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Abstract

The ratio of two probability density functions is becoming a quantity of interest
these days in the machine learning and data mining communities since it can be
used for various data processing tasks such as non-stationarity adaptation, outlier
detection, and feature selection. Recently, several methods have been developed for
directly estimating the density ratio without going through density estimation and
were shown to work well in various practical problems. However, these methods still
perform rather poorly when the dimensionality of the data domain is high. In this
paper, we propose to incorporate a dimensionality reduction scheme into a density-
ratio estimation procedure and experimentally show that the estimation accuracy
in high-dimensional cases can be improved.
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1 Introduction

The ratio of two probability density functions (a.k.a. the importance; see Fishman, 1996)
is attracting a great deal of attention these days in the machine learning and data mining
communities since it can be used for various statistical data processing tasks such as
covariate shift adaptation (Shimodaira, 2000; Zadrozny, 2004; Sugiyama et al., 2007),
transfer learning (Storkey & Sugiyama, 2007), multi-task learning (Bickel et al., 2008),
outlier detection (Hido et al., 2008), conditional density estimation (Sugiyama et al.,
2009), variable selection (Suzuki et al., 2008; Suzuki et al., 2009), independent component
analysis (Suzuki & Sugiyama, 2009a), and supervised dimensionality reduction (Suzuki &
Sugiyama, 2009b).

A naive approach to learning the density ratio is to estimate the two densities sepa-
rately using a flexible technique such as kernel density estimation (Härdle et al., 2004)
and then take the ratio of the estimated densities. However, this two-step approach is not
reliable in practice since kernel density estimation performs poorly in high-dimensional
cases; furthermore, division by an estimated density tends to magnify the estimation error.

Thus it is important to avoid density estimation when learning the density ratio.
Actually, estimating the densities is more general than estimating the density ratio since
knowing the densities implies knowing the ratio but not vice versa. Such a statement is
sometimes referred to as Vapnik’s principle (Vapnik, 1998) and the support vector machine
would be a successful example of this principle—instead of estimating the data generation
model, it directly models the decision boundary which is simpler and sufficient for pattern
recognition.

Following this spirit, various methods have been developed for directly estimating the
density ratio without going through density estimation (Qin, 1998; Cheng & Chu, 2004;
Huang et al., 2007; Bickel et al., 2007; Sugiyama et al., 2008; Kanamori et al., 2009a).
These methods are shown to compare favorably with naive kernel density estimation
through extensive experiments. However, these methods still perform rather poorly when
the dimensionality of the data domain is high.

The purpose of this paper is to develop a new method that can mitigate this prob-
lem. Our basic assumption behind the proposed method is that the difference of the
two distributions (i.e., the distributions corresponding to the denominator and numer-
ator of the density ratio) does not spread over the entire data domain, but is confined
in a subspace—which we refer to as the hetero-distributional subspace. Once the hetero-
distributional subspace can be identified, the density ratio is estimated only within this
subspace, which leads to more stable and reliable estimation of the density ratio. We ex-
perimentally show that the proposed method—which we refer to as Direct Density-ratio
estimation with Dimensionality reduction (D3; pronounced as ‘D-cube’)—improves the
accuracy of density ratio estimation in high-dimensional cases, while the computational
cost is still kept moderate.

The rest of this paper is organized as follows. In Section 2, we formulate the problem
of density ratio estimation and illustrate how the density ratio could be utilized in various
data processing tasks. In Section 3, the basic idea of the proposed method D3 is explained;
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the details of the method are explained in Sections 4–6. Numerical examples are presented
in Section 7 and concluding remarks are given in Section 8.

2 Formulation of Density Ratio Estimation Problem

In this section, we formulate the problem of density ratio estimation and briefly summarize
possible usage of the density ratio in various data processing tasks.

2.1 Problem Formulation

Let D (⊂ Rd) be the data domain and suppose we are given independent and identi-
cally distributed (i.i.d.) samples {xde

i }
nde
i=1 from a distribution with density pde(x) and

i.i.d. samples {xnu
j }nnu

j=1 from another distribution with density pnu(x). We assume that
the first density pde(x) is strictly positive, i.e.,

pde(x) > 0 for all x ∈ D.
The problem we address in this article is to estimate the density ratio (also called the
importance depending on the context)

r(x) :=
pnu(x)

pde(x)
(1)

from samples {xde
i }

nde
i=1 and {xnu

j }nnu
j=1. The subscripts ‘nu’ and ‘de’ denote ‘numerator’ and

‘denominator’, respectively.

2.2 Usage of Density Ratio in Data Processing

We are interested in estimating the density ratio since it is useful in various data processing
tasks. Here we briefly review possible usage of the density ratio.

2.2.1 Covariate Shift Adaptation

Covariate shift (Shimodaira, 2000) is a situation in supervised learning where the input
distributions change between the training and test phases but the conditional distribu-
tion of outputs given inputs remains unchanged. Under covariate shift, standard learning
techniques such as maximum likelihood estimation are biased; the bias caused by co-
variate shift can be asymptotically canceled by weighting the loss function according to
the importance (Shimodaira, 2000; Zadrozny, 2004; Sugiyama & Müller, 2005; Sugiyama
et al., 2007). The basic idea of covariate shift adaptation is summarized in the following
importance sampling identity:

E
pnu(x)

[g(x)] =

∫
g(x)pnu(x)dx

=

∫
g(x)r(x)pde(x)dx = E

pde(x)
[g(x)r(x)],
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where r(x) is defined by Eq.(1). That is, the expectation of a function g(x) over pnu(x)
can be computed by the importance-weighted expectation over pde(x). Similarly, stan-
dard model selection criteria such as cross-validation or Akaike’s information criterion
lose their unbiasedness due to covariate shift; proper unbiasedness can be recovered by
modifying the methods based on importance weighting (Shimodaira, 2000; Zadrozny,
2004; Sugiyama & Müller, 2005; Sugiyama et al., 2007; Huang et al., 2007; Quiñonero-
Candela et al., 2009). Furthermore, the performance of active learning or the experiment
design—the training input distribution is designed by the user to enhance the general-
ization performance—could also be improved by the use of the importance (Wiens, 2000;
Kanamori & Shimodaira, 2003; Sugiyama, 2006; Sugiyama & Nakajima, 2009).

Thus the importance plays a central role in covariate shift adaptation and density-
ratio estimation methods could be utilized for reducing the estimation bias under covari-
ate shift. Examples of successful real-world applications include brain-computer interface
(Sugiyama et al., 2007), robot control (Hachiya et al., 2009), speaker identification (Ya-
mada et al., 2009), and natural language processing (Tsuboi et al., 2009). A similar
importance-weighting idea also plays a central role in domain adaptation (Storkey &
Sugiyama, 2007) and multi-task learning (Bickel et al., 2008).

2.2.2 Inlier-based Outlier Detection

Let us consider an outlier detection problem (Breunig et al., 2000; Schölkopf et al., 2001)
of finding irregular samples in a dataset (‘evaluation dataset’) based on another dataset
(‘model dataset’) that only contains regular samples. Defining the density ratio over the
two sets of samples, we can see that the density-ratio values for regular samples are close to
one, while those for outliers tend to be significantly deviated from one. Thus the density-
ratio value could be used as an index of the degree of outlyingness (Hido et al., 2008).
Since the evaluation dataset has a wider support than the model dataset, we regard the
evaluation dataset as samples corresponding to pde(x) and the model dataset as samples
corresponding to pnu(x). Then outliers tend to have smaller density-ratio values (i.e.,
close to zero). As such, density-ratio estimation methods could be employed in outlier
detection scenarios.

A similar idea could be used for change-point detection in time-series (Brodsky &
Darkhovsky, 1993; Kawahara & Sugiyama, 2009) and two-sample problems in hypothesis
testing (Henkel, 1979).

