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Abstract

Density ratio estimation has gathered a great deal of attention recently since it can
be used for various data processing tasks. In this paper, we consider three meth-
ods of density ratio estimation: (A) the numerator and denominator densities are
separately estimated and then the ratio of the estimated densities is computed, (B)
a logistic regression classifier discriminating denominator samples from numerator
samples is learned and then the ratio of the posterior probabilities is computed,
and (C) the density ratio function is directly modeled and learned by minimizing
the empirical Kullback-Leibler divergence. We first prove that when the numerator
and denominator densities are known to be members of the exponential family, (A)
is better than (B) and (B) is better than (C). Then we show that once the model
assumption is violated, (C) is better than (A) and (B). Thus in practical situations
where no exact model is available, (C) would be the most promising approach to
density ratio estimation.
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1 Introduction

The ratio of two probability density functions has been demonstrated to be useful in
various data processing tasks [21], such as non-stationarity adaptation [18, 35, 23, 22,
17, 27], outlier detection [7, 19], conditional density estimation [26], feature selection
[31, 30], feature extraction [29], and independent component analysis [28]. Thus accurately
estimating the density ratio is an important and challenging research topic in the machine
learning and data mining communities.

A naive approach to density ratio estimation is (A) density ratio estimation by separate
maximum likelihood density estimation—first the numerator and denominator densities
are separately estimated and then the ratio of the estimated densities is computed. How-
ever, density estimation is substantially more difficult than density ratio estimation and
the above two-shot process of first estimating the densities and then taking their ratio
is thought to be less accurate. To cope with this problem, various alternative methods
have been developed recently, which allow one to estimate the density ratio without going
through density estimation [16, 8, 15, 25, 10].

In this paper, we consider the following two methods in addition to the method (A):
(B) density ratio estimation by logistic regression [16, 3, 1]—a logistic regression classifier
discriminating numerator samples from denominator samples is used for density ratio esti-
mation, and (C) direct density ratio estimation by empirical Kullback-Leibler divergence
minimization [15, 25]—the density ratio function is directly modeled and learned. The
goal of this paper is to theoretically compare the accuracy of these three density ratio
estimation schemes.

We first prove that when the numerator and denominator densities are known to be
members of the exponential family, (A) is better than (B) and (B) is better than (C). The
fact that (A) is better than (B) could be regarded as an extension of the existing result
for binary classification [5]—estimating data generating densities by maximum likelihood
estimation has higher statistical efficiency than logistic regression in classification scenar-
ios. On the other hand, the fact that (B) is better than (C) follows from the fact that
(B) has the smallest asymptotic variance in a class of semi-parametric estimators [16].

We then show that when the model assumption is violated, (C) is better than (A)
and (B). Our statement is that the estimator obtained by (C) converges to the projection
of the true density ratio function onto the target parametric model (i.e., the optimal ap-
proximation in the model), while the estimators obtained by (A) and (B) do not generally
converge to the projection.

Since model misspecification would be a usual situation in practice, (C) is the most
promising approach in density ratio estimation. In a regression framework, an asymptotic
analysis with a similar spirit exists [14].

2 Density Ratio Estimation

In this section, we formulate the problem of density ratio estimation and review three
density ratio estimators.
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2.1 Problem Formulation

Let X (⊂ Rd) be the data domain and suppose we are given independent and identically
distributed (i.i.d.) samples {xnu

i }ni=1 drawn from a distribution with density p∗nu(x) and
i.i.d. samples {xde

j }nj=1 drawn from another distribution with density p∗de(x):

{xnu
i }ni=1

i.i.d.∼ p∗nu(x),

{xde
j }nj=1

i.i.d.∼ p∗de(x).

The subscripts ‘nu’ and ‘de’ denote ‘numerator’ and ‘denominator’, respectively. We
assume that the latter density p∗de(x) is strictly positive, i.e.,

p∗de(x) > 0, ∀x ∈ X .

The problem we address in this paper is to estimate the density ratio

r∗(x) :=
p∗nu(x)

p∗de(x)

from samples {xnu
i }ni=1 and {xde

j }nj=1.
The goal of this paper is to theoretically compare the performance of the following

three density ratio estimators:

(A) Density ratio estimation by separate maximum likelihood density estimation (see
Section 2.3 for details),

(B) Density ratio estimation by logistic regression [16, 3, 1] (see Section 2.4 for details),

(C) Direct density ratio estimation by empirical Kullback-Leibler divergence minimiza-
tion [15, 25] (see Section 2.5 for details).

2.2 Measure of Accuracy

Let us consider the unnormalized Kullback-Leibler divergence [2] from the true density
p∗nu(x) to its estimator r̂(x)p∗de(x):

UKL(p∗nu∥r̂ · p∗de) :=
∫

p∗nu(x) log
p∗nu(x)

r̂(x)p∗de(x)
dx− 1 +

∫
r̂(x)p∗de(x)dx. (1)

UKL(p∗nu(x)∥r̂(x)p∗de(x)) is non-negative for all r̂ and vanishes if and only if r̂ = r∗. If
r̂(x)p∗de(x) is normalized to be a probability density function, i.e.,∫

r̂(x)p∗de(x)dx = 1,
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then the unnormalized Kullback-Leibler divergence is reduced to the ordinary Kullback-
Leibler divergence [12]:

KL(p∗nu∥r̂ · p∗de) :=
∫

p∗nu(x) log
p∗nu(x)

r̂(x)p∗de(x)
dx. (2)

In our theoretical analysis, we use the expectation of UKL(p∗nu∥r̂ · p∗de) over {xnu
i }ni=1 and

{xde
j }nj=1 as the measure of accuracy of a density ratio estimator r̂(x):

J(r̂) := E [UKL(p∗nu∥r̂ · p∗de)] , (3)

where E denotes the expectation over {xnu
i }ni=1 and {xde

j }nj=1.
In the rest of this section, the three methods of density ratio estimation we are dealing

with are described in detail.

