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Abstract

Appropriately designing sampling policies is highly important for obtaining better
control policies in reinforcement learning. In this paper, we first show that the
least-squares policy iteration (LSPI) framework allows us to employ statistical ac-
tive learning methods for linear regression. Then we propose a design method of
good sampling policies for efficient exploration, which is particularly useful when
the sampling cost of immediate rewards is high. The effectiveness of the proposed
method, which we call active policy iteration (API), is demonstrated through sim-
ulations with a batting robot.
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1 Introduction

Reinforcement learning (RL) is the problem of letting an agent learn intelligent behavior
through trial-and-error interaction with unknown environment (Sutton & Barto, 1998).
More specifically, the agent learns its control policy so that the amount of rewards it will
receive in the future is maximized. Due to its potential possibilities, RL has attracted a
great deal of attention recently in the machine learning community.
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In practical RL tasks, it is often expensive to obtain immediate reward samples while
state-action trajectory samples are readily available. For example, let us consider a robot-
arm control task of hitting a ball by a bat and driving the ball as far away as possible
(see Figure 9). Let us adopt the carry of the ball as the immediate reward. In this
setting, obtaining state-action trajectory samples of the robot arm is easy and relatively
cheap since we just need to control the robot arm and record its state-action trajectories
over time. On the other hand, explicitly computing the carry of the ball from the state-
action samples is hard due to friction and elasticity of links, air resistance, unpredictable
disturbances such a current of air, and so on. Thus, in practice, we may have to put the
robot in open space, let the robot really hit the ball, and measure the carry of the ball
manually. Thus gathering immediate reward samples is much more expensive than the
state-action trajectory samples.

When the sampling cost of immediate rewards is high, it is important to design the
sampling policy appropriately so that a good control policy can be obtained from a small
number of samples. So far, the problem of designing good sampling policies has been ad-
dressed in terms of the trade-off between exploration and exploitation (Kaelbling, Littman,
& Moore, 1996). That is, an RL agent is required to determine either to explore new states
for learning more about unknown environment or to exploit previously acquired knowledge
for obtaining more rewards.

A simple framework of controlling the exploration-exploitation trade-off is the ϵ-greedy
policy (Sutton & Barto, 1998)—with (small) probability ϵ, the agent chooses to explore
unknown environment randomly; otherwise it follows the current control policy for ex-
ploitation. The choice of the parameter ϵ is critical in the ϵ-greedy policy. A standard
and natural idea would be to decrease the probability ϵ as the learning process progresses,
i.e., the environment is actively explored in the beginning and then the agent tends to be
in the exploitation mode later. However, theoretically and practically sound methods for
determining the value of ϵ seem to be still open research topics. Also, when the agent de-
cides to explore unknown environment, merely choosing the next action randomly would
be far from the best possible option.

An alternative strategy called Explicit Explore or Exploit (E3) was proposed in Kearns
& Singh (1998) and Kearns & Singh (2002). The basic idea of E3 is to control the
balance between exploration and exploitation so that the accuracy of environment model
estimation is optimally improved. More specifically, when the number of known states
is small, the agent actively explores unvisited (or less visited) states; as the number of
known states increases, exploitation tends to be prioritized. The E3 strategy is efficiently
realized by an algorithm called R-max (Brafman & Tennenholtz, 2002; Strehl, Diuk,
& Littman, 2007). R-max assigns the maximum ‘value’ to unknown states so that the
unknown states are visited with high probability. An advantage of E3 and R-max is that
the polynomial-time convergence (with respect to the number of states) to a near-optimal
policy is theoretically guaranteed. However, since the algorithms explicitly count the
number of visits at every state, it is not straightforward to extend the idea to continuous
state spaces (Li, Littman, & Mansley, 2008). This is a critical limitation in robotics
applications since state spaces are usually spanned by continuous variables such as joint
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angles and angular velocities.
In this paper, we address the problem of designing sampling policies from a differ-

ent point of view—active learning (AL) for value function approximation. We adopt the
framework of least-squares policy iteration (LSPI) (Lagoudakis & Parr, 2003) and show
that statistical AL methods for linear regression (Fedorov, 1972; Cohn, Ghahramani, &
Jordan, 1996; Wiens, 2000; Kanamori & Shimodaira, 2003; Sugiyama, 2006; Sugiyama
& Nakajima, 2009) can be naturally employed. In the LSPI framework, the state-action
value function is approximated by fitting a linear model with least-squares estimation. A
traditional AL scheme (Fedorov, 1972; Cohn et al., 1996) is designed to find the input
distribution such that the variance of the least-squares estimator is minimized. For justi-
fying the use of the traditional AL scheme, the bias should be guaranteed not to increase
when the variance is reduced, since the expectation of the squared approximation error
of the value function is expressed as the sum of the squared bias and variance. To this
end, we need to assume a strong condition that the linear model used for value function
approximation is correctly specified, i.e., if the parameters are learned optimally, the true
value function can be perfectly approximated.

However, such a correct model assumption may not be fulfilled in practical RL tasks
since the profile of value functions may be highly complicated. To cope with this problem,
a two-stage AL scheme has been proposed in Kanamori & Shimodaira (2003). The use of
the two-stage AL scheme can be theoretically justified even when the model is misspeci-
fied, i.e., the true function is not included in the model. The key idea of this two-stage AL
scheme is to use dummy samples gathered in the first stage for estimating the approxima-
tion error of the value function; then additional samples are chosen based on AL in the
second stage. This two-stage scheme works well when a large number of dummy samples
are used for estimating the approximation error in the first stage. However, due to high
sampling costs in practical RL problems, the practical performance of the two-stage AL
method in the RL scenarios would be limited.