2.2.3 Conditional Density Estimation

Suppose we are given n i.i.d. paired samples {(xk,yk)}nk=1 drawn from a joint distribution
with density q(x,y). The goal is to estimate the conditional density q(y|x). When the
domain of x is continuous, conditional density estimation is not straightforward since a
naive empirical approximation cannot be used (Bishop, 2006; Takeuchi et al., 2009).

In the context of density ratio estimation, let us regard {(xk,yk)}nk=1 as samples
corresponding to the numerator of the density ratio and {xk}nk=1 as samples corresponding
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to the denominator of the density ratio, i.e., we consider the density ratio defined by

r(x,y) :=
q(x,y)

q(x)
= q(y|x),

where q(x) is the marginal density of x. Thus a density-ratio estimation method directly
gives an estimate of the conditional density.

2.2.4 Mutual Information Estimation

Suppose we are given n i.i.d. paired samples {(xk,yk)}nk=1 drawn from a joint distribution
with density q(x,y). Let us denote the marginal densities of x and y by q(x) and q(y),
respectively. Then mutual information I(X,Y ) between random variables X and Y is
defined by

I(X, Y ) :=

∫∫
q(x,y) log

q(x,y)

q(x)q(y)
dxdy,

which plays a central role in information theory (Cover & Thomas, 1991).
Let us regard {(xk,yk)}nk=1 as samples corresponding to the numerator of the density

ratio and {(xk,yk′)}nk,k′=1 as samples corresponding to the denominator of the density
ratio. Then mutual information can be directly estimated using a density-ratio estimation
method.

Mutual information can be used for measuring independence between random variables
(Kraskov et al., 2004; Hulle, 2005) since it vanishes if and only if x and y are statistically
independent. Thus we can use density-ratio estimation methods, e.g., for variable selection
(Suzuki et al., 2008; Suzuki et al., 2009), independent component analysis (Suzuki &
Sugiyama, 2009a), and supervised dimensionality reduction (Suzuki & Sugiyama, 2009b).

3 Density Ratio Estimation with Dimensionality Re-

duction

As shown above, the density ratio is a useful quantity in various data processing tasks.
However, the density ratio is usually unknown and needs to be estimated from data.
Although methods of estimating the density ratio have been studied actively these days
(Qin, 1998; Cheng & Chu, 2004; Huang et al., 2007; Bickel et al., 2007; Sugiyama et al.,
2008; Kanamori et al., 2009a), estimating the density ratio in high-dimensional spaces
is still a challenging problem. The goal of this paper is to give a practical density ratio
estimation procedure for high-dimensional data. In this section, we describe the basic
idea of the proposed procedure; details of the components of the procedure are described
in the following sections.

3.1 Density Difference in Hetero-distributional Subspace

The basic assumption behind the proposed method is that the densities pde(x) and pnu(x)
are not different in the entire space, but they are different only in some subspace. This
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assumption can be mathematically formulated with the following linear mixing model.
Let {ude

i }
nde
i=1 be i.i.d. samples drawn from an m-dimensional distribution with density

pde(u), wherem is an integer such that 1 ≤ m ≤ d and we assume pde(u) > 0 for all u. Let
{unu

j }nnu
j=1 be i.i.d. samples drawn from another m-dimensional distribution with density

pnu(u). Let {vde
i }

nde
i=1 and {vnu

j }nnu
j=1 be i.i.d. samples drawn from a (d − m)-dimensional

distribution with density p(v); we assume p(v) > 0 for all v. Let A be a d ×m matrix
and B be a d× (d−m) matrix such that the column vectors of A and B span the entire
space. Based on these quantities, we consider the case where the samples {xde

i }
nde
i=1 and

{xnu
j }nnu

j=1 are generated as

xde
i = Aude

i +Bvde
i ,

xnu
j = Aunu

j +Bvnu
j .

Thus, pde(x) and pnu(x) are expressed as

pde(x) = c pde(u)p(v),

pnu(x) = c pnu(u)p(v),

where c is the Jacobian between the observation x and the equi-/hetero-distributional
components (u,v). We call R(A) and R(B) the hetero-distributional subspace and the
equi-distributional subspace, respectively, where R(·) denotes the range of a matrix. Note
that R(A) and R(B) are not generally orthogonal (see Figure 1).

Under the above decomposability assumption, the density ratio is simplified as

r(x) =
pnu(x)

pde(x)
=
c pnu(u)p(v)

c pde(u)p(v)
=
pnu(u)

pde(u)
= r(u). (2)

This means that the density ratio does not have to be estimated in the entire d-dimensional
space, but only in the hetero-distributional subspace of dimension m (≤ d). Now we want
to extract the hetero-distributional components ude

i and unu
j from xde

i and xnu
j , allowing

estimation of the density ratio in R(A) via Eq.(2). As illustrated in Figure 1, the oblique
projection of xde

i and xnu
j onto R(A) along R(B) allows us to obtain ude

i and unu
j .

3.2 Characterization of Hetero-distributional Subspace

Let us denote the oblique projection matrix onto R(A) along R(B) by PR(A),R(B). In
order to characterize the oblique projection matrix PR(A),R(B), let us consider dual bases
U and V for A and B, respectively, i.e., U is an m× d matrix and V is a (d−m)× d
matrix such that they are bi-orthogonal to each other:

UB = Om×(d−m),

V A = O(d−m)×m,

where Om×m′ denotes the m × m′ matrix with all zeros. Thus R(B) and R(U⊤) are
orthogonal, and R(A) and R(V ⊤) are orthogonal where ⊤ denotes the transpose. When
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(a) pde(x) ∝ pde(u)p(v) (b) pnu(x) ∝ pnu(u)p(v)

Figure 1: A schematic picture of the hetero-distributional subspace for d = 2 and m = 1.
Let A ∝ (1, 0)⊤ and B ∝ (1, 2)⊤; then U ∝ (2,−1) and V ∝ (0, 1). R(A) and R(B)
are called the hetero-distributional subspace and the equi-distributional subspace, respec-
tively. If a data point x is projected onto R(A) along R(B), the equi-distributional
component v can be eliminated and the hetero-distributional component u can be ex-
tracted.

R(A) andR(B) are orthogonal,R(U⊤) agrees withR(A) andR(V ⊤) agrees withR(B);
however, they are different in general as illustrated in Figure 1.

The relation betweenA andB and the relation betweenU and V can be characterized
in terms of the covariance matrix Σ (of either pde(x) or pnu(x)) as

A⊤Σ−1B = O(d−m)×m, (3)

UΣV ⊤ = Om×(d−m). (4)

These orthogonarilies in terms of Σ follow from the statistical independence between
the components in R(A) and R(B)—more specifically, Eq.(3) follows from the fact that
the sphering operation (transforming samples x by Σ−1/2 in advance) orthogonalizes
independent components u and v (Hyvärinen et al., 2001) and Eq.(4) is its dual expression
(Kawanabe et al., 2007). After sphering, the covariance matrix becomes identity and all
the discussions become simpler. However, estimating the covariance matrix from samples
is erroneous and taking its inverse further magnifies the estimation error. For this reason,
we directly deal with non-orthogonal A and B below.

For normalization purposes, we further assume that

UA = Im,

V B = Id−m,

where Im denotes the m-dimensional identity matrix. Then the oblique projection ma-
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trices PR(A),R(B) and PR(B),R(A) can be expressed as

PR(A),R(B) = AU ,

PR(B),R(A) = BV ,

which can be confirmed by the facts that P 2
R(A),R(B) = PR(A),R(B) (idempotence), the

null space of PR(A),R(B) is R(B), and the range of PR(A),R(B) is R(A); the same goes for
PR(B),R(A). The above expressions of PR(A),R(B) and PR(B),R(A) imply that U plays a
role of expressing projected images in an m-dimensional coordinate system within R(A),
and V plays a role of expressing projected images in a (d −m)-dimensional coordinate
system within R(B). We call U and V the hetero-distributional mapping and the equi-
distributional mapping, respectively.

