1), s(2), and s(3) directly influence the return η.

i.e., η and z are conditionally independent of each other given n.
We propose to use conditional MI Iπ(η; z|n) as our feature selection criterion,

which is defined as the average of MI Iπ(ηn; zn) over time steps n = 1, 2, . . . , N
[14]:

Iπ(η; z|n) = 1

N

N∑
n=1

Iπ(ηn; zn).

The conditional MI between returns and state features can be seen as a mea-
sure of dependency between returns and state-feature sequences as illustrated in
Figure 3.

The rationale behind the use of conditional MI for feature selection relies on
the following lemma (its proof is provided in Appendix.

Lemma 1.

Iπ(η; s|n)− Iπ(η; z|n) = 1

N

N∑
n=1

∫∫
pπ(η, z|n)2

pπ(η|n)pπ(z|n)2

×
(

pπ(η, s|z, n)
pπ(s|z, n)pπ(η|z, n)

− 1

)2

pπ(s|n)dsdη

≥ 0.

This lemma implies that Iπ(η; s|n) ≥ Iπ(η; z|n) and the equality holds if and
only if

pπ(η, s|z, n) = pπ(η|z, n)pπ(s|z, n), ∀n = 1, 2, . . . , N.

This is equivalent to Eq.(5), and thus Eq.(5) can be attained by maximizing
Iπ(η; z|n) with respect to z.



3.2 Estimation of Conditional Mutual Information

Since Iπ(η; z|n) is not accessible, it needs to be estimated from data sam-
ples. Here, we employ a recently-proposed MI estimator called least-squares MI
(LSMI) [15] for approximating the conditional MI Iπ(η; z|n). A MATLAB R⃝ im-
plementation of LSMI is available from

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LSMI/

The basic idea of LSMI is to estimate the ratio of probability densities

wn(η, z) ≡ pπ(η,z|n)
pπ(η|n)pπ(z|n) contained in MI without going through density esti-

mation of pπ(η, z|n), pπ(η|n), and pπ(z|n). Since density estimation is known
to be a hard task [16], avoiding density estimation and directly estimating their
ratio would be preferable [17, 18].

The density ratio function wn(η, z) is approximated by the following linear
model:

ŵn(η, z) ≡ α⊤
nψn(η, z),

where αn = (αn,1, αn,2, . . . , αn,B)
⊤ are parameters to be learned, B is the num-

ber of parameters, and

ψn(η, z) = (ψn,1(η,z), ψn,2(η, z), . . . , ψn,B(η, z))
⊤

are basis functions such that

ψn,b(η, z) ≥ 0, ∀b, ∀(η, z).

The parameter αn is determined so that the following squared error J0 is mini-
mized:

J0(αn) ≡
1

2

∫∫
(ŵn(η, z)− wn(η, z))

2
pπ(η|n)pπ(z|n)dηdz

=
1

2

∫∫
ŵ2

n(η,z)p
π(η|n)pπ(z|n)dηdz

−
∫∫

ŵn(η, z)p
π(η,z|n)dηdz + C,

where

C ≡ 1

2

∫∫
w2

n(η, z)p
π(η,z|n)dηdz

is a constant and thus can be safely ignored. Let us denote the first two terms
by J :

J(αn) ≡ J0(αn)− C

=
1

2
α⊤

nHnαn − h⊤
nαn, (7)



where

Hn ≡
∫∫

ψn(η, z)ψn(η, z)
⊤pπ(η|n)pπ(z|n)dηdz,

hn ≡
∫∫

ψn(η, z)p
π(η, z|n)dηdz.

The expectations in Hn and hn are approximated by the empirical averages
using a one-step data sample dπn (see Eq.(3)).

Ĥn ≡ 1

M2

M∑
m,m′=1

ψn(ηm,n, zm′,n)ψn(ηm,n, zm′,n)
⊤,

ĥn ≡ 1

M

M∑
m=1

ψn(ηm,n, zm,n).

Then the following optimization problem is obtained:

α̂n ≡ argmin
αn∈RB

[
1

2
α⊤

n Ĥnαn − ĥ
⊤
nαn +

λ

2
α⊤

nαn

]
, (8)

where a regularization term λα⊤
nαn/2 is included. Differentiating the above

objective function with respect to αn and equating it to zero, the solution can
be obtained analytically as

α̂n = (Ĥn + λIB)
−1ĥn,

where IB denotes the B-dimensional identity matrix.
Using a density ratio estimator α̂⊤

nψn(η, z), we can construct a conditional
MI estimator between return and state-feature sequences as

Îπ(η; z|n) ≡ 1

N

N∑
n=1

Îπ(ηn; zn), (9)

where Îπ(ηn; zn) is an MI estimator between returns and state features at the
n-th time step given as

Îπ(ηn; zn) ≡
1

M2

M∑
m,m′=1

(
α̂⊤

nψn(ηm,n,zm′,n)− 1
)2
. (10)

3.3 Feature Selection Algorithm

Finally, we describe how features are selected based on the conditional MI esti-
mator Îπ(η; z|n).