2.3 Method (A): Density Ratio Estimation by Separate Maxi-
mum Likelihood Density Estimation

For p∗nu(x) and p∗de(x), two parametric models pnu(x;θnu) and pde(x;θde) such that∫
pnu(x;θnu)dx = 1, ∀θnu ∈ Θnu,

pnu(x;θnu) ≥ 0, ∀x ∈ X , ∀θnu ∈ Θnu,∫
pde(x;θde)dx = 1 ∀θde ∈ Θde,

pde(x;θde) ≥ 0 ∀x ∈ X , ∀θde ∈ Θde,

are prepared. Then the maximum likelihood estimators θ̂nu and θ̂de are computed sepa-
rately from {xnu

i }ni=1 and {xde
j }nj=1:

θ̂nu := argmax
θnu∈Θnu

[
n∑

i=1

log pnu(x
nu
i ;θnu)

]
,

θ̂de := argmax
θde∈Θde

[
n∑

j=1

log pde(x
de
j ;θde)

]
.

Note that the maximum likelihood estimators θ̂nu and θ̂de minimize the empirical
Kullback-Leibler divergences from the true densities p∗nu(x) and p∗de(x) to their models
pnu(x;θnu) and pde(x;θde), respectively:

θ̂nu = argmin
θnu∈Θnu

[
1

n

n∑
i=1

log
p∗nu(x

nu
i )

pnu(xnu
i ;θnu)

]
,

θ̂de = argmin
θde∈Θde

[
1

n

n∑
j=1

log
p∗de(x

de
j )

pnu(xde
j ;θde)

]
.
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Finally, a density ratio estimator is constructed by taking the ratio of the estimated
densities:

r̂A(x) :=
pnu(x; θ̂nu)

pde(x; θ̂de)

(
1

n

n∑
j=1

pnu(x
de
j ; θ̂nu)

pde(xde
j ; θ̂de)

)−1

,

where the estimator is normalized so that

1

n

n∑
j=1

r̂A(x
de
j ) = 1.

2.4 Method (B): Density Ratio Estimation by Logistic Regres-
sion

Let us assign a selector variable y = ‘nu’ to samples drawn from p∗nu(x) and y = ‘de’ to
samples drawn from p∗de(x), i.e., the two densities are written as

p∗nu(x) = q∗(x|y = ‘nu’),

p∗de(x) = q∗(x|y = ‘de’).

Since

q∗(x|y = ‘nu’) =
q∗(y = ‘nu’|x)q∗(x)

q∗(y = ‘nu’)
,

q∗(x|y = ‘de’) =
q∗(y = ‘de’|x)q∗(x)

q∗(y = ‘de’)
,

the density ratio can be expressed in terms of y as

r∗(x) =
q∗(y = ‘nu’|x)
q∗(y = ‘nu’)

q∗(y = ‘de’)

q∗(y = ‘de’|x)

=
q∗(y = ‘nu’|x)
q∗(y = ‘de’|x)

,

where we used the fact that

q∗(y = ‘nu’) = q∗(y = ‘de’) =
1

2

in the current setup.
The conditional probability q∗(y|x) could be approximated by discriminating {xnu

i }ni=1

from {xde
j }nj=1 using a logistic regression classifier, i.e., for a parametric function r(x;θ)

such that

r(x;θ) ≥ 0, ∀x ∈ X , ∀θ ∈ Θ, (4)
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the conditional probabilities q∗(y = ‘nu’|x) and q∗(y = ‘de’|x) are modeled by

q(y = ‘nu’|x;θ) = r(x;θ)

1 + r(x;θ)
,

q(y = ‘de’|x;θ) = 1

1 + r(x;θ)
.

Then the maximum likelihood estimator θ̂B is computed from {xnu
i }ni=1 and {xde

j }nj=1:

θ̂B := argmax
θ∈Θ

[
n∑

i=1

log
r(xnu

i ;θ)

1 + r(xnu
i ;θ)

+
n∑

j=1

log
1

1 + r(xde
j ;θ)

]
. (5)

Note that the maximum likelihood estimator θ̂B minimizes the empirical Kullback-Leibler
divergences from the true density q∗(x, y) to its estimator q(y|x;θ)q∗(x):

θ̂B = argmin
θ∈Θ

[
1

2n

n∑
i=1

log
q∗(xnu

i , y = ‘nu’)

q(y = ‘nu’|xnu
i ;θ)q∗(xnu

i )

+
1

2n

n∑
j=1

log
q∗(xde

j , y = ‘de’)

q(y = ‘de’|xde
j ;θ)q∗(xde

j )

]
.

Finally, a density ratio estimator is constructed by taking the ratio of q(y = ‘nu’|x; θ̂B)

and q(y = ‘de’|x; θ̂B) with proper normalization:

r̂B(x) :=
q(y = ‘nu’|x; θ̂B)

q(y = ‘de’|x; θ̂B)

(
1

n

n∑
j=1

q(y = ‘nu’|xde
j ; θ̂B)

q(y = ‘de’|xde
j ; θ̂B)

)−1

= r(x; θ̂B)

(
1

n

n∑
j=1

r(xde
j ; θ̂B)

)−1

.

2.5 Method (C): Direct Density Ratio Estimation by Empirical
Unnormalized Kullback-Leibler Divergence Minimization

For the density ratio function r∗(x), a parametric model r(x;θ) such that Eq.(4) is fulfilled

is prepared. Then the following estimator θ̂C is computed from {xnu
i }ni=1 and {xde

j }nj=1:

θ̂C := argmax
θ∈Θ

[
n∑

i=1

log r(xnu
i ;θ)−

n∑
j=1

r(xde
j ;θ)

]
. (6)

Note that θ̂C minimizes the empirical unnormalized Kullback-Leibler divergence from the
true density p∗nu(x) to its estimator r̂(x)p∗de(x):

θ̂C = argmin
θ∈Θ

[
1

n

n∑
i=1

log
p∗nu(x

nu
i )

r̂(xnu
i )p∗de(x

nu
i )

− 1 +
1

n

n∑
j=1

r̂(xde
j )

]
.
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Finally, a density ratio estimator is obtained by

r̂C(x) := r(x; θ̂C)

(
1

n

n∑
j=1

r(xde
j ; θ̂C)

)−1

.