Now ude
i , unu

j , vde
i , and vnu

j are expressed as

ude
i = Uxde

i ,

unu
j = Uxnu

j ,

vde
i = V xde

i ,

vnu
j = V xnu

j .

Thus, if the hetero-distributional mapping U was estimated, estimation of the density
ratio r(x) could be carried out in a low-dimensional hetero-distributional subspace via
Eq.(2).

We show how to estimate the hetero-distributional mapping U in Section 4, and then
we give a method of estimating the density ratio within the hetero-distributional subspace
in Section 5. For a while, we assume that the dimension m of the hetero-distributional
subspace is known; we show how m is estimated in Section 6. Below, we refer to the
proposed method as Direct Density-ratio estimation with Dimensionality reduction (D3).

4 Identifying the Hetero-distributional Subspace by

Supervised Dimensionality Reduction

In this section, we show how to estimate the hetero-distributional subspace.

4.1 Basic Idea

In order to estimate the hetero-distributional subspace, we need a criterion that reflects
the degree of distributional difference in a subspace. A key observation in this context is
that the existence of distributional difference can be checked whether samples from the
two distributions can be separated from each other. That is, if we can distinguish samples
of one distribution from the samples of the other distribution, we may conclude that two
distributions are different; otherwise distributions may be similar. We employ this idea
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for finding the hetero-distributional subspace. Let us denote the samples projected onto
the hetero-distributional subspace by

{ude
i | ude

i = Uxde
i }

nde
i=1,

{unu
j | unu

j = Uxnu
j }nnu

j=1.

Then our goal is to find the matrix U such that {ude
i }

nde
i=1 and {unu

j }nnu
j=1 are maximally

separated from each other. For that purpose, we may use any supervised dimensionality
reduction methods.

Among various supervised dimensionality reduction methods (e.g., Hastie & Tibshi-
rani, 1996a; Hastie & Tibshirani, 1996b; Fukumizu et al., 2004; Goldberger et al., 2005;
Globerson & Roweis, 2006), we decided to use local Fisher discriminant analysis (LFDA;
Sugiyama, 2007) which is an extension of classical Fisher discriminant analysis (FDA;
Fisher, 1936). LFDA has various practically useful properties, e.g., there is no limitation
on the dimension of the reduced subspace, it works well even when data has multimodal
structure (such as separate clusters), it is robust against outliers, its solution can be ana-
lytically computed using eigenvalue decomposition in a stable and efficient manner, and
its experimental performance is shown to be better than other methods.

The rest of this section is devoted to reviewing technical details of LFDA—showing
how to use it in search for the hetero-distributional subspace and discussing the validity
of our choice. Below, we consider a set of binary-labeled training samples

{(xk, yk) | xk ∈ Rd, yk ∈ {+1,−1}}nk=1,

and reduce the dimensionality of xk using an m× d transformation matrix T matrix as

Txk.

Effectively, the training samples {(xk, yk)}nk=1 correspond to the following setup: for n =
nde + nnu,

{xk}nk=1 = {xde
i }

nde
i=1 ∪ {xnu

j }nnu
j=1,

yk =

{
+1 if xk ∈ {xde

i }
nde
i=1,

−1 if xk ∈ {xnu
j }nnu

j=1.

4.2 Fisher Discriminant Analysis (FDA)

Since LFDA is an extention of FDA (Fisher, 1936), we first briefly review original FDA.
Let n+ and n− be the number of samples in class +1 and −1, respectively. Let µ, µ+,
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and µ− be the mean of {xk}nk=1, {xk|yk = +1}nk=1, and {xk|yk = −1}nk=1, respectively:

µ :=
1

n

n∑
k=1

xk,

µ+ :=
1

n+

∑
k:yk=+1

xk,

µ− :=
1

n−

∑
k:yk=−1

xk.

Let Sb and Sw be the between-class scatter matrix and the within-class scatter matrix
defined as

Sb := n+(µ+ − µ)(µ+ − µ)⊤ + n−(µ− − µ)(µ− − µ)⊤,

Sw :=
∑

k:yk=+1

(xk − µ+)(xk − µ+)
⊤ +

∑
k:yk=−1

(xk − µ−)(xk − µ−)
⊤.

The FDA transformation matrix T FDA is defined as

T FDA := argmax
T∈Rm×d

[
tr(TSbT⊤(TSwT⊤)−1)

]
.

That is, FDA seeks a transformation matrix T such that between-class scatter is maxi-
mized and within-class scatter is minimized in the embedding space Rm.

Let {ϕl}dl=1 be the generalized eigenvectors associated with the generalized eigenvalues
{λl}dl=1 of the following generalized eigenvalue problem:

Sbϕ = λSwϕ.

We assume that the generalized eigenvalues are sorted as

λ1 ≥ λ2 ≥ · · · ≥ λd.

Then a solution T FDA is analytically given as follows (e.g., Duda et al., 2001):

T FDA = (ϕ1|ϕ2| · · · |ϕm)
⊤.

Thus FDA is computationally efficient.
FDA works very well if samples in each class are Gaussian with common covariance

structure. However, it tends to give undesired results if samples in a class form several
separate clusters or there exist outliers. Furthermore, the between-class scatter matrix Sb

is known to have rank one in the current setup (see e.g., Fukunaga, 1990), implying that
we can obtain only one meaningful feature ϕ1 through the FDA criterion; the remaining
features {ϕl}dl=2 found by FDA are arbitrary in the null space of Sb. This is an essential
limitation of FDA in dimensionality reduction.



Dimensionality Reduction for Density Ratio Estimation in High-Dimensional Spaces 11

4.3 Local Fisher Discriminant Analysis (LFDA)

In order to overcome the weaknesses of FDA explained above, LFDA has been introduced
(Sugiyama, 2007). Here, we explain the main idea of LFDA briefly.

The scatter matrices Sb and Sw in original FDA can be expressed in the pairwise
form as follows.

Sb =
1

2

n∑
k,k′=1

W b
k,k′(xk − xk′)(xk − xk′)

⊤,

Sw =
1

2

n∑
k,k′=1

Ww
k,k′(xk − xk′)(xk − xk′)

⊤,

where

W b
k,k′ :=


1/n− 1/n+ if yk = yk′ = +1,
1/n− 1/n− if yk = yk′ = −1,

1/n if yk ̸= yk′ ,

Ww
k,k′ :=


1/n+ if yk = yk′ = +1,
1/n− if yk = yk′ = −1,
0 if yk ̸= yk′ .

Based on the above pairwise expression, let us define the local between-class scatter
matrix Slb and the local within-class scatter matrix Slw as

Slb :=
1

2

n∑
k,k′=1

W lb
k,k′(xk − xk′)(xk − xk′)

⊤,

Slw :=
1

2

n∑
k,k′=1

W lw
k,k′(xk − xk′)(xk − xk′)

⊤,

where

W lb
k,k′ :=


Ak,k′(1/n− 1/n+) if yk = yk′ = +1,
Ak,k′(1/n− 1/n−) if yk = yk′ = −1,

1/n if yk ̸= yk′ ,

W lw
k,k′ :=


Ak,k′/n+ if yk = yk′ = +1,
Ak,k′/n− if yk = yk′ = −1,

0 if yk ̸= yk′ .

Ak,k′ is the affinity value between xk and xk′ defined based on the local scaling heuristic
(Zelnik-Manor & Perona, 2005):

Ak,k′ := exp

(
−∥xk − xk′∥2

ηkηk′

)
.
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ηk is the local scaling factor around xk defined by

ηk := ∥xk − x
(K)
k ∥,

where x
(K)
k denotes the K-th nearest neighbor of xk. A heuristic choice of K = 7

was shown to be useful through extensive simulations (Zelnik-Manor & Perona, 2005;
Sugiyama, 2007). Note that the local scaling factors are computed in a classwise manner
in LFDA.