To overcome the weakness of the two-stage AL method, single-shot AL methods have
been developed (Wiens, 2000; Sugiyama, 2006). The use of the single-shot AL methods
can be theoretically justified when the model is approximately correct. Since dummy
samples are not necessary in the single-shot AL methods, good performance is expected
even when the number of samples to be collected is not large. Moreover, the algorithms
of the single-shot methods are very simple and computationally efficient. For this reason,
we adopt the single-shot AL method proposed in Sugiyama (2006), and develop a new
exploration scheme for the LSPI-based RL algorithm. The usefulness of the proposed
approach, which we call active policy iteration (API), is demonstrated through batting-
robot simulations.

The rest of this paper is organized as follows. In Section 2, we formulate the RL prob-
lem using Markov decision processes and review the LSPI framework. Then in Section 3,
we show how a statistical AL method could be employed for optimizing the sampling pol-
icy in the context of value function approximation. In Section 4, we apply our AL strategy
to the LSPI framework and show the entire procedure of the proposed API algorithm.
In Section 5, we demonstrate the effectiveness of API through ball-batting simulations.
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Finally, in Section 6, we conclude by summarizing our contributions and describing future
work.

2 Formulation of Reinforcement Learning Problem

In this section, we formulate the RL problem as a Markov decision problem (MDP)
following Sutton & Barto (1998), and review how it can be solved using a method of
policy iteration following Lagoudakis & Parr (2003).

2.1 Markov Decision Problem

Let us consider an MDP specified by

(S,A, PT, R, γ), (1)

where

• S is a set of states,

• A is a set of actions,

• PT(s
′|s, a) (∈ [0, 1]) is the conditional probability density of the agent’s transition

from state s to next state s′ when action a is taken,

• R(s, a, s′) (∈ R) is a reward for transition from s to s′ by taking action a,

• γ (∈ (0, 1]) is the discount factor for future rewards.

Let π(a|s) (∈ [0, 1]) be a stochastic policy which is a conditional probability density of
taking action a given state s. The state-action value function Qπ(s, a) (∈ R) for policy
π denotes the expectation of the discounted sum of rewards the agent will receive when
taking action a in state s and following policy π thereafter, i.e.,

Qπ(s, a) ≡ E
{sn,an}∞n=2

[
∞∑
n=1

γn−1R(sn, an, sn+1)

∣∣∣∣ s1 = s, a1 = a

]
, (2)

where E{sn,an}∞n=2
denotes the expectation over trajectory {sn, an}∞n=2 following PT(sn+1|sn, an)

and π(an|sn).
The goal of RL is to obtain the policy such that the expectation of the discounted

sum of future rewards is maximized. The optimal policy can be expressed as

π∗(a|s) ≡ δ(a− argmax
a′

Q∗(s, a′)), (3)

where δ(·) is Dirac’s delta function and

Q∗(s, a) ≡ max
π

Qπ(s, a) (4)
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is the optimal state-action value function.
Qπ(s, a) can be expressed by the following recurrent form called the Bellman equation:

Qπ(s, a) = R(s, a) + γ E
PT(s′|s,a)

E
π(a′|s′)

[Qπ(s′, a′)] , ∀s ∈ S, ∀a ∈ A, (5)

where
R(s, a) ≡ E

PT(s′|s,a)
[R(s, a, s′)] (6)

is the expected reward when the agent takes action a in state s, EPT(s′|s,a) denotes the
conditional expectation of s′ over PT(s

′|s, a) given s and a, and Eπ(a′|s′) denotes the con-
ditional expectation of a′ over π(a′|s′) given s′.

2.2 Policy Iteration

Computing the value function Qπ(s, a) is called policy evaluation. Using Qπ(s, a), we may
find a better policy π′(a|s) by ‘softmax’ update:

π′(a|s) ∝ exp(Qπ(s, a)/β), (7)

where β (> 0) determines the randomness of the new policy π′; or by ϵ-greedy update:

π′(a|s) = ϵpu(a) + (1− ϵ)δ(a− argmax
a′

Qπ(s, a′)), (8)

where pu(a) denotes the uniform probability density over actions and ϵ (∈ (0, 1]) deter-
mines how stochastic the new policy π′ is. Updating π based on Qπ(s, a) is called policy
improvement. Repeating policy evaluation and policy improvement, we may find the
optimal policy π∗(a|s). This entire process is called policy iteration (Sutton & Barto,
1998).

2.3 Least-squares Framework for Value Function Approxima-
tion

Although policy iteration is a useful framework for solving an MDP problem, it is compu-
tationally expensive when the number of state-action pairs |S|×|A| is large. Furthermore,
when the state space or action space is continuous, |S| or |A| becomes infinite and therefore
it is no longer possible to directly implement policy iteration. To overcome this problem,
we approximate the state-action value function Qπ(s, a) using the following linear model:

Q̂π(s, a;θ) ≡
B∑
b=1

θbϕb(s, a) = θ
⊤ϕ(s, a), (9)

where
ϕ(s, a) = (ϕ1(s, a), ϕ2(s, a), . . . , ϕB(s, a))

⊤ (10)
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are the fixed linearly independent basis functions, ⊤ denotes the transpose, B is the
number of basis functions, and

θ = (θ1, θ2, . . . , θB)
⊤ (11)

are model parameters to be learned. Note that B is usually chosen to be much smaller
than |S| × |A| for computational efficiency.