3 Exponential Models

In our theoretical analysis, we employ the exponential model, which is explained in this
section.

3.1 Exponential Models for Densities and Ratios

We use the following exponential model for the densities p∗nu(x) and p∗de(x).

p(x;θ) = h(x) exp
{
θ⊤ξ(x)− φ(θ)

}
, θ ∈ Θ, (7)

where h(x) is a base measure, ξ(x) is a sufficient statistic, φ(θ) is a normalization factor,
and ⊤ denotes the transpose of a vector [13]. The exponential model includes various
popular models as special cases, e.g., the normal, exponential, gamma, chi-square, and
beta distributions.

Correspondingly, we use the following exponential model for the ratio r∗(x).

r(x;θ, θ0) = exp
{
θ0 + θ⊤ξ(x)

}
, θ ∈ Θ, θ0 ∈ R. (8)

3.2 Method (A)

For the exponential model (7), the maximum likelihood estimators θ̂nu and θ̂de are given
by

θ̂nu = argmax
θnu∈Θ

[
n∑

i=1

θ⊤ξ(xnu
i )− nφ(θ)

]
,

θ̂de = argmax
θde∈Θ

[
n∑

j=1

θ⊤ξ(xde
j )− nφ(θ)

]
,

where irrelevant constants are ignored. The density ratio estimator r̂A(x) for the expo-
nential density model is expressed as

r̂A(x) = exp
{
θ̂

⊤
A ξ(x)

}(1

n

n∑
j=1

exp
{
θ̂

⊤
A ξ(xde

j )
})−1

,

where

θ̂A := θ̂nu − θ̂de.
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One can use the other estimator such as

r̃A(x) = exp
{
θ̂

⊤
A ξ(x)− φ(θ̂nu) + φ(θ̂de)

}
instead of r̂A(x). We compare r̂A(x) to Method (B) and Method (C), since the same
normalization factor as r̂A(x) appears in the other methods as shown below. This fact
facilitates the theoretical analysis.

3.3 Method (B)

For the exponential model (8), the optimization problem (5) is expressed as

(θ̂B, θ̂B,0) = argmax
(θ,θ0)∈Θ×R

[
n∑

i=1

log
r(xnu

i ;θ, θ0)

1 + r(xnu
i ;θ, θ0)

+
n∑

j=1

log
1

1 + r(xde
j ;θ, θ0)

]

= argmax
(θ,θ0)∈Θ×R

[
n∑

i=1

log
exp

{
θ0 + θ⊤ξ(xnu

i )
}

1 + exp
{
θ0 + θ⊤ξ(xnu

i )
}

+
n∑

j=1

log
1

1 + exp
{
θ0 + θ⊤ξ(xde

j )
}].

The density ratio estimator r̂B(x) for the exponential ratio model is expressed as

r̂B(x) = exp
{
θ̂
⊤
Bξ(x)

}( 1

n

n∑
j=1

exp
{
θ̂
⊤
Bξ(x

de
j )
})−1

.

3.4 Method (C)

For the exponential model (8), the optimization problem (6) is expressed as

(θ̂C, θ̂C,0) = argmax
(θ,θ0)∈Θ×R

[
1

n

n∑
i=1

log r(xnu
i ;θ, θ0)−

1

n

n∑
j=1

r(xde
i ;θ, θ0)

]

= argmax
(θ,θ0)∈Θ×R

[
1

n

n∑
i=1

(θ0 + θ⊤ξ(xnu
i ))− 1

n

n∑
j=1

exp
{
θ0 + θ⊤ξ(xde

j )
}]

. (9)

The density ratio estimator r̂C(x) for the exponential ratio model is expressed as

r̂C(x) = exp
{
θ̂
⊤
Cξ(x)

}( 1

n

n∑
j=1

exp
{
θ̂
⊤
Cξ(x

de
j )
})−1

.
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4 Accuracy Analysis for Correctly Specified Expo-

nential Models

In this section, we theoretically analyze the accuracy of the above three density ratio
estimators under the assumption that the true densities p∗nu(x) and p∗de(x) both belong
to the exponential family, i.e., there exist θ∗

nu ∈ Θ and θ∗
de ∈ Θ such that

p∗nu(x) = p(x;θ∗
nu),

p∗de(x) = p(x;θ∗
de).

Since the ratio of two exponential densities also belongs to the exponential model, the
above assumption implies that there exist θ∗ ∈ Θ and θ∗0 ∈ R such that

r∗(x) = r(x;θ∗, θ∗0). (10)

It is straightforward to extended the results in this section to general parametric models,
since we focus on the first-order asymptotics of the estimators. An arbitrary parametric
model p(x;θ) has the same first-order asymptotics as the exponential model of the form

pexp(x;θ) ∝ exp{log p(x;θ∗) + (θ − θ∗)⊤∇ log p(x;θ∗)}

around the parameter θ∗. Thus the same theoretical property holds.
First, we analyze the asymptotic behavior of J(r̂A). Then we have the following lemma

(proofs of all lemmas, theorems, and corollaries are provided in Appendix).