Based on the local scatter matrices Slb and Slw, the LFDA transformation matrix
T LFDA is defined as

T LFDA := argmax
T∈Rm×d

[
tr(TSlbT⊤(TSlwT⊤)−1)

]
.

The definition of Slb and Slw implies that LFDA seeks a transformation matrix T such
that nearby data pairs in the same class are made close and the data pairs in different
classes are made apart; far apart data pairs in the same class are not imposed to be close.

By this localization effect, LFDA can overcome the weakness of original FDA against
clustered data and outliers. When Ak,k′ = 1 for all k, k′ (i.e., no locality), Slw and Slb are
reduced to Sw and Sb. Thus, LFDA could be regarded as a natural localized variant of
FDA. The between-class scatter matrix Sb in original FDA had only rank one, while its
local counterpart Slb in LFDA usually has full rank with no multiplicity in eigenvalues
(given n ≥ d). Therefore, LFDA can be applied to dimensionality reduction into any
dimensional spaces, which is a significant advantage over original FDA.

A solution T LFDA can be computed in the same way as original FDA; namely, the
LFDA solution is given as

T LFDA = (φ1|φ2| · · · |φm)
⊤,

where {φl}dl=1 are the generalized eigenvectors associated with the generalized eigenvalues
{γl}dl=1 of the following generalized eigenvalue problem:

Slbφ = γSlwφ. (5)

We assume that the generalized eigenvalues are sorted as

γ1 ≥ γ2 ≥ · · · ≥ γd.

Thus LFDA is computationally as efficient as original FDA. A pseudo code of LFDA is
summarized in Figure 2.

4.4 Use of LFDA for Finding Hetero-distributional Subspace

Finally, we show how to obtain an estimate of the transformation matrix U needed in the
density-ratio estimation procedure (see Section 4.1 again) from the LFDA transformation
matrix T LFDA.
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Input: Two sets of samples {xde
i }

nde
i=1 and {xnu

j }nnu
j=1 on Rd

Dimensionality of embedding space m (1 ≤ m ≤ d)

Output: m× d transformation matrix Û

x̃de
i ←− 7th nearest neighbor of xde

i among {xde
i′ }

nde

i′=1 for i = 1, 2, . . . , nde;
x̃nu
j ←− 7th nearest neighbor of xnu

j among {xnu
j′ }

nnu

j′=1 for j = 1, 2, . . . , nnu;

ηdei ←− ∥xde
i − x̃de

i ∥ for i = 1, 2, . . . , nde;
ηnuj ←− ∥xnu

j − x̃nu
j ∥ for j = 1, 2, . . . , nnu;

Ade
i,i′ ←− exp

(
−∥x

de
i − xde

i′ ∥2

ηdei η
de
i′

)
for i, i′ = 1, 2, . . . , nde;

Anu
j,j′ ←− exp

(
−
∥xnu

j − xnu
j′ ∥2

ηnuj η
nu
j′

)
for j, j′ = 1, 2, . . . , nnu;

Xde ←− (xde
1 |xde

2 | · · · |xde
nde

);
Xnu ←− (xnu

1 |xnu
2 | · · · |xnu

nnu
);

Gde ←−Xdediag(Ade1nde
)X⊤

de −XdeAdeX
⊤
de;

Gnu ←−Xnudiag(Anu1nnu)X
⊤
nu −XnuAnuX

⊤
nu;

Slw ←− 1
nde

Gde +
1

nnu
Gnu;

n←− nde + nnu;
Slb ←− ( 1

n
− 1

nde
)Gde + ( 1

n
− 1

nnu
)Gnu +

nnu

n
XdeX

⊤
de +

nde

n
XnuX

⊤
nu

− 1
n
Xde1nde

(Xnu1nnu)
⊤ − 1

n
Xnu1nnu(Xde1nde

)⊤;
{γl,φl}ml=1 ←− generalized eigenvalues and eigenvectors of Slbφ = γSlwφ;

% γ1 ≥ γ2 ≥ · · · ≥ γd
{φ̃l}ml=1 ←− orthonormal basis of {φl}ml=1;

% span({φ̂l}m
′

l=1) = span({φl}m
′

l=1) for m
′ = 1, 2, . . . ,m

Û ←− (φ̃1|φ̃2| · · · |φ̃m)
⊤;

Figure 2: Pseudo code of LFDA. 1n denotes the n-dimensional vectors with
all ones, and diag(b) denotes the diagonal matrix with diagonal elements spec-
ified by a vector b. A MATLAB implementation of LFDA is available from
‘http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LFDA/’.

First, an orthonormal basis {φ̃l}ml=1 of the LFDA subspace is computed from the
generalized eigenvectors {φl}ml=1 so that the span of {φ̃l}m

′

l=1 agrees with the span of
{φl}m

′

l=1 for all m′ (1 ≤ m′ ≤ m). This can be carried out e.g., by the Gram-Schmidt

orthonormalization (see e.g., Albert, 1972). Then an estimate Û is given as

Û := (φ̃1|φ̃2| · · · |φ̃m)
⊤,

and the samples are transformed as

ûde
i := Ûxde

i for i = 1, 2, . . . , nde,

ûnu
j := Ûxnu

j for j = 1, 2, . . . , nnu.
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The above expression of Û implies another useful advantage of LFDA. In the proposed
density-ratio estimation procedure, we need the LFDA solution for each reduced dimen-
sionality m′ = 1, 2, . . . , d (see Section 6). However, we do not actually have to compute
the LFDA solution for each m′, but only to solve the generalized eigenvalue problem (5)
once for m′ = d and compute the orthonormal basis {φ̃l}dl=1; the solution for m′ < d can
be obtained by simply taking the first m′ basis vectors {φ̃l}m

′

l=1.

4.5 Discussion

The hetero-distributional subspace can be identified by measuring the degree of distribu-
tional difference in a subspace and finding the subspace that has the smallest distributional
difference.

The problem of measuring the degree of distributional difference is also called the two-
sample problem in the context of significance tests, and the most fundamental approach
would be the t-test and its multi-variate extension (Hotelling, 1951). However, the t-test
is based on the parametric assumption that the target distribution is Gaussian and this
model assumption is too restrictive in practical data analysis.

The Kolmogorov-Smirnov test and the Wald-Wolfowitz runs test are classical non-
parametric methods of the two-sample problem; their multi-dimensional variants have
also been developed (Bickel, 1969; Friedman & Rafsky, 1979). More recently, different
types of non-parametric tests have been proposed, e.g., based on the permutation test
(Hall & Tajvidi, 2002), the distance between the densities (Anderson et al., 1994; Biau
& Gyorfi, 2005), and moment matching with the kernel trick (Borgwardt et al., 2006;
Gretton et al., 2007). However, these methods tend to suffer from serious computational
problems and therefore they are not applicable to large-scale problems.

Compared with other supervised dimensionality reduction methods such as the method
based on discriminant adaptive nearest neighbor classifiers (Hastie & Tibshirani, 1996a),
mixture discriminant analysis (Hastie & Tibshirani, 1996b), kernel dimensionality re-
duction (Fukumizu et al., 2004), neighborhood component analysis (Goldberger et al.,
2005), and maximally collapsing metric learning (Globerson & Roweis, 2006), LFDA is
advantageous in that it works well even when data has multimodal structure (such as
separate clusters), it is robust against outliers, its solution can be analytically computed
using eigenvalue decomposition in a stable and efficient manner, and its experimental
performance is shown to be better than other methods.

Thus, for developing a density-ratio estimation method that is flexible and computa-
tionally efficient, the use of LFDA would be suitable.

5 Directly Estimating Density Ratio without Density

Estimation

Given that the hetero-distributional subspace has been successfully identified, the next
step is to estimate the density ratio within the subspace. In this section, we describe our
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approach.