Forward selection and backward elimination would be two major strategies
of feature selection [6, 19]. Here we employ forward selection since it was com-
putationally more efficient and performed well in our preliminary experiments.
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Algorithm 1: ForwardSelection(u,Dπ)

//u : Number of features we want to choose
//Dπ : Data samples collected following π
//v : Number of all features
//I : Remaining feature indices
//J : Chosen feature indices
I ← {1, 2, . . . , v}
J ← {}
for u′ = 1, 2, . . . , u
// Find the feature that maximizes the conditional mutual information

k ← argmax
i∈I

∑N
n=1 LSMI(dπn, {s

(j)
n }j∈J ∪ s

(i)
n )

I ← I\k // Remove k from I
J ← J ∪ k // Add k to J

return (J )

Fig. 4. A pseudo code of the proposed feature selection algorithm with forward selec-
tion. By the LSMI function, MI between return and state features is computed using
the n-th time step data dπn.

Let J be the set of chosen feature indices. The forward selection algorithm
starts from the empty feature-index set J = {}. The index of the most relevant
feature, together with features whose indices are included in J , is sequentially
added to J at each iteration. The relevance of each state feature s(i) is evalu-
ated using the conditional MI estimator Îπ(η; z|n) described in Section 3.2. This
forward selection process is repeated u times, where u is the number of features
we want to choose.

A pseudo code of the proposed feature selection algorithm with forward se-
lection is described in Figure 4.

4 Numerical Experiments

In this section, we evaluate the performance of our proposed feature selection
method on a grid-world navigation problem illustrated in Figure 5. The two-
dimensional maze consists of walls (black cells) and target states (light-gray
cells). The goal of the task is to navigate an agent to the target location by
avoiding the walls.

4.1 Setup

The state space S consists of 14-dimensional discrete features s =
(s(1), s(2), . . . , s(14))⊤, where s(1), s(2) ∈ {1, 2, . . . , 10} are the horizontal and ver-
tical positions of the agent, respectively. s(3) ∈ {0, 1, 2, . . . , 20} is the remaining
battery level; it is initially set to 20 (fully charged) and is decreased by 1 at



s(1)

s(2
)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Fig. 5. A grid-world navigation problem. An agent is placed randomly in the grid-
world, and can move around in the white area based on the four actions: moving up,
down, left, or right at every time step. Black boxes in the middle represent walls through
which the agent cannot go, and target location to which we want to guide the agent is
the light-gray area at s(1) = 10.

every agent’s movement. The rest of features s(4), s(5), s(6), . . . , s(14) corresponds
to noise, each of which independently follows the Gaussian distribution with
different mean:

1

σnoise
√
2π

exp

(
− (s(i) − νi)

2

2σ2
noise

)
, ∀i = 4, 5, 6, . . . , 14.

We set νi = i− 3 and σnoise = 1, and round the value of s(i) down to the nearest
integer for discretization. These additional dimensions of the state space may be
regarded as information brought by irrelevant sensors such as sound, smell, and
temperature sensors.

The action spaceA consists of four discrete actions, each of which corresponds
to the direction of the agent’s move: up, down, left, and right. For instance, if
the agent chooses the ‘right’-action, s(1) is incremented unless there is an wall
and the battery level (s(3)) is zero.

The reward +2 is given when the agent visits the target location; otherwise
the reward is zero:

R(s, a, s′) =

{
2 if s′(1) = 10,

0 otherwise.

The discount factor is set to γ = 0.95.

Data samples Dπ consisting M episodes with N = 20 steps are collected.
The initial position of the agent is set to

(s
(1)
1 , s

(2)
1 ) = (1, β),



where β is randomly chosen from {1, 2, . . . , 10}. Then, the agent follows a
stochastic policy π(a|s) defined by

π(a|s) =

{
0.7 if a = a∗,

0.1 otherwise.

where a∗ is ‘down’ when s(1) = 4 and 1 ≤ s(2) ≤ 4, a∗ is ‘up’ when s(1) = 4 and
7 ≤ s(2) ≤ 10, and a∗ is ‘right’ in other states. We compute the conditional MI
estimator Îπ(η; z|n) from the dataset Dπ (see Section 3.2). Gaussian kernels are
used as basis functions:

ψn,b(η, z) ≡ exp

(
−
∥(η, z⊤)⊤ − µn,b∥2

2σ2
n

)
,

where µn,b and σn are the mean and standard deviation of the Gaussian kernel,
respectively. We set B = M , i.e., the number B of basis functions is equal to
the number M of episodes. The mean µn,b is selected from the dataset dπn as

µn,b = (ηπn,b, z
π
n,b

⊤)⊤. The standard deviation σn as well as the regularization
parameter λ (see Eq.(8)) is determined by cross-validation with respect to J (see
Eq.(7)) [15].