Lemma 1 J(r̂A) can be asymptotically expressed as

J(r̂A) =
1

2n

[
dimΘ + tr

(
F (θ∗

nu)F (θ∗
de)

−1
)
+ PE(p∗de∥p∗nu)

]
+O(n−3/2),

where O(·) denotes the asymptotic order. F (θ) denote the Fisher information matrix of
the exponential model p(x;θ):

F (θ) :=

∫
∇ log p(x;θ)∇ log p(x;θ)⊤p(x;θ)dx,

where ∇ denotes the partial differential operator with respect to θ. PE(p∥q) denotes the
Pearson divergence of two densities p and q defined as

PE(p∥q) := 1

2

∫
(p(x)− q(x))2

p(x)
dx. (11)

Next, we investigate the asymptotic behavior of J(r̂B) and J(r̂C). Let y be the selector
variable taking ‘nu’ or ‘de’ as defined in Section 2.4. The statistical model of the joint
probability for z = (x, y) is defined as

q(z;θ, θ0) = q(y|x;θ, θ0)×
p∗nu(x) + p∗de(x)

2
, (12)
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where q(y|x;θ, θ0) is the conditional probability of y such that

q(y = ‘nu’|x;θ, θ0) =
r(x;θ, θ0)

1 + r(x;θ, θ0)

=
exp

{
θ0 + θ⊤ξ(x)

}
1 + exp

{
θ0 + θ⊤ξ(x)

} ,
q(y = ‘de’|x;θ, θ0) =

1

1 + r(x;θ, θ0)

=
1

1 + exp
{
θ0 + θ⊤ξ(x)

} .
The Fisher information matrix of the model (12) is denoted as

F̃ (θ, θ0) ∈ R(dimΘ+1)×(dimΘ+1).

The submatrix of F̃ (θ, θ0) formed by the first (dimΘ) rows and the first (dimΘ) columns
is defined as ∫

∇ log q(z;θ, θ0)∇ log q(z;θ, θ0)
⊤q(z;θ, θ0)dz.

The inverse matrix of F̃ (θ, θ0) is expressed as

F̃ (θ, θ0)
−1 =

(
H11(θ, θ0) h12(θ, θ0)
h12(θ, θ0)

⊤ h22(θ, θ0)

)
, (13)

where H11(θ, θ0) is a (dimΘ)× (dimΘ) matrix. Then we have the following lemmas.

Lemma 2 J(r̂B) can be asymptotically expressed as

J(r̂B) =
1

2n

[
tr (F (θ∗

nu)H11(θ
∗, θ∗0)) + PE(p∗de∥p∗nu)

]
+O(n−3/2),

where (θ∗, θ∗0) is defined in Eq.(10).

Lemma 3 J(r̂C) can be asymptotically expressed as

J(r̂C) =
1

2n

[
dimΘ + tr

(
F (θ∗

nu)
−1G

)
+ PE(p∗de∥p∗nu)

]
+O(n−3/2),

where

G :=

∫
r∗(x)(ξ(x)− ηnu)(ξ(x)− ηnu)

⊤p∗nu(x)dx.
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Based on the above lemmas, we compare the accuracy of the three methods. For the
accuracy of (A) and (B), we have the following theorem.

Theorem 4 Asymptotically, the inequality

J(r̂A) ≤ J(r̂B)

holds.

Thus the method (A) is more accurate than the method (B) in terms of the expected
unnormalized Kullback-Leibler divergence (3). Theorem 4 may be regarded as an ex-
tension of the result for binary classification [5]: estimating data generating Gaussian
densities by maximum likelihood estimation has high statistical efficiency than logistic
regression in the sense of classification error rate.

Next, we compare the accuracy of (B) and (C).

Theorem 5 Asymptotically, the inequality

J(r̂B) ≤ J(r̂C)

holds.

Thus the method (B) is more accurate than the method (C) in terms of the expected
unnormalized Kullback-Leibler divergence (3). This inequality is a direct consequence of
the paper by Qin [16]. In that paper, it was shown that the method (B) has the smallest
asymptotic variance in a class of semi-parametric estimators. It is easy to see the method
(C) is included in the class.

Finally, we compare the accuracy of (A) and (C). From Theorem 4 and Theorem 5,
we immediately have the following corollary.

Corollary 6 The inequality

J(r̂A) ≤ J(r̂C)

holds.

It was advocated that one should avoid solving more difficult intermediate problems
when solving a target problem [33]. This statement is sometimes referred to as “Vapnik’s
principle”, and the support vector machine [4] would be a successful example of this
principle—instead of estimating a data generation model, it directly models the decision
boundary which is sufficient for pattern recognition.

If we followed Vapnik’s principle, directly estimating the ratio r∗(x) would be more
promising than estimating the two densities p∗nu(x) and p∗de(x) since knowing p∗nu(x) and
p∗de(x) implies knowing r∗(x) but not vice versa; indeed, r∗(x) cannot be uniquely decom-
posed into p∗nu(x) and p∗de(x). Thus Corollary 6 is at a glance counter-intuitive. However,
Corollary 6 would be reasonable since the method (C) does not make use of the knowledge
that each density is exponential, but only the knowledge that the ratio is exponential.
Thus the method (A) can utilize the a priori model information more effectively. Thanks
to the additional knowledge that the both densities belong to the exponential model, the
intermediate problems (i.e., density estimation) were actually made easier in terms of
Vapnik’s principle.
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5 Accuracy Analysis for Misspecified Exponential

Models

In this section, we theoretically analyze the approximation error of the three density
ratio estimators for misspecified exponential models, i.e., the true densities and ratio are
not necessarily included in the exponential models. The unnormalized Kullback-Leibler
divergence is employed to measure the approximation error.

First, we study the convergence of the method (A). Let pnu(x) and pde(x) be the
projections of the true densities p∗nu(x) and p∗de(x) onto the model p(x;θ) in terms of the
Kullback-Leibler divergence (2):

pnu(x) := p(x;θnu),

pde(x) := p(x;θde),

where

θnu := argmin
θ∈Θ

[∫
p∗nu(x) log

p∗nu(x)

p(x;θ)
dx

]
,

θde := argmin
θ∈Θ

[∫
p∗de(x) log

p∗de(x)

p(x;θ)
dx

]
.