For N -step transitions, we ideally want to learn the parameters θ so that the squared
Bellman residual G(θ) is minimized (Lagoudakis & Parr, 2003):

θ∗ ≡ argmin
θ

G(θ), (12)

G(θ) ≡ E
Pπ

[
1

N

N∑
n=1

(θ⊤ψ(sn, an)−R(sn, an))2
]
, (13)

ψ(s, a) ≡ ϕ(s, a)− γ E
PT(s′|s,a)

E
π(a′|s′)

[ϕ(s′, a′)] . (14)

EPπ denotes the expectation over the joint probability density function of an entire tra-
jectory:

Pπ(s1, a1, s2, a2, . . . , sN , aN , sN+1) ≡ PI(s1)
N∏

n=1

PT(sn+1|sn, an)π(an|sn), (15)

where PI(s) denotes the initial-state probability density function.

2.4 Value Function Approximation from Samples

Suppose that roll-out data samples consisting of M episodes with N steps are available
for training purposes. The agent initially starts from randomly selected state s1 follow-
ing the initial-state probability density PI(s) and chooses an action based on sampling
policy π̃(an|sn). Then the agent makes a transition following the transition probabil-
ity PT(sn+1|sn, an) and receives a reward rn(= R(sn, an, sn+1)). This is repeated for N
steps—thus the training dataset Dπ̃ is expressed as

Dπ̃ ≡ {dπ̃m}Mm=1, (16)

where each episodic sample dπ̃m consists of a set of 4-tuple elements as

dπ̃m ≡ {(sπ̃m,n, a
π̃
m,n, r

π̃
m,n, s

π̃
m,n+1)}Nn=1. (17)

We use two types of policies for different purposes: the sampling policy π̃(a|s) for
collecting data samples and the evaluation policy π(a|s) for computing the value function

Q̂π. Minimizing the importance-weighted empirical generalization error Ĝ(θ), we can
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obtain a consistent estimator of θ∗ as follows:

θ̂ ≡ argmin
θ

Ĝ(θ), (18)

Ĝ(θ) ≡ 1

MN

M∑
m=1

N∑
n=1

(θ⊤ψ̂(sπ̃m,n, a
π̃
m,n;Dπ̃)− rπ̃m,n)

2wπ̃
m,N , (19)

ψ̂(s, a;D) ≡ ϕ(s, a)− γ

|D(s,a)|
∑

s′∈D(s,a)

E
π(a′|s′)

[ϕ(s′, a′)] , (20)

where D(s,a) is a set of 4-tuple elements1 containing state s and action a in the training
data D,

∑
s′∈D(s,a)

denotes the summation over s′ in the set D(s,a), and

wπ̃
m,N ≡

∏N
n′=1 π(a

π̃
m,n′|sπ̃m,n′)∏N

n′=1 π̃(a
π̃
m,n′|sπ̃m,n′)

(21)

is called the importance weight (Sutton & Barto, 1998).

It is important to note that consistency of θ̂ can be maintained even if wπ̃
m,N is re-

placed by the per-decision importance weight wπ̃
m,n (Precup, Sutton, & Singh, 2000), which

is computationally more efficient and stable. θ̂ can be analytically expressed with the ma-
trices L̂ (∈ RB×MN), X̂ (∈ RMN×B), W (∈ RMN×MN), and the vector rπ̃ (∈ RMN) as

θ̂ = L̂rπ̃, (22)

L̂ ≡ (X̂
⊤
WX̂)−1X̂

⊤
W , (23)

rπ̃N(m−1)+n ≡ rπ̃m,n, (24)

X̂N(m−1)+n,b ≡ ψ̂b(s
π̃
m,n, a

π̃
m,n;Dπ̃), (25)

WN(m−1)+n,N(m′−1)+n′ ≡ wπ̃
m,nI(m = m′)I(n = n′), (26)

where I(c) denotes the indicator function:

I(c) =

{
1 if the condition c is true,
0 otherwise.

(27)

When the matrix X̂
⊤
WX̂ is ill-conditioned, it is hard to compute its inverse accurately.

To cope with this problem, we may practically employ a regularization scheme (Tikhonov
& Arsenin, 1977; Hoerl & Kennard, 1970; Poggio & Girosi, 1990):

(X̂
⊤
WX̂ + λI)−1, (28)

where I (∈ RB×B) is the identity matrix and λ is a small positive scalar.
1When the state-action space is continuous, the set D(sπ̃m,n,a

π̃
m,n)

contains only a single sample

(sπ̃m,n, a
π̃
m,n, r

π̃
m,n, s

π̃
m,n+1) and then consistency of θ̂ may not be guaranteed. A possible measure for

this would be to use several neighbor samples around (sπ̃m,n, a
π̃
m,n). However, in our experiments, we

decided to use the single-sample approximation since it performed reasonably well.
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3 Efficient Exploration with Active Learning

The accuracy of the estimated value function depends on the training samples collected
following sampling policy π̃(a|s). In this section, we propose a new method for designing
a good sampling policy based on a statistical AL method proposed in Sugiyama (2006).