5.1 Basic Idea

A naive approach to estimating the density ratio r(u) is to estimate the two densities
pde(u) and pnu(u) separately from samples {ude

i }
nde
i=1 and {unu

j }nnu
j=1 using a flexible tech-

nique such as kernel density estimation (Härdle et al., 2004), and then take the ratio of
the estimated densities. However, this naive approach is not reliable since division by an
estimated density tends to magnify the estimation error, which can heavily degrade the
estimation accuracy in practice1.

To cope with this problem, several methods have been proposed for directly esti-
mating the density ratio without going through density estimation (Qin, 1998; Cheng
& Chu, 2004; Huang et al., 2007; Bickel et al., 2007; Sugiyama et al., 2008; Kanamori
et al., 2009a). Among them, we decided to use the method called unconstrained least-
squares importance fitting (uLSIF) (Kanamori et al., 2009a) since it has several advantages
over the other methods, e.g., its solution can be analytically computed by solving a sys-
tem of linear equations in a stable and efficient manner, model selection is possible via
cross-validation (CV), the leave-one-out CV score can be computed analytically without
repeating hold-out loops, and it is reported to perform well in experiments.

In the rest of this section, we review technical details of uLSIF and discuss the validity
of our choice.

5.2 Linear Least-squares Estimation of Density Ratio

Let us model the density ratio r(u) by the following linear model:

r̂(u) :=
b∑

ℓ=1

αℓψℓ(u),

where
α := (α1, α2, . . . , αb)

⊤

are parameters to be learned from data samples and {ψℓ(u)}bℓ=1 are basis functions such
that

ψℓ(u) ≥ 0 for all u and for ℓ = 1, 2, . . . , b.

Note that b and {ψℓ(u)}bℓ=1 could be dependent on the samples {ude
i }

nde
i=1 and {unu

j }nnu
j=1

so kernel models are also allowed. We explain how the basis functions {ψℓ(u)}bℓ=1 are
designed in Section 5.3.

1Furthermore, kernel density estimation does not allow us to choose the dimensionality of the hetero-
distributional subspace (see Section 6).
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The parameters {αℓ}bℓ=1 in the model r̂(u) are determined so that the following squared
error J0 is minimized:

J0(α) :=
1

2

∫
(r̂(u)− r(u))2 pde(u)du

=
1

2

∫
r̂(u)2pde(u)du−

∫
r̂(u)pnu(u)du+

1

2

∫
r(u)pnu(u)du,

where the last term is a constant and therefore can be safely ignored. Let us denote the
first two terms by J :

J(α) :=
1

2

∫
r̂(u)2pde(u)du−

∫
r̂(u)pnu(u)du. (6)

Note that the same objective function can be obtained via the Legendre-Fenchel duality
of a divergence (Nguyen et al., 2008).

Approximating the expectations in J by empirical averages and replacing U by its
estimate Û (see Section 4), we obtain

Ĵ(α) :=
1

2nde

nde∑
i=1

r̂(ûde
i )2 − 1

nnu

nnu∑
j=1

r̂(ûnu
j )

=
1

2

b∑
ℓ,ℓ′=1

αℓαℓ′

(
1

nde

nde∑
i=1

ψℓ(û
de
i )ψℓ′(û

de
i )

)
−

b∑
ℓ=1

αℓ

(
1

nnu

nnu∑
j=1

ψℓ(û
nu
j )

)

=
1

2
α⊤Ĥα− ĥ

⊤
α,

where Ĥ is the b× b matrix with the (ℓ, ℓ′)-th element

Ĥℓ,ℓ′ :=
1

nde

nde∑
i=1

ψℓ(û
de
i )ψℓ′(û

de
i ),

and ĥ is the b-dimensional vector with the ℓ-th element

ĥℓ :=
1

nnu

nnu∑
j=1

ψℓ(û
nu
j ).

Now the optimization problem is formulated as follows.

α̃ := argmin
α∈Rb

[
1

2
α⊤Ĥα− ĥ

⊤
α+

λ

2
α⊤α

]
, (7)

where a penalty term λα⊤α/2 is included for regularization purposes and λ (≥ 0) is a
regularization parameter that controls strength of regularization. It is easy to confirm
that the solution of Eq.(7) can be analytically computed as

α̃ = (Ĥ + λIb)
−1ĥ,
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where Ib is the b-dimensional identity matrix.
The density ratio is always non-negative by definition, but some of the parameters

{α̂ℓ}bℓ=1 obtained through the above optimization problem could be negative. To cope
with this problem, we modify the solution as

α̂ := max(0b, α̃),

where 0b is the b-dimensional vectors with all zeros, and the ‘max’ operation for a pair of
vectors is applied in the element-wise manner. Thanks to this analytic-form expression,
the computation of the uLSIF solution is fast and stable.

It was theoretically shown that uLSIF is superior in statistical convergence and nu-
merical stability (Kanamori et al., 2008; Kanamori et al., 2009b).

5.3 Basis Function Design

The performance of uLSIF depends on the choice of the basis functions {ψℓ(u)}bℓ=1. As
explained below, the use of Gaussian basis functions would be reasonable:

r̂(u) =
nnu∑
ℓ=1

αℓKσ(u, û
nu
ℓ ),

where Kσ(u,u
′) is the Gaussian kernel with kernel width σ:

Kσ(u,u
′) = exp

(
−∥u− u′∥2

2σ2

)
.

By definition, the density ratio r(u) tends to take large values if pde(u) is small and pnu(u)
is large; conversely, r(u) tends to be small (i.e., close to zero) if pde(u) is large and pnu(u)
is small. When a function is approximated by a Gaussian kernel model, many kernels
may be needed in the region where the output of the target function is large; on the other
hand, only a small number of kernels would be enough in the region where the output of
the target function is close to zero. Following this heuristic, many kernels are allocated
in the region where pnu(u) has large values, which may be approximately achieved by
setting the Gaussian centers at {ûnu

j }nnu
j=1.

Alternatively, we may locate (nde + nnu) Gaussian kernels at both {ûde
i }

nde
i=1 and

{ûnu
j }nnu

j=1. However, in our preliminary experiments, this did not further improve the
performance, but slightly increased the computational cost. When nnu is very large, just
using all the test input points {ûnu

j }nnu
j=1 as Gaussian centers is already computationally

rather demanding. To ease this problem, we practically use a subset of {ûnu
j }nnu

j=1 as
Gaussian centers for computational efficiency, i.e.,

r̂(u) =
b∑

ℓ=1

αℓKσ(u, cℓ),

where {cℓ}bℓ=1 are template points randomly chosen from {ûnu
j }nnu

j=1 without replacement
and b (≤ nnu) is a prefixed number; in the experiments, we set

b = min(100, nnu).
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5.4 Model Selection

The performance of uLSIF depends on the kernel width σ and the regularization parameter
λ. Model selection of uLSIF is possible based on cross-validation (CV) with respect to
the error criterion (6).

A significant advantage of uLSIF is that the score of leave-one-out CV (LOOCV)
can be computed analytically—thanks to this property, the computational complexity for
performing LOOCV is reduced to the same order of magnitude as just computing a single
solution, which is explained below.

In the current setting, two sets of samples {ûde
i }

nde
i=1 and {ûnu

j }nnu
j=1 are given, which

generally have different sample size. For

n := min(nde, nnu),

we hold out ûde
k and ûnu

k (k = 1, 2, . . . , n) at the same time in the LOOCV procedure.
Note that this is only for the sake of simplicity—the combination of the samples can be
arbitrarily permuted without sacrificing the computational advantages.

Let r̂(k)(u) be an estimate of the density ratio obtained without ûde
k and ûnu

k . Then
the LOOCV score is expressed as

ĴLOOCV =
1

n

n∑
k=1

[
1

2
(r̂(k)(ûde

k ))2 − r̂(k)(ûnu
k )

]
.