This means that pnu(x) and pde(x) are the optimal approximations to p∗nu(x) and p∗de(x)
in the model p(x;θ) in terms of the Kullback-Leibler divergence. Let

rA(x) :=
pnu(x)

pde(x)
.

Since the ratio of two exponential densities also belongs to the exponential model, there
exists θA ∈ Θ such that

rA(x) = r(x;θA, θ̄A,0).

Then we have the following lemma.

Lemma 7 r̂A converges in probability to rA as n → ∞.

Next, we investigate the convergence of the method (B). Let q∗(x, y) be the joint
probability defined as

q∗(x, y) = q∗(y|x)× p∗nu(x) + p∗de(x)

2
, (14)

where q∗(y|x) is the conditional probability of y such that

q∗(y = ‘nu’|x) = r∗(x)

1 + r∗(x)
,

q∗(y = ‘de’|x) = 1

1 + r∗(x)
.
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The model (12) is used to estimate q∗(x, y), and let q(x, y) be the projection of the
true density q∗(x, y) onto the model (12) in terms of the Kullback-Leibler divergence (2):

q(x, y) := q(x, y;θB, θ̄B,0), (15)

where

(θB, θ̄B,0) := argmin
(θ,θ0)∈Θ×R

∫ ∑
y∈{‘nu’,‘de’}

q∗(x, y) log
q∗(y|x)

q(y|x;θ, θ0)
dx

 .

This means that q(x, y) is the optimal approximation to q∗(x, y) in the model

q(y|x;θ, θ0)
p∗nu(x) + p∗de(x)

2

in terms of the Kullback-Leibler divergence. Let

rB(x) := r(x;θB, θ̄B,0).

Then we have the following lemma.

Lemma 8 r̂B converges in probability to rB as n → ∞.

Finally, we study the convergence of the method (C). Suppose that the model
r(x;θ, θ0) in Eq.(8) is employed. Let rC(x) be the projection of the true ratio function
r∗(x) onto the model r(x;θ, θ0) in terms of the unnormalized Kullback-Leibler divergence
(1):

rC(x) := r(x;θC, θ̄C,0),

where

(θC, θ̄C,0) := argmin
(θ,θ0)∈Θ×R

[∫
p∗nu(x) log

r∗(x)

r(x;θ, θ0)
dx− 1 +

∫
p∗de(x)r(x;θ, θ0)dx

]
. (16)

This means that rC(x) is the optimal approximation to r∗(x) in the model r(x;θ) in terms
of the unnormalized Kullback-Leibler divergence. Then we have the following lemma.

Lemma 9 r̂C converges in probability to rC as n → ∞.

Based on the above lemmas, we investigate the relation among the three methods.
Lemma 9 implies that the method (C) is consistent to the optimal approximation rC.
However, as we will show below, the methods (A) and (B) are not consistent to the
optimal approximation rC in general. Let us measure the deviation of a density ratio
function r′ from r by

D(r′, r) :=

∫
p∗de(x) (r

′(x)− r(x))
2
dx.

Then we have the following theorem.
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Theorem 10 The inequalities

D(rA, rC) ≥
∣∣∣∣∫ p∗de(x) rA(x)dx− 1

∣∣∣∣2 ,
D(rB, rC) ≥

∣∣∣∣∫ p∗de(x) rB(x)dx− 1

∣∣∣∣2
hold. More generally, for any r in the exponential model,

D(r, rC) ≥
∣∣∣∣∫ p∗de(x) r(x)dx− 1

∣∣∣∣2 (17)

holds.

When the model is misspecified, p∗de(x) rA(x) and p∗de(x) rB(x) are not probability densi-
ties in general. Then Theorem 10 implies that the method (A) and the method (B) are
not consistent to the optimal approximation rC.

Since model misspecification would be a usual situation in practice, the method (C)
is the most promising approach in density ratio estimation.

Finally, for the consistency of the method (A), we also have the following additional
result.

Corollary 11 If p∗de(x) belongs to the exponential model (7), i.e., there exists θde ∈ Θ
such that

p∗de(x) = p(x;θde),

then

rA = rC

holds even when p∗nu(x) does not belong to the exponential model (7).

This corollary means that, as long as p∗de(x) is correctly specified, the method (A) is
still consistent.

6 Conclusions

In this paper, we theoretically investigated the accuracy of three density ratio estimation
approaches: (A) density ratio estimation by separate maximum likelihood density estima-
tion, (B) density ratio estimation by logistic regression, and (C) direct density ratio es-
timation by empirical Kullback-Leibler divergence minimization. Intuitively, the method
(C) seems to be better than the other approaches due to “Vapnik’s principle”—one should
not solve more difficult intermediate problems (density estimation in the current context)
when solving a target problem (density ratio estimation in the current context).
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However, as we proved in Section 4, the method (A) is more accurate than the other
approaches when the numerator and denominator densities are known to be members
of the exponential family. This result is at first sight counter-intuitive, but it would be
reasonable because the methods (B) and (C) do not make use of the knowledge that each
density is exponential, but only the knowledge that their ratio is exponential. Thus the
method (A) can utilize the a priori model information more effectively than the other
methods. We note that this result is not contradictory to Vapnik’s principle since the
additional knowledge that the densities belong to the exponential model is utilized to
make the intermediate problems (density estimation) substantially easier.

On the other hand, once the correct model assumption is not fulfilled, the method (C)
was shown to be consistent to the optimal approximation in the model, while the methods
(A) and (B) are not consistent in general (see Section 5). The fact that the direct method
outperforms the other approaches in the absence of the additional knowledge would follow
Vapnik’s principle.