3.1 Preliminaries

Let us consider a situation where collecting state-action trajectory samples is easy and
cheap, but gathering immediate reward samples is hard and expensive (for example, the
batting robot explained in the introduction). In such a case, immediate reward samples
are too expensive to be used for designing the sampling policy; only state-action trajectory
samples may be used for sampling policy design.

The goal of AL in the current setup is to determine the sampling policy so that
the expected generalization error is minimized. The generalization error is not accessi-
ble in practice since the expected reward function R(s, a) and the transition probability
PT(s

′|s, a) are unknown. Thus, for performing AL, the generalization error needs to be
estimated from samples. A difficulty of estimating the generalization error in the context
of AL is that its estimation needs to be carried out only from state-action trajectory
samples without using immediate reward samples. This means that standard generaliza-
tion error estimation techniques such as cross-validation (Hachiya, Akiyama, Sugiyama,
& Peters, 2009) cannot be employed since they require both state-action and immediate
reward samples. Below, we explain how the generalization error could be estimated under
the AL setup (i.e., without the reward samples).

3.2 Decomposition of Generalization Error

The information we are allowed to use for estimating the generalization error is a set of
roll-out samples without immediate rewards:

Dπ̃ ≡ {dπ̃m}Mm=1, (29)

d
π̃

m ≡ {(sπ̃m,n, a
π̃
m,n, s

π̃
m,n+1)}Nn=1. (30)

Let us define the deviation of immediate rewards from the mean as

ϵπ̃m,n ≡ rπ̃m,n −R(sπ̃m,n, a
π̃
m,n). (31)

Note that ϵπ̃m,n could be regarded as additive noise in the context of least-squares function

fitting. By definition, ϵπ̃m,n has mean zero and its variance generally depends on sπ̃m,n and

aπ̃m,n, i.e., heteroscedastic noise (Bishop, 2006). However, since estimating the variance of

ϵπ̃m,n without using reward samples is not generally possible, we ignore the dependence of

the variance on sπ̃m,n and aπ̃m,n. Let us denote the input-independent common variance by
σ2.
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Now we would like to estimate the generalization error

G(θ̂) ≡ E
Pπ

[
1

N

N∑
n=1

(θ̂
⊤
ψ̂(sn, an;D

π̃
)−R(sn, an))2

]
(32)

from Dπ̃
. Its expectation over ‘noise’ can be decomposed as follows (Sugiyama, 2006).

E
ϵπ̃

[
G(θ̂)

]
= Bias + Variance +ModelError, (33)

where Eϵπ̃ denotes the expectation over ‘noise’ {ϵπ̃m,n}
M,N
m=1,n=1. Bias, Variance, and ModelError

are the bias term, the variance term, and the model error term defined by

Bias ≡ E
Pπ

[
1

N

N∑
n=1

{
(E
ϵπ̃

[
θ̂
]
− θ∗)⊤ψ̂(sn, an;D

π̃
)

}2
]
, (34)

Variance ≡ E
Pπ

E
ϵπ̃

[
1

N

N∑
n=1

{
(θ̂ − E

ϵπ̃

[
θ̂
]
)⊤ψ̂(sn, an;D

π̃
)

}2
]
, (35)

ModelError ≡ E
Pπ

[
1

N

N∑
n=1

(θ∗⊤ψ̂(sn, an;D
π̃
)−R(sn, an))2

]
. (36)

θ∗ is the optimal parameter in the model, defined by Eq.(12). Note that the variance
term can be expressed in a compact form as

Variance = σ2tr(UL̂L̂
⊤
), (37)

where the matrix U (∈ RB×B) is defined as

U b,b′ ≡ E
Pπ

[
1

N

N∑
n=1

ψ̂b(sn, an;D
π̃
)ψ̂b′(sn, an;D

π̃
)

]
. (38)

3.3 Estimation of Generalization Error for AL

The model error is constant and thus can be safely ignored in generalization error es-
timation since we are interested in finding a minimizer of the generalization error with
respect to π̃. So we focus on the bias term and the variance term. However, the bias term
includes the unknown optimal parameter θ∗, and thus it may not be possible to estimate
the bias term without using reward samples; similarly, it may not be possible to estimate
the ‘noise’ variance σ2 included in the variance term without using reward samples.

It is known that the bias term is small enough to be neglected when the model is
approximately correct (Sugiyama, 2006), i.e., θ∗⊤ψ̂(s, a) approximately agrees with the
true function R(s, a). Then we have

E
ϵπ̃

[
G(θ̂)

]
−ModelError− Bias ∝ tr(UL̂L̂

⊤
), (39)
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which does not require immediate reward samples for its computation. Since EPπ included

in U is not accessible (see Eq.(38)), we replace U by its consistent estimator Û :

Û ≡ 1

MN

M∑
m=1

N∑
n=1

ψ̂(sπ̃m,n, a
π̃
m,n;D

π̃
)ψ̂(sπ̃m,n, a

π̃
m,n;D

π̃
)⊤wπ̃

m,n. (40)

Consequently, we have the following generalization error estimator:

J ≡ tr(ÛL̂L̂
⊤
), (41)

which can be computed only from Dπ̃
and thus can be employed in the AL scenarios. If

it is possible to gather Dπ̃
multiple times, the above J may be computed multiple times

and its average J ′ may be used as a generalization error estimator.
Note that the values of the generalization error estimator J and the true generalization

error G are not directly comparable since irrelevant additive and multiplicative constants
are ignored (see Eq.(39)). We expect that the estimator J has a similar profile to the true
error G as a function of sampling policy π̃ since the purpose of deriving a generalization
error estimator in AL is not to approximate the true generalization error itself, but to
approximate theminimizer of the true generalization error with respect to sampling policy
π̃. We will experimentally investigate this issue in Section 3.5.