Our approach to efficiently computing the LOOCV score is to use the Sherman-Woodbury-
Morrison formula (Golub & Loan, 1996) for computing matrix inverses: for an invertible
square matrix A and vectors ξ and η such that η⊤A−1ξ ̸= −1, the Sherman-Woodbury-
Morrison formula states that

(A+ ξη⊤)−1 = A−1 − A−1ξη⊤A−1

1 + η⊤A−1ξ
.

A pseudo code of uLSIF with LOOCV-based model selection is summarized in Figure 3.

5.5 Discussion

Kernel density estimation (KDE) is efficient in computation since no optimization is
involved, and model selection is possible by CV (Härdle et al., 2004). However, the use of
KDE in density ratio estimation can be inaccurate since division by an estimated density
tends to magnify the estimation error.

Kernel mean matching (KMM) (Huang et al., 2007) overcomes this problem by di-
rectly estimating the density ratio. The basic idea of KMM is to find r̂(u) such that
the mean discrepancy between nonlinearly transformed samples drawn from pde(u) and
pnu(u) is minimized in a universal reproducing kernel Hilbert space (Steinwart, 2001);
the Gaussian kernel is an example of kernels that induce a universal reproducing kernel
Hilbert space. Within this formulation, density ratio estimates at the given data samples
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Input: Two sets of samples {ûde
i }

nde
i=1 and {ûnu

j }nnu
j=1

Output: Density ratio estimate r̂(u)

b←− min(100, nnu); n←− min(nde, nnu);
Randomly choose b centers {cℓ}bℓ=1 from {ûnu

j }nnu
j=1 without replacement;

For each candidate of Gaussian width σ

Ĥℓ,ℓ′ ←−
1

nde

nde∑
i=1

exp

(
−∥û

de
i − cℓ∥2 + ∥ûde

i − cℓ′∥2

2σ2

)
for ℓ, ℓ′ = 1, 2, . . . , b;

ĥℓ ←−
1

nnu

nnu∑
j=1

exp

(
−
∥ûnu

j − cℓ∥2

2σ2

)
for ℓ = 1, 2, . . . , b;

Xde
ℓ,k ←− exp

(
−||û

de
k − cℓ||2

2σ2

)
for k = 1, 2, . . . , n and ℓ = 1, 2, . . . , b;

Xnu
ℓ,k ←− exp

(
−||û

nu
k − cℓ||2

2σ2

)
for k = 1, 2, . . . , n and ℓ = 1, 2, . . . , b;

For each candidate of regularization parameter λ

Ĝ←− Ĥ +
λ(nde − 1)

nde

Ib;

F ←− Ĝ
−1
Xde;

C ←− max

(
Ob×n,

nde − 1

nde(nnu − 1)

[
nnuĜ

−1
ĥ1⊤

n − Ĝ
−1
Xnu

+F diag

(
nnuĥ

⊤
F − 1⊤

b (X
nu ∗ F )

nde1
⊤
n − 1⊤

b (X
de ∗ F )

)])
;

ĴLOOCV(σ, λ)←− ∥(X
de ∗C)⊤1b∥2

2n
− 1⊤

b (X
nu ∗C)1n

n
;

end
end

(σ̂, λ̂)←− argmin(σ,λ) Ĵ
LOOCV(σ, λ);

H̃ℓ,ℓ′ ←−
1

nde

nde∑
i=1

exp

(
−∥û

de
i − cℓ∥2 + ∥ûde

i − cℓ′∥2

2σ̂2

)
for ℓ, ℓ′ = 1, 2, . . . , b;

h̃ℓ ←−
1

nnu

nnu∑
j=1

exp

(
−
∥ûnu

j − cℓ∥2

2σ̂2

)
for ℓ = 1, 2, . . . , b;

α̂←− max(0b, (H̃ + λ̂Ib)
−1h̃);

r̂(u)←−
b∑

ℓ=1

α̂ℓ exp

(
−∥u− cℓ∥2

2σ̂2

)
;

Figure 3: Pseudo code of uLSIF with LOOCV. R ∗ R′ denotes the element-wise
multiplication of matrices R and R′ of the same size. For n-dimensional vec-
tors r and r′, diag

(
r
r′

)
denotes the n × n diagonal matrix with i-th diagonal ele-

ment ri/r
′
i. 1b denotes the b-dimensional vectors with all ones. Ob×n denotes the

b × n matrix with all zero. A MATLAB implementation of uLSIF is available from
‘http://sugiyama-www.cs.titech.ac.jp/~sugi/software/uLSIF/’.
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can be directly obtained by solving a convex quadratic programming problem. However,
there is no objective model selection method and therefore model parameters such as the
Gaussian width and the regularization parameter need to be chosen by hand, which is
highly unreliable unless we have strong prior knowledge. Furthermore, the computation
of KMM is rather expensive since a quadratic programming problem has to be solved.

Another approach to directly estimating the density ratio is to use a probabilistic
classifier discriminating samples drawn from pde(u) and samples drawn from pnu(u)—a
kernelized variant of logistic regression (LogReg) is a suitable classifier for this purpose.
It is known that the likelihood function of the kernel LogReg classifier is concave, so
the regularized maximum likelihood solution with a convex regularizer can be uniquely
obtained (Koh et al., 2007; Minka, 2007). An advantage of the LogReg method is that
model selection (i.e., the choice of the kernel bandwidth as well as the regularization
parameter) is possible by standard CV since the learning problem involved above is a
standard supervised classification problem. However, LogReg is computationally rather
expensive since a non-linear optimization problem has to be solved.

The Kullback-Leibler importance estimation procedure (KLIEP) (Sugiyama et al.,
2008) also directly gives an estimate of the density-ratio function without going through
density estimation by matching the two distributions in terms of the Kullback-Leibler
divergence (Kullback & Leibler, 1951). The optimization criterion involved in KLIEP is a
constrained non-linear optimization problem, which is convex. Thus, the global solution—
which tends to be sparse—can be obtained, e.g., by simply performing gradient ascent and
feasibility satisfaction iteratively. CV is also available for KLIEP and therefore model se-
lection is possible, which is an advantage over KMM. However, the optimization problem
involved in KLIEP is still computationally rather expensive.

Least-squares importance fitting (LSIF) (Kanamori et al., 2009a) is similar to KLIEP,
but the squared loss is used instead of the log loss. The LSIF optimization problem is a
convex quadratic programming problem and therefore a standard optimization software
can be used for obtaining the global solution. CV is available, similar to LogReg and
KLIEP. Furthermore, a notable advantage of LSIF is that a regularization-path tracking
algorithm is available (cf. Best, 1982; Efron et al., 2004; Hastie et al., 2004). Thus,
solutions for all regularization parameter values can be computed efficiently. In fact, the
regularization-path tracking algorithm shows that a quadratic programming solver is no
longer needed for obtaining the LSIF solution—just computing matrix inverses is enough.
This highly contributes to saving the computation time. However, regularization-path
tracking sometimes suffers from a numerical problem and therefore is not practically
reliable.

uLSIF inherits good properties of the above methods, e.g., no density estimation is
involved and a built-in model selection method is available. In addition to these preferable
properties, the solution of uLSIF can be computed analytically through matrix inversion
and therefore uLSIF is computationally very efficient and numerically stable. Further-
more, thanks to the availability of the closed-form solution of uLSIF, the LOOCV score
can be analytically computed without repeating hold-out loops, which highly contributes
to reducing the computation time in the model selection phase.
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Thus, for developing a density-ratio estimation method that is flexible and computa-
tionally efficient, the use of uLSIF would be suitable.

6 Estimating the Dimension of the Hetero-

distributional Subspace

So far, we explained how the dimensionality reduction idea could be incorporated into
density ratio estimation, given that the dimension m of the hetero-distributional subspace
is known in advance. In this section, we address how the dimension m of could be
estimated from samples, which results in a practical procedure.

One possibility would be to compute the normalized LFDA criterion

1

m′ tr(ÛSlbÛ
⊤
(ÛSlwÛ

⊤
)−1)

as a function of reduced dimensionality m′ and choose the value of m̂ that maximizes the
above criterion. However, in our preliminary experiments, this did not perform well since
the above criterion measures the estimation error of the hetero-distributional subspace,
not the estimation error of the density ratio.