It seems to be a common phenomenon in various situations that a method which
works optimally for correctly specified models performs poorly for misspecified models
and conversely a method which works well for misspecified models performs poorly for
correctly specified models. For example, in active learning (or the experiment design),
the traditional variance-only approach works optimally for correctly specified models [6].
However, it was shown that the traditional method works poorly once the correct model
assumption is slightly violated [20]. To cope with this problem, various active learning
methods which do not require the correct model assumption have been developed and
shown to work better than the traditional method for misspecified models [34, 11, 20, 9,
24]. However, these methods cannot outperform the traditional method when the model
is correctly specified. Thus the performance loss for correctly specified models would be
the price one has to pay for acquiring robustness against model misspecification.

Model misspecification would almost always occur in practice, so developing methods
for misspecified models is crucial. Based on these observations, we conclude that the
direct density ratio approach (C) is the most promising density ratio estimation method.
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A Asymptotic Expansion of Measure of Accuracy

First, we show some fundamental results used for proving Lemma 1, Lemma 2, and Lemma
3.

Using the Taylor expansion

log(1 + t) = t− t2

2
+O(t3),
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we have the following expansion:

log
p∗nu(x)

r̂(x)p∗de(x)
= log

r∗(x)

r̂(x)

= − log
r̂(x)

r∗(x)

= −
(

r̂(x)

r∗(x)
− 1

)
+

1

2

(
r̂(x)

r∗(x)
− 1

)2

+Op

(∣∣∣∣ r̂(x)r∗(x)
− 1

∣∣∣∣3
)
,

where Op(·) denotes the stochastic order. Substituting this expansion into the unnormal-
ized Kullback-Leibler divergence UKL(p∗nu∥r̂ · p∗de), we obtain

UKL(p∗nu∥r̂ · p∗de) = PE(p∗nu∥r̂ · p∗de) +O(∥r̂/r∗ − 1∥3),
(18)

where ‘PE’ denotes the Pearson divergence defined by Eq.(11) and ∥r̂/r∗ − 1∥ is defined
as

∥r̂/r∗ − 1∥ :=

(∫
p∗nu(x)|r̂(x)/r∗(x)− 1|2dx

)1/2

.

Under a regularity condition of asymptotic statistics, the expectation E [∥r̂/r∗ − 1∥3] is
of order O(n−3/2):

E
[
∥r̂/r∗ − 1∥3

]
= O(n−3/2).

See Theorem 5.23 in [32] for the details of the regularity condition on general M-estimators.
Hence, the measure of accuracy J(r̂) can be represented as

J(r̂) = E [PE(p∗nu∥r̂ · p∗de)] +O(n−3/2). (19)

Then we have the following lemma.

Lemma 12 (Asymptotics of measure of accuracy) Let θ̂ be an estimator of the pa-
rameter θ∗ in r∗, and r̂(x) be the estimator defined as

r̂(x) := exp
{
θ̂

⊤
ξ(x)

}( 1

n

n∑
j=1

exp
{
θ̂

⊤
ξ(xde

j )
})−1

.

Then, the measure of accuracy of r̂ is asymptotically given as

J(r̂) =
1

2
tr
(
F (θ∗

nu) · E
[
δθδθ⊤])+ 1

2n
PE(p∗de∥p∗nu) +O(n−3/2), (20)

where δθ denotes the deviation of θ̂ from the parameter θ∗:

δθ = θ̂ − θ∗.
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Proof: The probabilistic order of δθ is Op(n
−1/2). Let ηnu be

ηnu :=

∫
ξ(x)p∗nu(x)dx.

Using the Taylor expansion

exp(t) = 1 + t+O(t2),

log(1 + t) = t+O(t2),

we have the following the asymptotic expansion of r̂:

log r̂(x) = log
r∗(x) exp

{
δθ⊤ξ(x)

}
1
n

∑n
j=1 r

∗(xde
j ) exp

{
δθ⊤ξ(xde

j )
}

= log r∗(x) + δθ⊤ξ(x)

− log

{
1 +

(
1

n

n∑
j=1

r∗(xde
j )− 1

)
+ δθ⊤ · 1

n

n∑
j=1

r∗(xde
j )ξ(xde

j ) +Op(n
−1)

}

= log r∗(x) + δθ⊤(ξ(x)− ηnu)−

(
1

n

n∑
j=1

r∗(xde
j )− 1

)
+Op(n

−1).

Therefore, we have

r̂(x)

r∗(x)
− 1 = δθ⊤(ξ(x)− ηnu)−

(
1

n

n∑
j=1

r∗(xde
j )− 1

)
+Op(n

−1).

Substituting the above expression into the Pearson divergence in Eq.(19), we obtain

PE(p∗nu∥r̂ · p∗de) =
1

2

∫
p∗nu(x)

(
r̂(x)

r∗(x)
− 1

)2

dx

=
1

2
tr
(
F (θ∗

nu)δθδθ
⊤)+ 1

2

(
1

n

n∑
j=1

(r∗(xde
j )− 1)

)2

+Op(n
−3/2).

Therefore,

E [PE(p∗nu∥r̂ · p∗de)] =
1

2
tr
(
F (θ∗

nu) · E
[
δθδθ⊤])+ 1

2n

∫
p∗de(x)(r

∗(x)− 1)2dx

+O(n−3/2)

=
1

2
tr
(
F (θ∗

nu) · E
[
δθδθ⊤])+ 1

2n
PE(p∗de∥p∗nu) +O(n−3/2).