3.4 Designing Sampling Policies

Based on the generalization error estimator derived above, we give an algorithm for de-
signing a good sampling policy, which fully makes use of the roll-out samples without
immediate rewards.

1. Prepare K candidates of sampling policy: {π̃k}Kk=1.

2. Collect episodic samples without immediate rewards for each sampling-policy can-

didate: {Dπ̃k}Kk=1.

3. Estimate U using all samples {Dπ̃k}Kk=1 :

Ũ =
1

KMN

K∑
k=1

M∑
m=1

N∑
n=1

ψ̂(sπ̃k
m,n, a

π̃k
m,n; {D

π̃k}Kk=1)ψ̂(s
π̃k
m,n, a

π̃k
m,n; {D

π̃k}Kk=1)
⊤wπ̃k

m,n.

(42)

4. Estimate the generalization error for each k:

Jk ≡ tr(ŨL̂
π̃k
L̂

π̃k⊤), (43)

L̂
π̃k ≡ (X̂

π̃k⊤W π̃kX̂
π̃k
)−1X̂

π̃k⊤W π̃k , (44)

X̂
π̃k

N(m−1)+n,b ≡ ψ̂b(s
π̃k
m,n, a

π̃k
m,n; {D

π̃k}Kk=1), (45)

W π̃k

N(m−1)+n,N(m′−1)+n′ ≡ wπ̃k
m,nI(m = m′)I(n = n′). (46)
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5. (If possible) repeat 2. to 4. several times and calculate the average for each k:
{J ′

k}Kk=1.

6. Determine the sampling policy: π̃AL ≡ argmink J
′
k.

7. Collect training samples with immediate rewards following π̃AL: Dπ̃AL .

8. Learn the value function by LSPI using Dπ̃AL .

3.5 Numerical Examples

Here we illustrate how the above AL method behaves in the 10-state chain-walk environ-
ment shown in Figure 1. The MDP consists of 10 states

S = {s(i)}10i=1 = {1, 2, . . . , 10} (47)

and 2 actions
A = {a(i)}2i=1 = {‘L’, ‘R’}. (48)

The immediate reward function is defined as

R(s, a, s′) ≡ f(s′), (49)

where the profile of the function f(s′) is illustrated in Figure 2.
The transition probability PT(s

′|s, a) is indicated by the numbers attached to the
arrows in Figure 1; for example, PT(s

(2)|s(1), ‘R’) = 0.8 and PT(s
(1)|s(1), ‘R’) = 0.2. Thus

the agent can successfully move to the intended direction with probability 0.8 (indicated
by solid-filled arrows in the figure) and the action fails with probability 0.2 (indicated by
dashed-filled arrows in the figure). The discount factor γ is set to 0.9. We use the 12
basis functions ϕ(s, a) defined as

ϕ2(i−1)+j(s, a) =

I(a = a(j))exp

(
−(s− ci)2

2τ 2

)
for i = 1, 2, . . . , 5 and j = 1, 2

I(a = a(j)) for i = 6 and j = 1, 2,
(50)

where c1 = 1, c2 = 3, c3 = 5, c4 = 7, c5 = 9, and τ = 1.5.
For illustration purposes, we evaluate the selection of sampling policies only in one-

step policy evaluation; evaluation through iterations will be addressed in the next section.
Sampling policies and evaluation policies are constructed as follows. First, we prepare a
deterministic ‘base’ policy π, e.g., ‘LLLLLRRRRR’, where the i-th letter denotes the
action taken at s(i). Let πϵ be the ‘ϵ-greedy’ version of the base policy π, i.e., the intended
action can be successfully chosen with probability 1− ϵ/2 and the other action is chosen
with probability ϵ/2. We perform experiments for three different evaluation policies:

π1 : ‘RRRRRRRRRR’, (51)

π2 : ‘RRLLLLLRRR’, (52)

π3 : ‘LLLLLRRRRR’ (53)
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Figure 1: 10-state chain walk. Filled/unfilled arrows indicate the transitions when taking
action ‘R’/‘L’ and solid/dashed lines indicate the successful/failed transitions.
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Figure 2: Profile of the function f(s′).

with ϵ = 0.1. For each evaluation policy π0.1
i (i = 1, 2, 3), we prepare 10 candidates of the

sampling policy {π̃(k)
i }10k=1, where the k-th sampling policy π̃

(k)
i is defined as π

k/10
i . Note

that π̃
(1)
i is equivalent to the evaluation policy π0.1

i .
For each sampling policy, we calculate the J-value 5 times and take the average.

The numbers of episodes and steps are set to M = 10 and N = 10, respectively. The
initial-state probability PI(s) is set to be uniform. The regularization parameter is set
to λ = 10−3 for avoiding matrix singularity. This experiment is repeated 100 times with
different random seeds and the mean and standard deviation of the true generalization
error and its estimate are evaluated.

The results are depicted in Figure 3 (the true generalization error) and Figure 4 (its
estimate) as functions of the index k of the sampling policies. Note that in these figures,
we ignored irrelevant additive and multiplicative constants when deriving the general-
ization error estimator (see Eq.(39)). Thus, directly comparing the values of the true
generalization error and its estimate is meaningless. The graphs show that the proposed
generalization error estimator overall captures the trend of the true generalization error
well for all three cases.