A more sensible approach would be to use the LOOCV score of the uLSIF algorithm

ĴLOOCV =
1

min(nde, nnu)

min(nde,nnu)∑
k=1

[
1

2
(r̂(k)(ûde

k ))2 − r̂(k)(ûnu
k )

]
as a function of the reduced dimensionality m′ and choose the value of m̂ that minimizes
the LOOCV score.

Thus our density ratio estimation procedure effectively combines LFDA and uLSIF.
We refer to the proposed procedure as Direct Density-ratio estimation with Dimensionality
reduction (D3). The pseudo code of the entire algorithm of D3 is summarized in Figure 4.

7 Numerical Examples

In this section, we investigate the experimental performance of the proposed method.

7.1 Illustrative Example

First, we illustrate how the proposed D3 algorithm behaves.
Let the input domain be D = R2 (i.e., d = 2) and the denominator and numerator

densities are set as

xde ∼ N

((
0
0

)
,

(
4 0
0 1

))
,

xnu ∼ 1

2
N

((
−3
0

)
,

(
1 0
0 1

))
+

1

2
N

((
3
0

)
,

(
1 0
0 1

))
,
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Input: Two sets of samples {xde
i }

nde
i=1 and {xnu

j }nnu
j=1 on Rd

Output: Density ratio estimate r̂(x)

Obtain orthonormal basis {φ̃l}dl=1 using LFDA with {xde
i }

nde
i=1 and {xnu

j }nnu
j=1;

For each reduced dimension m = 1, 2, . . . , d

Form projection matrix: Ûm = (φ̃1|φ̃2| · · · |φ̃m)
⊤;

Project samples: {ûde
i,m | û

de
i,m = Ûmx

de
i }

nde
i=1 and {ûnu

j,m | û
nu
j,m = Ûmx

nu
j }nnu

j=1;
For each candidate of Gaussian width σ

For each candidate of regularization parameter λ

Compute LOOCV score ĴLOOCV(m,σ, λ) using {ûde
i,m}

nde
i=1 and {ûnu

j,m}nnu
j=1;

end
end

end

Choose the best model: (m̂, σ̂, λ̂)←− argmin(m,σ,λ) Ĵ
LOOCV(m,σ, λ);

Estimate density ratio from {ûde
i,m̂}

nde
i=1 and {ûnu

j,m̂}nnu
j=1 using uLSIF with (σ̂, λ̂);

Figure 4: Pseudo code of Direct Density-ratio estimation with Dimensionality reduction
(D3).

where N(µ,Σ) denotes the multi-variate Gaussian distribution with mean µ and covari-
ance matrix Σ. The profile of the densities and their ratio are illustrated in Figure 5 and
Figure 8(a). We sample nde = 100 points from pde(x) and nnu = 100 points from pnu(x),
respectively; the samples are illustrated in Figure 6. In this dataset, the distributions are
different only in the one-dimensional subspace spanned by (1, 0)⊤, i.e., m = 1. The true
hetero-distributional subspace is depicted by the solid line in Figure 6.

The dotted line in Figure 6 depicts the hetero-distributional subspace estimated by
LFDA with reduced dimensionality m′ = 1; when m′ = 2, LFDA merely gives the entire
space. This shows that for m′ = 1, LFDA gives a very good estimate of the true hetero-
distributional subspace.

Next, we chose reduced dimensionality m as well as the Gaussian width σ and the
regularization parameter λ in uLSIF. Figure 7 depicts the LOOCV score of uLSIF, showing
that

(m̂, σ̂, λ̂) = (1, 1, 10−0.5)

is the minimizer.
Finally, the density ratio is estimated by uLSIF. Figure 8 depicts the true density

ratio, its estimate by uLSIF without dimensionality reduction, and its estimate by uLSIF
with dimensionality reduction by LFDA. For uLSIF without dimensionality reduction,

(σ̂, λ̂) = (1, 10−0.5)

is chosen by LOOCV (see Figure 7 with m′ = 2). This shows that when dimensionality
reduction is not performed, independence between r(x) and the second element x(2) (Fig-
ure 8(a)) is not captured and the estimated density ratio has Gaussian-structure along
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Figure 5: Two-dimensional toy dataset.
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LFDA solution, i.e., x′(1) = 1.00x(1)+0.01x(2) and x′(2) = −0.01x(1)+1.00x(2), respectively.

x(2) (Figure 8(b)). On the other hand, when dimensionality reduction is carried out,
independence between r(x) and x(2) can be successfully captured and a good result is
obtained (Figure 8(c)).

The accuracy of an estimated density ratio is measured by the normalized mean squared
error (NMSE):

NMSE =

nde∑
i=1

(
r̂(xde

i )∑nde

i′=1 r̂(x
de
i′ )
− r(xde

i )∑nde

i′=1 r(x
de
i′ )

)2

. (8)

By dimensionality reduction, NMSE is reduced from 1.52× 10−5 to 0.89× 10−5; thus we
gain 41.5% reduction in NMSE.
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7.2 Performance Comparison using Artificial Datasets

Here, we investigate the performance of the D3 algorithm using 6 artificial datasets. The
input domain of the datasets is d-dimensional (d ≥ 2) and the true dimensionality of the
hetero-distributional subspace is m = 1 or 2. The equi-distributional component of the
datasets is the (d−m)-dimensional Gaussian distribution with mean zero and covariance
identity. The hetero-distributional component of each dataset is given as follows:

(a) Dataset 1 (‘shifting’, m = 1):

ude ∼ N

((
0
0

)
,

(
1 0
0 1

))
,

unu ∼ N

((
3
0

)
,

(
1 0
0 1

))
.

(b) Dataset 2 (‘shrinking’, m = 2):

ude ∼ N

((
0
0

)
,

(
4 0
0 4

))
,

unu ∼ N

((
0
0

)
,

(
1/4 0
0 1/4

))
.

(c) Dataset 3 (‘magnifying’, m = 2):

ude ∼ N

((
0
0

)
,

(
1/4 0
0 1/4

))
,

unu ∼ N

((
0
0

)
,

(
4 0
0 4

))
.

(d) Dataset 4 (‘rotating’, m = 2):

ude ∼ N

((
1
0

)
,

(
4 0
0 1

))
,

unu ∼ N

((
1/
√
2

1/
√
2

)
,

(
5/2 3/2
3/2 5/2

))
.

(e) Dataset 5 (‘1-dimensional splitting’, m = 1):

ude ∼ N

((
0
0

)
,

(
1 0
0 1

))
,

unu ∼ 1

2
N

((
2
0

)
,

(
1/4 0
0 1/4

))
+

1

2
N

((
2
0

)
,

(
1/4 0
0 1/4

))
.
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(f) Dataset 6 (‘2-dimensional splitting’, m = 2):

ude ∼ N

((
0
0

)
,

(
1 0
0 1

))
,

unu ∼ 1

4
N

((
2
0

)
,

(
1/4 0
0 1/4

))
+

1

4
N

((
−2
0

)
,

(
1/4 0
0 1/4

))
+

1

4
N

((
0
2

)
,

(
1/4 0
0 1/4

))
+

1

4
N

((
0
−2

)
,

(
1/4 0
0 1/4

))
.

The number of samples is set as nde = 200 and nnu = 1000 for all the datasets.
Examples of realized samples are illustrated in Figure 9. For each dimensionality d =
2, 3, . . . , 10, the density ratio is estimated using the proposed method and the baseline
method (uLSIF without dimensionality reduction). This experiment is repeated 100 times
for each d with different random seed.

Figure 10 depicts choice of the dimensionality of the hetero-distributional subspace
by LOOCV for each d. This shows that for the datasets 1, 2, 4, and 5, dimensionality
choice by LOOCV works well. For the dataset 3, m̂ = 1 is always chosen although the
true dimensionality is m = 2. For the dataset 6, dimensionality choice is rather unstable,
but still it works reasonably well.