We compare the performance of our proposed method with the KDR-based
method [11]. The feature selection criterion used by the KDR-based method is
the conditional independence between states s and its subset sr which directly
influences rewards:

srn+1 ⊥ sn | zn, ∀n = 1, 2, . . . , N,

where sr = {s(1)} in the current navigation problem. This criterion is evaluated
using the conditional cross-covariance operator in a Gaussian reproducing kernel
Hilbert space.

Similarly to our proposed method, we implement the KDR-based method
based on the forward selection strategy: starting from the empty set J = {},
the index of the state feature s(i), which, together with features whose indices
are included in J , attains the above conditional independence the most is added
to J at every iteration. Following the suggestion in [13], we fix the width of the
Gaussian kernel to the median of the distance between all the data samples, and
fix the regularization parameter to 0.1.

To illustrate how the feature selection methods work in our grid-world navi-
gation task, we run the forward selection algorithms for 14 iterations to rank all
the state features. Let us consider the following two cases: the “without-gravel”
and “with-gravel” scenarios. In the “without-gravel” scenario, state features s(1)

and s(2) should have higher ranks because the horizontal position of the agent
s(1) determines the reward directly and its vertical position s(2) is necessary to
avoid walls in the middle of the maze.

On the other hand, in the “with-gravel” scenario, gravel exists in some grids
and the state feature s(4) detects the existence of gravel; when s(4) = 2, there
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(a) “Without-gravel” scenario
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(b) “With-gravel” scenario

Fig. 6. Feature selection performance in the grid-world navigation task. The graphs
depict the sum of ranks of relevant features averaged over 50 trials as a function of the
number M of episodes. The optimal values are 3 (=1 + 2) and 10 (= 1 + 2 + 3 + 4) in
the “without-gravel” and “with-gravel” scenarios, respectively.

exists gravel in the right grid of the agent. The agent can avoid the gravel area
by moving to the left when s(4) = 2; otherwise, it gets into the gravel area which
continues for 4 time steps (this is indicated by s(4) = 3). When the agent is in
the gravel area, the battery level s(3) is decreased by 3 at each step. Then, the
agent can not be able to reach the target place due to lack of battery (recall
that the battery level is decreased by 1 at each step outside the gravel area).
This indicates that the gravel-feature s(4) indirectly influences rewards after
several time steps through the battery level s(3) and the horizontal position s(1).
Therefore, in this case, in addition to s(1) and s(2), s(3) and s(4) should also have
higher ranks to avoid the gravel area.

4.2 Results

Figure 6(a) depicts the sum of ranks of the features s(1) and s(2) averaged over
50 trials as a function of the number M of episodes for the “without-gravel”
scenario. Since the features s(1) and s(2) should be ranked first and second, the
optimal value is 3 (= 1+2). The graph overall shows that the performance of both
the proposed and KDR-based methods improves as the number M of episodes
increases. The KDR-based method converges to the optimal value (= 3) at 40
episodes, while a small error remains in the proposed method. This difference
is caused by the fact that the battery level s(3) is occasionally ranked higher
than the position s(1) and s(2) in the proposed method. Since the battery level
is also somewhat relevant to returns, the result of the proposed method would
be reasonable.

Figure 6(b) depicts the sum of ranks of the features s(1), s(2), s(3), and
s(4) averaged over 50 trials as a function of the number M of episodes for the
“with-gravel” scenario. Unlike the case of the “without-gravel” scenario, the per-
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(a) KDR-based method

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

2

4

6

8

10

12

14

16

18

20

Rank

F
re

qu
en

cy

(b) Proposed method

Fig. 7. Histograms of the rank of the feature s(4) in the “with-gravel” scenario. The
number M of episodes is fixed to 100 and the number of trials is 50.

formance improvement of the KDR-based method is very slow and is saturated
after 60 episodes. This happened because evaluating the one-step dependency
from the gravel feature s(4) to the horizontal position s(1) cannot find the rele-
vance of s(4) to subsequent rewards.