For active learning purposes, we are interested in choosing the value of k so that the
true generalization error is minimized. Next, we investigate the values of the obtained
generalization error G when k is chosen so that J is minimized (active learning; AL), the
evaluation policy (k = 1) is used for sampling (passive learning; PL), and k is chosen
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Figure 3: The mean and standard deviation of the true generalization error over 100
trials.
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Figure 4: The mean and standard deviation of the estimated generalization error J over
100 trials.
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Figure 5: The box-plots of the values of the obtained generalization error G over 100
trials when k is chosen so that J is minimized (active learning; AL), the evaluation
policy (k = 1) is used for sampling (passive learning; PL), and k is chosen optimally so
that the true generalization error is minimized (optimal; OPT). The box-plot notation
indicates the 5%-quantile, 25%-quantile, 50%-quantile (i.e., median), 75%-quantile, and
95%-quantile from bottom to top.
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optimally so that the true generalization error is minimized (optimal; OPT). Figure 5
depicts the box-plots of the generalization error values for AL, PL, and OPT over 100
trials, where the box-plot notation indicates the 5%-quantile, 25%-quantile, 50%-quantile
(i.e., median), 75%-quantile, and 95%-quantile from bottom to top. The graphs show that
the proposed AL method compares favorably with PL and performs well for reducing the
generalization error.

We will continue the performance evaluation of the proposed AL method through
iterations in Section 4.2.

4 Active Learning in Policy Iteration

In Section 3, we have shown that the unknown generalization error could be accurately
estimated without using immediate reward samples in one-step policy evaluation. In this
section, we extend the idea to the full policy-iteration setup.

4.1 Sample Reuse Policy Iteration with Active Learning

Sample reuse policy iteration (SRPI) (Hachiya et al., 2009) is a recently-proposed frame-
work of off-policy RL (Sutton & Barto, 1998; Precup et al., 2000), which allows us to
reuse previously-collected samples effectively. Let us denote the evaluation policy at the
l-th iteration by πl and the maximum number of iterations by L.

In the policy iteration framework, new data samples Dπl are collected following the
new policy πl for the next policy evaluation step. In ordinary policy-iteration methods,
only the new samples Dπl are used for policy evaluation. Thus the previously-collected
data samples {Dπ1 ,Dπ2 , . . . ,Dπl−1} are not utilized:

π1
E:{Dπ1}→ Q̂π1 I→ π2

E:{Dπ2}→ Q̂π2 I→ π3
E:{Dπ3}→ · · · I→ πL+1, (54)

where ‘E : {D}’ indicates policy evaluation using the data sample D and ‘I’ denotes
policy improvement. On the other hand, in SRPI, all previously-collected data samples
are reused for policy evaluation as

π1
E:{Dπ1}→ Q̂π1 I→ π2

E:{Dπ1 ,Dπ2}→ Q̂π2 I→ π3
E:{Dπ1 ,Dπ2 ,Dπ3}→ · · · I→ πL+1, (55)

where appropriate importance weights are applied to each set of previously-collected sam-
ples in the policy evaluation step.

Here, we apply the AL technique proposed in the previous section to the SRPI frame-
work. More specifically, we optimize the sampling policy at each iteration. Then the
iteration process becomes

π1
E:{Dπ̃1}→ Q̂π1 I→ π2

E:{Dπ̃1 ,Dπ̃2}→ Q̂π2 I→ π3
E:{Dπ̃1 ,Dπ̃2 ,Dπ̃3}→ · · · I→ πL+1. (56)

Thus, we do not gather samples following the current evaluation policy πl, but following
the sampling policy π̃l optimized based on the AL method given in the previous section.
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We call this framework active policy iteration (API). Figure 6 and Figure 7 show the
pseudo code of the API algorithm. Note that the previously-collected samples are used
not only for value function approximation, but also for sampling-policy selection. Thus
API fully makes use of the samples.

4.2 Numerical Examples

Here we illustrate how the API method behaves using the same 10-state chain-walk prob-
lem as Section 3.5 (see Figure 1).

The initial evaluation policy π1 is set as

π1(a|s) ≡ 0.15pu(a) + 0.85I(a = argmax
a′

Q̂0(s, a
′)), (57)

where

Q̂0(s, a) ≡
12∑
b=1

ϕb(s, a). (58)

Policies are updated in the l-th iteration using the ϵ-greedy rule with ϵ = 0.15/l. In the
sampling-policy selection step of the l-th iteration, we prepare the four sampling-policy
candidates

{π̃(1)
l , π̃

(2)
l , π̃

(3)
l , π̃

(4)
l } ≡ {π

0.15/l
l , π

0.15/l+0.15
l , π

0.15/l+0.5
l , π

0.15/l+0.85
l }, (59)

where πl denotes the policy obtained by greedy update using Q̂πl−1 . The number of
iterations to learn the policy is set to L = 7, the number of steps is set to N = 10, and
the number M of episodes is different in each iteration and defined as