Figure 11 depicts the value of NMSE (see Eq.(8)) averaged over 100 trials. For each
d, the t-test (see e.g., Henkel, 1979) at the significance level 5% is performed and the
best method as well as the comparable method in terms of mean NMSE are indicated by
‘×’ (in other words, the method without the symbol ‘×’ is significantly worse than the
other method). This shows that mean NMSE of the baseline method (no dimensionality
reduction) tends to grow rapidly as the dimensionality d increases. On the other hand,
increase of mean NMSE of the proposed D3 algorithm is much smaller than that of the
baseline method. Consequently, mean NMSE of D3 is much smaller than that of the
baseline method when the input dimensionality d is large. The difference of mean NMSE
is statistically significant for the datasets 1, 2, 5, and 6.

From the above experiments, we experimentally confirmed that the proposed dimen-
sionality scheme is useful in density ratio estimation.

7.3 Application to Inlier-based Outlier Detection

Finally, we apply the proposed method to inlier-based outlier detection (see Section 2.2.2).
We compare three schemes here—uLSIF with no dimensionality reduction, uLSIF

with dimensionality reduction by LFDA (i.e., the proposed D3 algorithm), and uLSIF
with dimensionality reduction by principal component analysis (PCA) (Jolliffe, 1986).
The datasets provided by IDA (Rätsch et al., 2001) are used for performance evaluation;
we exclude the ‘splice’ dataset since it is discrete. The datasets are binary classification
and each dataset consists of positive/negative and training/test samples for 20 or 100
trials. We use all positive training samples as inliers in the ‘model’ set, while we use all
positive test samples as inliers and the first 5% of negative test samples as outliers in the
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Figure 9: Artificial datasets.
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Figure 10: Dimension choice of hetero-distributional subspace by LOOCV.
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Figure 11: Mean NMSE of the estimated density ratio functions. For each d, the t-test
at the significance level 5% is performed and the best method as well as the comparable
method in terms of mean NMSE are indicated by ‘×’.
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Table 1: Mean AUC values and chosen dimensionality for outlier detection over 20 trials
for the IDA datasets. The numbers in brackets are standard deviations. The best method
in terms of the mean AUC value and comparable methods according to the t-test at the
significance level 5% are specified by ‘◦’.

Plain uLSIF LFDA+uLSIF (D3) PCA+uLSIF
Dataset d AUC m̂ AUC m̂ AUC m̂

banana 2 ◦0.686(0.108) 2(0) ◦0.699(0.091) 1.9(0.3) ◦0.644(0.136) 1.7(0.5)

b-cancer 9 0.665(0.099) 9(0) ◦0.743(0.083) 3.1(2.2) 0.628(0.117) 3.5(2.7)

diabetes 8 0.621(0.079) 8(0) ◦0.698(0.036) 3.6(1.7) 0.648(0.069) 2.9(2.2)

f-solar 9 0.393(0.044) 9(0) ◦0.636(0.076) 1.9(1.4) 0.492(0.076) 3.0(2.1)

german 20 ◦0.629(0.060) 20(0) ◦0.660(0.034) 8.4(3.8) 0.586(0.064) 8.9(7.6)

heart 13 0.839(0.063) 13(0) ◦0.886(0.043) 2.9(2.3) 0.804(0.114) 3.2(3.8)

image 18 ◦0.621(0.058) 18(0) ◦0.624(0.072) 6.1(2.1) ◦0.614(0.095) 3.5(6.0)

thyroid 5 0.407(0.269) 5(0) ◦0.824(0.077) 1.9(1.3) 0.708(0.202) 2.3(1.3)

titanic 3 0.595(0.102) 3(0) ◦0.686(0.025) 1.5(0.8) 0.570(0.138) 1.5(0.7)

twonorm 20 0.934(0.013) 20(0) 0.913(0.044) 16.4(7.5) ◦0.970(0.022) 8.5(6.7)

waveform 21 0.907(0.031) 21(0) ◦0.930(0.013) 13.9(9.0) ◦0.895(0.077) 5.6(3.9)

Average 0.663(0.084) 11.6(0) 0.754(0.054) 5.6(3.0) 0.687(0.101) 4.0(3.4)

‘evaluation’ set. Thus, we regard the positive samples as inliers and the negative samples
as outliers.

In the evaluation of the performance of outlier detection methods, it is important to
take into account both the detection rate (the amount of true outliers an outlier detection
algorithm can find) and the detection accuracy (the amount of true inliers that an outlier
detection algorithm misjudges as outliers). Since there is a trade-off between the detection
rate and the detection accuracy, we adopt the area under the ROC curve (AUC) as our
error metric (Bradley, 1997).

Note that a similar experiment has been carried out in Hido et al. (2008), where
outlier samples are chosen randomly from the negative test samples. Since the choice of
a small number of outliers significantly affect the AUC values in outlier detection experi-
ments, we decided to choose outlier samples deterministically for obtaining reproducible
experimental results. For this reason, our results given here are not necessarily the same
as the numbers provided in Hido et al. (2008).

The mean and standard deviation of AUC values and chosen dimensionalities over
20 trials are summarized in Table 1, where the best method in terms of the mean AUC
value and comparable methods according to the t-test at the significance level 5% are
specified by ‘◦’. The table shows that the proposed D3 algorithm tends to outperform the
baseline method (no dimensionality reduction). As a result, the average AUC value over all
datasets is improved from 0.663 to 0.754 (we gain 13.7% increase in the mean AUC value).
Dimensionality reduction by PCA also performs well for some datasets, but it tends to be
outperformed by the baseline method for the other datasets. Consequently, the average
AUC value over all datasets is slightly improved from 0.663 to 0.687, although this is
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behind the proposed D3 algorithm. Furthermore, the standard deviation of ‘uLSIF+PCA’
tends to be larger than the other methods, which would be due to the unsupervised nature
of PCA. Thus PCA may not be reliable in practice.

Overall, the above experimental results show that the proposed D3 algorithm is useful
in inlier-based outlier detection scenarios.

8 Conclusions

The ratio of two probability density functions could be used for various data process-
ing tasks, so it is important to estimate the density ratio accurately. In this paper, we
proposed a new algorithm called Direct Density-ratio estimation with Dimensionality re-
duction (D3) for improving density-ratio estimation accuracy in high-dimensional cases.
The proposed method combines the supervised dimensionality reduction method called lo-
cal Fisher discriminant analysis (LFDA) with the direct density-ratio estimation method
called unconstrained least-squares importance fitting (uLSIF). The experiments showed
that the proposed method compares favorably with the baseline method.

We chose LFDA in this paper since it was shown to be the most suitable in accuracy
and computational efficiency (Sugiyama, 2007). On the other hand, supervised dimen-
sionality reduction is one of the most active research topics and better methods will be
developed in the future. Our framework allows us to use any supervised dimensionality re-
duction method for density ratio estimation. Thus, provided better methods of supervised
dimensionality reduction, it is interesting to incorporate the new methods in the density
ratio estimation framework and evaluate how accuracy and computational efficiency are
improved.

In our experiments, choosing the dimensionality of hetero-distributional subspaces
was slightly unstable in some cases, although the proposed method was no worse than the
baseline method. Thus there is still room for further improvement in the choice of the
dimensionality of hetero-distributional subspace, which needs to be further investigated
in the future work.

Our formulation assumed that the components inside and outside the hetero-
distributional subspace are statistically independent. A possible generalization of the
proposed approach would be to weaken this condition, for example, following the line of
Fukumizu et al. (2004) or Suzuki and Sugiyama (2009b). We focused on a linear hetero-
distributional subspace, but we may consider a non-linear manifold and use a kernelized
version of LFDA (Sugiyama, 2007). This would be a possible future direction to pursue.
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