Figure 7(a) depicts the histogram of the rank of the gravel-feature s(4) in
the “with-gravel” scenario when the number M of episodes is fixed to 100. The
graph shows that the KDR-based method ranks s(4) in lower positions, partic-
ularly in the range between 8 and 13. This implies that the feature s(4) is less
frequently selected by the KDR-based method and then the gravel cannot be
avoided properly.

On the other hand, the performance of the proposed method improves as
the number M of episodes increases, and approaches the optimal value (= 10)
(see Figure 6(b)). Figure 7(b)) shows that the proposed method ranks s(4) in
higher positions, particularly around 4. This was achieved because the proposed
method evaluates the dependency between returns η and s(4).

Overall, the proposed method was shown to be a promising feature selection
method in RL.

5 Conclusions

In real-world reinforcement learning problems, selecting a subset of relevant
attributes from the high-dimensional state variable is considerably important
since standard reinforcement learning methods do not perform well with high-
dimensional state spaces. An existing feature selection approach relies on the
conditional independence between state and its subset which directly influences
rewards. However, this is not appropriate when there is an indirect dependency
between states and rewards, which is often the case in practical RL scenarios.



To overcome this limitation, we proposed a new framework of feature selec-
tion by considering the dependency between return and state-feature sequences.
Our framework adopts conditional mutual information as the dependency mea-
sure, and it is approximated using least-squares estimation. The effectiveness of
the proposed method was shown through experiments.
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Appendix: Proof of Lemma 1

Here, we give a proof of Lemma 1.
From the definition of conditional mutual information, we have

Iπ(η; s|n)− Iπ(η; z|n)

=
1

N

N∑
n=1

∫
pπ(η|n)

{∫ (
pπ(η, s|n)

pπ(η|n)pπ(s|n)
− 1

)2

pπ(s|n)ds

−
∫ (

pπ(η, z|n)
pπ(η|n)pπ(z|n)

− 1

)2

pπ(z|n)dz

}
dη

=
1

N

N∑
n=1

∫
pπ(η|n)

{∫ (
pπ(η, s|n)

pπ(η|n)pπ(s|n)

)2

pπ(s|n)ds− 2

∫
pπ(η, s|n)
pπ(η|n)

ds

−
∫ (

pπ(η, z|n)
pπ(η|n)pπ(z|n)

)2

pπ(z|n)dz + 2

∫
pπ(η, z|n)
pπ(η|n)

dz

}
dη

=
1

N

N∑
n=1

∫
pπ(η|n)

{∫ (
pπ(η, s|n)

pπ(η|n)pπ(s|n)

)2

pπ(s|n)ds

−
∫ (

pπ(η, z|n)
pπ(η|n)pπ(z|n)

)2

pπ(z|n)dz

}
dη

=
1

N

N∑
n=1

∫
pπ(η|n)

∫ (
pπ(η, s|n)

pπ(η|n)pπ(s|n)
− pπ(η, z|n)
pπ(η|n)pπ(z|n)

)2

pπ(s|n)dsdη.

To obtain the second equality above, we used∫
pπ(η, s|n)
pπ(η|n)

ds =

∫∫
pπ(η, z, z̄|n)
pπ(η|n)

dzdz̄ =

∫
pπ(η, z|n)
pπ(η|n)

dz,

where z̄ is the complement of z. To obtain the third equality, we used∫ (
pπ(η,z|n)

pπ(η|n)pπ(z|n)

)2

pπ(z|n)dz

=

∫
pπ(η, s|n)pπ(η, z|n)

pπ(η|n)2pπ(s|n)pπ(z|n)
pπ(s|n)ds.



Since

pπ(s|z, n)pπ(z|n) = pπ(s, z|n) = pπ(s|n),
pπ(η, z|n)

pπ(η|z, n)pπ(z|n)
= 1,

pπ(η, s|n)
pπ(η|n)pπ(s|n)

=
pπ(η, s|n)pπ(η, z|n)

pπ(s|z, n)pπ(η|z, n)pπ(η|n)pπ(z|n)
,

we have

Iπ(η; s|n)− Iπ(η; z|n)

=
1

N

N∑
n=1

∫
pπ(η|n)

∫
pπ(η, z|n)2

pπ(η|n)2pπ(z|n)2

×
(

pπ(η, s|z, n)
pπ(s|z, n)pπ(η|z, n)

− 1

)2

pπ(s|n)dsdη,

=
1

N

N∑
n=1

∫∫
pπ(η, z|n)2

pπ(η|n)pπ(z|n)2

(
pπ(η, s|z, n)

pπ(s|z, n)pπ(η|z, n)
− 1

)2

pπ(s|n)dsdη,

which concludes the proof. (Q.E.D.)
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