{M1,M2,M3,M4,M5,M6,M7}, (60)

where Ml (l = 1, 2, . . . , 7) denotes the number of episodes collected in the l-th itera-
tion. In this experiment, we compare two types of scheduling: {5, 5, 3, 3, 3, 1, 1} and
{3, 3, 3, 3, 3, 3, 3}, which we refer to as the ‘decreasing M ’ strategy and the ‘fixed M ’
strategy, respectively. The J-value calculation is repeated 5 times for AL. In order to
avoid matrix singularity, the regularization parameter is set to λ = 10−3. The perfor-
mance of learned policy πL+1 is measured by the discounted sum of immediate rewards
for test samples {rπL+1

m,n }50m,n=1 (50 episodes with 50 steps collected following πL+1):

Performance =
1

50

50∑
m=1

50∑
n=1

γn−1rπL+1
m,n , (61)

where the discount factor γ is set to 0.9.
We compare the performance of passive learning (PL; the current policy is used as the

sampling policy in each iteration) and the proposed AL method (the best sampling policy
is chosen from the policy candidates prepared in each iteration). We repeat the same
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Algorithm 1: ActivePolicyIteration(ϕ, π1, λ, Z)

//ϕ Basis functions, ϕ(s, a) = (ϕ1(s, a), ϕ2(s, a), . . . , ϕB(s, a))
⊤

//π1 Initial policy, π1(a|s) ∈ [0, 1]
//λ Regularization parameter, λ > 0
//Z The number of J-value calculations to take the average J ′, Z ∈ N

l← 1

for l← 1, 2, . . . , L

do



// Determine sampling policy π̃l by the active learning method

π̃l ← SamplingPolicySelection({Dπ̃l′}l−1
l′=1,ϕ, πl, λ, Z)

// Collect episodic samples using policy π̃l
Dπ̃l ← DataSampling(π̃l)

// Learn the value function Qπl from the samples {Dπ̃l′}ll′=1

A← 1

lMN

l∑
l′=1

M∑
m=1

N∑
n=1

ψ̂(s
π̃l′
m,n, a

π̃l′
m,n; {Dπ̃l′}ll′=1)ψ̂(s

π̃l′
m,n, a

π̃l′
m,n; {Dπ̃l′}ll′=1)

⊤w
π̃l′
m,n

B ← 1

lMN

l∑
l′=1

M∑
m=1

N∑
n=1

ψ̂(s
π̃l′
m,n, a

π̃l′
m,n; {Dπ̃l′}ll′=1)r

π̃l′
m,n

θ̂l ← (A+ λI)−1B

// Update πl using Q̂πl

πl+1 ← PolicyImprovement(θ̂l,ϕ)
return (πL+1)

Figure 6: The pseudo code of ActivePolicyIteration. By the DataSampling function,
episodic samples (M episodes and N steps) are collected using the input policy. By the
PolicyImprovement function, the current policy is updated with policy improvement such
as ϵ-greedy update or softmax update. The pseudo code of SamplingPolicySelection is
shown in Algorithm 2 in Figure 7.
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Algorithm 2: SamplingPolicySelection({Dπ̃l′}l−1
l′=1,ϕ, πl, λ, Z)

//{Dπ̃l′}l−1
l′=1 The previously-collected training samples up to (l − 1)-th iteration

//ϕ Basis functions, ϕ(s, a) = (ϕ1(s, a), ϕ2(s, a), . . . , ϕB(s, a))
⊤

//πl The evaluation policy in the l-th iteration, πl(a|s) (∈ [0, 1])
//λ Regularization parameter, λ (> 0)
//Z The number of J-value calculations to compute the average J ′, Z (∈ N)

for z ← 1, 2, . . . , Z

do



for k ← 1, 2, . . . ,K

do


//Generate sampling policy candidate π̃

(l)
k and collect episodic samples

//without immediate rewards using π̃
(l)
k

Dπ̃
(l)
k ← RewardlessDataSampling(π̃

(l)
k )

//Estimate matrix U

//D0 ≡ {D
π̃
(l)
k }Kk=1 ∪ {D

π̃l′}l−1
l′=1, Π0 ≡ {π̃(l)

k }
K
k=1 ∪ {π̃l′}

l−1
l′=1

Ũ ← 1

(K + l − 1)MN

∑
π∈Π0

M∑
m=1

N∑
n=1

ψ̂(sπm,n, a
π
m,n;D0)ψ̂(s

π
m,n, a

π
m,n;D0)

⊤wπ
m,n

for k ← 1, 2, . . . ,K

do



//Calculate Jz
k

//Πk ≡ {π̃
(l)
k } ∪ {π̃l′}

l−1
l′=1, h

π
m,n ≡ wπ

m,ne
(N(m−1)+n) (∈ RMN ),

//e(i) (∈ RMN ) is the standard basis vector: e
(i)
j ≡ I(i = j)

A← 1

lMN

∑
π∈Πk

M∑
m=1

N∑
n=1

ψ̂(sπm,n, a
π
m,n;D0)ψ̂(s

π
m,n, a

π
m,n;D0)

⊤wπ
m,n

B ← 1

lMN

∑
π∈Πk

M∑
m=1

N∑
n=1

ψ̂(sπm,n, a
π
m,n;D0)h

π
m,n

⊤

L̂k ← (A+ λI)−1B

Jz
k ← tr(ŨL̂kL̂k

⊤
)

//Choose the policy π̃AL which minimizes J ′
k = 1

Z

∑Z
z=1 J

z
k (k = 1, 2, . . . ,K)

π̃AL ← argminπ′
k
J ′
k

return (π̃AL)