Applying Eq (18) to the above equation, we obtain Eq.(20).
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B Proof of Lemma 1

According to Lemma 12, we need to compute the asymptotic variance of estimator θ̂A

in order to compute the measure of accuracy of r̂A. Based on the standard asymptotic
statistics, the asymptotic variance of the maximum likelihood estimator for the exponen-
tial family is given as

√
n(θ̂nu − θ∗

nu) ∼ N(0,F (θ∗
nu)

−1),
√
n(θ̂de − θ∗

de) ∼ N(0,F (θ∗
de)

−1),

when the sample size n goes to infinity. Under the regularity condition of parametric
estimation, the bias of estimator is given as

E
[
θ̂nu − θ∗

nu

]
= O(n−1),

E
[
θ̂de − θ∗

de

]
= O(n−1).

Then, for

δθ̂A := θ̂A − (θ∗
nu − θ∗

de)

= (θ̂nu − θ∗
nu)− (θ̂de − θ∗

de),

we have

E
[
δθ̂Aδθ̂

⊤
A

]
=

1

n
F (θ∗

nu)
−1 +

1

n
F (θ∗

de)
−1 +O(n−3/2),

where we used the fact that θ̂nu and θ̂de are independent. Substituting the above asymp-
totic variance of δθ̂A into the first term of Eq.(20), we obtain

J(r̂A) =
1

2n

[
tr
(
F (θ∗

nu)(F (θ∗
nu)

−1 + F (θ∗
de)

−1
)
) + PE(p∗de∥p∗nu)

]
+O(n−3/2),

=
1

2n

[
dimΘ + tr

(
F (θ∗

nu)F (θ∗
de)

−1
)
+ PE(p∗de∥p∗nu)

]
+O(n−3/2),

which concludes the proof.

C Proof of Lemma 2

Let (θ̂B, θ̂B,0) be the maximum likelihood estimator with the model (12). Let

δθ̂B := θ̂B − θ∗

= θ̂B − (θ∗
nu − θ∗

de).
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Based on the standard asymptotic statistics, the asymptotic variance of the maximum
likelihood estimator for the exponential family is given as

√
nδθB ∼ N (0,H11(θ

∗, θ∗0)),

when the sample size n goes to infinity. H11(θ, θ0) is the submatrix of the inverse matrix
of the Fisher information matrix as defined in Eq.(13) and (θ∗, θ∗0) is the parameter
corresponding to the density ratio r∗(x). Hence, the asymptotic variance of δθB is given
as

E
[
δθBδθ

⊤
B

]
=

1

n
H11(θ

∗, θ∗0) +O(n−3/2).

Substituting the asymptotic variance of δθ̂B into the first term of Eq.(20), we establish
the lemma.

D Proof of Lemma 3

By simple calculation, we find that the optimal solution (θ̂C, θ̂C,0) satisfies

θ̂C,0 = − log

(
1

n

n∑
j=1

exp
{
θ̂

⊤
C ξ(xde

j )
})

.

The extremal condition for Eq.(9) with the above expression provides the following equa-
tion:

1

n

n∑
i=1

ξ(xnu
i ) =

∑n
j=1 exp

{
θ̂

⊤
C ξ(xde

j )
}
ξ(xde

j )∑n
j=1 exp

{
θ̂

⊤
C ξ(xde

j )
} . (21)

Let δθ̂C be

δθ̂C := θ̂C − θ∗

= θ̂C − (θ∗
nu − θ∗

de).

Then, Eq.(21) is represented as

1

n

n∑
i=1

ξ(xnu
i ) =

∑n
j=1 r

∗(xde
j ) exp

{
δθ̂

⊤
C ξ(xde

j )
}
ξ(xde

j )∑n
j=1 r

∗(xde
j ) exp

{
δθ̂

⊤
C ξ(xde

j )
} .

Using the Taylor expansion

exp(t) = 1 + t+O(t2),

1

1− t
= 1 + t+O(t2),
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the asymptotic expansion of the right-hand side of the above equation yields

1

n

n∑
i=1

ξ(xnu
i ) =

{
1

n

n∑
j=1

r∗(xde
j )ξ(xde

j ) +
1

n

n∑
j=1

r∗(xde
j )ξ(xde

j )ξ(xde
j )⊤δθ̂C

}

×

{
1−

(
1

n

n∑
j=1

r∗(xde
j )− 1

)
− 1

n

n∑
j=1

r∗(xde
j )ξ(xde

j )⊤δθ̂C

}
+Op(n

−1)

=
1

n

n∑
j=1

r∗(xde
j )ξ(xde

j )− 1

n

n∑
j=1

r∗(xde
j )ξ(xde

j )

(
1

n

n∑
j′=1

r∗(xde
j′ )− 1

)

+

{
1

n

n∑
j=1

r∗(xde
j )ξ(xde

j )ξ(xde
j )⊤

− 1

n

n∑
j=1

r∗(xde
j )ξ(xde

j )
1

n

n∑
j′=1

r∗(xde
j′ )ξ(x

de
j′ )

⊤

}
δθ̂C +Op(n

−1)

=
1

n

n∑
j=1

r∗(xde
j )ξ(xde

j )− (ηnu +Op(n
−1/2))

(
1

n

n∑
j=1

r∗(xde
j )− 1

)
+ F (θ∗

nu)δθ̂C +Op(n
−1)

= ηnu +
1

n

n∑
j=1

r∗(xde
j )
(
ξ(xde

j )− ηnu

)
+ F (θ∗

nu)δθ̂C +Op(n
−1).

Hence, we obtain

F (θ∗
nu)δθ̂C =

1

n

n∑
i=1

(ξ(xnu
i )− ηnu)−

1

n

n∑
j=1

r∗(xde
i )(ξ(xde

i )− ηnu) +Op(n
−1). (22)

When the sample size goes to infinity, the central limit theorem provides

1√
n

n∑
i=1

(ξ(xnu
i )− ηnu)∼ N(0,F (θ∗

nu)),

1√
n

n∑
j=1

r∗(xde
j )(ξ(xde

j )− ηnu)∼ N(0,G),

(23)

where G is the matrix defined in Lemma 3. Combining Eqs.(22) and (23), we obtain the

following expression of the asymptotic variance of δθ̂C:

E
[
δθ̂Cδθ̂

⊤
C

]
=

1

n
F (θ∗

nu)
−1 +

1

n
F (θ∗

nu)
−1GF (θ∗

nu)
−1 +O(n−3/2).

Substituting the asymptotic variance of δθ̂C into the first term of Eq.(20), we establish
the lemma.
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E Proof of Theorem 4

We compare the coefficients of order O(n−1) in J(r̂A) and J(r̂B), and prove the following
inequality:

dimΘ + tr
(
F (θ∗

nu)F (θ∗
de)

−1
)
≤ tr (F (θ∗

nu)H11(θ
∗, θ∗0)) . (24)

Let F̃ η(θ, θ0) be the Fisher information matrix of the logistic model

qη(y = ‘nu’|x;θ, θ0) =
exp

{
θ0 + θ⊤(ξ(x)− η)

}
1 + exp

{
θ0 + θ⊤(ξ(x)− η)

} ,
qη(y = ‘de’|x;θ, θ0) =

1

1 + exp
{
θ0 + θ⊤(ξ(x)− η)

} , (25)

where η is a fixed vector. Let us represent F̃ η(θ, θ0)
−1 in a block form as

F̃ η(θ, θ0)
−1 =

(
Hη,11(θ, θ0) hη,12(θ, θ0)
hη,12(θ, θ0)

⊤ hη,22(θ, θ0)

)
.

When the functions 1, ξ1(x), . . . , ξk(x) are linearly independent, the maximum likelihood

estimator (mle) of θ for model (25) is given by θ̂B. The equality

θ0 + θ⊤ξ(x) = θ̃0 + θ̃
⊤
(ξ(x)− η)

implies θ = θ̃ and θ0 = θ̃0− θ̃
⊤
η = θ̃0−θ ⊤η. Due to the equality θ = θ̃, we see that the

mle of θ is equal to that of θ̃, and hence, the variance is unchanged under the parameter
transformation, that is,

Hη,11(θ̃, θ̃0) = Hη,11(θ, θ0 + θ⊤η) = H11(θ, θ0)

holds for any η. The Fisher information matrix F̃ η can be represented as

F̃ η(θ
∗, θ∗0 + θ∗⊤η) =

1

2

∫
p∗nu(x)p

∗
de(x)

p∗nu(x) + p∗de(x)

(
ξ(x)− η

1

)(
(ξ(x)− η)⊤ 1

)
dx

=

(
F̃ η,11 f̃η,12

f̃
⊤
η,12 f̃η,22

)
.

The first equality is obtained by the straightforward calculation of the Fisher information
matrix. Applying the matrix inversion formula to the block form, we obtain

H11(θ
∗, θ∗0) = Hη,11(θ

∗, θ∗0 + θ∗⊤η)

= F̃
−1

η,11 +
F̃

−1

η,11f̃η,12f̃
⊤
η,12F̃

−1

η,11

f̃η,22 − f̃
⊤
η,12F̃

−1

η,11f̃η,12

.
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Since F̃ η is positive definite, we have

f̃η,22 − f̃
⊤
η,12F̃

−1

η,11f̃η,12 > 0,

and hence, we obtain the inequality

H11(θ
∗, θ∗0) ≽ F̃

−1

η,11,

for any η. In the above formula, A ≽ B indicates the fact that the matrix A − B is
positive semidefinite. On the other hand, the inequalities

F̃ ηnu,11 =
1

2

∫
p∗nu(x)p

∗
de(x)

p∗nu(x) + p∗de(x)
(ξ(x)− ηnu)(ξ(x)− ηnu)

⊤dx

≼ 1

2

∫
p∗nu(x)(ξ(x)− ηnu)(ξ(x)− ηnu)

⊤dx

=
1

2
F (θ∗

nu),

F̃ ηde,11 =
1

2

∫
p∗nu(x)p

∗
de(x)

p∗nu(x) + p∗de(x)
(ξ(x)− ηde)(ξ(x)− ηde)

⊤dx

≼ 1

2

∫
p∗de(x)(ξ(x)− ηde)(ξ(x)− ηde)

⊤dx

=
1

2
F (θ∗

de)

hold. Therefore, we obtain

H11(θ
∗, θ∗0) ≽

1

2
F̃

−1

ηnu,11
+

1

2
F̃

−1

ηde,11

≽ F (θ∗
nu)

−1 + F (θ∗
de)

−1.

By multiplying F (θ∗
nu) from the left-hand side and taking the trace of both sides, we

obtain the inequality (24).

F Proof of Theorem 10

We prove the general expression (17) for any r in the exponential model. The optimality
condition of Eq.(16) provides the equality∫

p∗de(x)rC(x)dx =

∫
p∗nu(x)dx = 1.

Hence, we have ∫
p∗de(x)(r(x)− rC(x))dx =

∫
p∗de(x)r(x)dx− 1.
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Applying the Schwarz inequality to the above equality, we obtain

D(r, rC) ≥
∣∣∣∣∫ p∗de(x) r(x)dx− 1

∣∣∣∣2 .
Thus, r is different from rC unless p∗de · r is a probability density.

G Proof of Corollary 11

The optimality condition of the method (A) provides the equality∫
p∗nu(x)ξ(x)dx =

∫
pnu(x)ξ(x)dx.

Substituting the equality pnu(x) = pde(x)rA(x) into the above expression, we have∫
p∗nu(x)ξ(x)dx =

∫
pde(x)rA(x)ξ(x)dx.

When p∗de belongs to the exponential model, we have p∗de = pde and thus, the equality∫
p∗nu(x)ξ(x)dx =

∫
p∗de(x)rA(x)ξ(x)dx

holds. The above equation is exactly the same as the optimality condition of Eq.(16) for
the method (C). Thus, rA = rC holds.
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