Figure 7: The pseudo code of SamplingPolicySelection. In the function Rewardless-
DataSampling, episodic samples without immediate rewards (M episodes and N steps)
are collected. Previously-collected training samples {Dπ̃l′}ll′=1 are used for the calculation

of matrices Ũ , A, and B in J-value calculation.
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Figure 8: The mean performance over 1000 trials in the 10-state chain-walk experiment.
The dotted lines denote the performance of passive learning (PL) and the solid lines
denote the performance of the proposed active learning (AL) method. The error bars
are omitted for clear visibility. For both the ‘decreasing M ’ and ‘fixed M ’ strategies, the
performance of AL after the 7-th iteration is significantly better than that of PL according
to the two-tailed paired Student t-test at the significance level 1% applied to the error
values at the 7-th iteration.

experiment 1000 times with different random seeds and evaluate the average performance
of each learning method. The results are depicted in Figure 8, showing that the proposed
AL method works better than PL in both types of episode scheduling with statistical
significance by the two-tailed paired Student t-test at the significance level 1% (Henkel,
1979) for the error values obtained at the 7-th iteration. Furthermore, the ‘decreasingM ’
strategy outperforms the ‘fixed M ’ strategy for both PL and AL, showing the usefulness
of the ‘decreasing M ’ strategy.

5 Experiments

Finally, we evaluate the performance of the proposed API method using a ball-batting
robot illustrated in Figure 9, which consists of two links and two joints. The goal of
the ball-batting task is to control the robot arm so that it drives the ball as far away
as possible. The state space S is continuous and consists of angles φ1[rad] (∈ [0, π/4])
and φ2[rad] (∈ [−π/4, π/4]) and angular velocities φ̇1[rad/s] and φ̇2[rad/s]. Thus a state
s (∈ S) is described by a four-dimensional vector:

s = (φ1, φ̇1, φ2, φ̇2)
⊤. (62)
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The action space A is discrete and contains two elements:

A = {a(i)}2i=1 = {(50,−35)⊤, (−50, 10)⊤}, (63)

where the i-th element (i = 1, 2) of each vector corresponds to the torque [N ·m] added
to joint i.

We use the Open Dynamics Engine (‘http://ode.org/’) for physical calculations in-
cluding the update of the angles and angular velocities, and collision detection between
the robot arm, ball, and pin. The simulation time-step is set to 7.5 [ms] and the next
state is observed after 10 time-steps. The action chosen in the current state is kept taken
for 10 time-steps. To make the experiments realistic, we add noise to actions: if action
(f1, f2)

⊤ is taken, the actual torques applied to the joints are f1+ε1 and f2+ ε2, where ε1
and ε2 are drawn independently from the Gaussian distribution with mean 0 and variance
3.

The immediate reward is defined as the carry of the ball. This reward is given only
when the robot arm collides with the ball for the first time at state s′ after taking action
a at current state s. For value function approximation, we use the 110 basis functions
defined as

ϕ2(i−1)+j =

I(a = a(j))exp

(
−∥ s− ci ∥

2

2τ 2

)
for i = 1, 2, . . . , 54 and j = 1, 2,

I(a = a(j)) for i = 55 and j = 1, 2,
(64)

where τ is set to 3π/2 and the Gaussian centers ci (i = 1, 2, . . . , 54) are located on the
regular grid

{0, π/4} × {−π, 0, π} × {−π/4, 0, π/4} × {−π, 0, π}. (65)

We set L = 7 and N = 10. We again compare the ‘decreasing M ’ strategy and the
‘fixed M ’ strategy. The ‘decreasing M ’ strategy is defined by {10, 10, 7, 7, 7, 4, 4} and
the ‘fixed M ’ strategy is defined by {7, 7, 7, 7, 7, 7, 7}. The initial state is always set to
s = (π/4, 0, 0, 0)⊤. The regularization parameter is set to λ = 10−3 and the number of
J-calculations in the AL method is set to 5. The initial evaluation policy π1 is set to the
ϵ-greedy policy defined as

π1(a|s) ≡ 0.15pu(a) + 0.85I(a = argmax
a′

Q̂0(s, a
′)), (66)

Q̂0(s, a) ≡
110∑
b=1

ϕb(s, a). (67)

Policies are updated in the l-th iteration using the ϵ-greedy rule with ϵ = 0.15/l. The
way we prepare sampling-policy candidates is the same as the chain-walk experiment in
Section 4.2.

The discount factor γ is set to 1 and the performance of learned policy πL+1 is measured
by the discounted sum of immediate rewards for test samples {rπL+1

m,n }20,10m=1,n=1 (20 episodes
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with 10 steps collected following πL+1):

Performance =
M∑

m=1

N∑
n=1

rπL+1
m,n . (68)

The experiment is repeated 500 times with different random seeds and the average
performance of each learning method is evaluated. The results are depicted in Figure 10,
showing that the proposed API method outperforms the PL strategy; for the ‘decreasing
M ’ strategy, the performance difference is statistically significant by the two-tailed paired
Student t-test at the significance level 1% for the error values at the 7-th iteration.

Based on the experimental evaluation, we conclude that the proposed sampling-policy
design method, API, is useful for improving the RL performance. Moreover, the ‘decreas-
ing M ’ strategy is shown to be a useful heuristic to further enhance the performance of
API.

6 Conclusions and Future Work

When we cannot afford to collect many training samples due to high sampling costs,
it is crucial to choose the most ‘informative’ samples for efficiently learning the value
function. In this paper, we proposed a new data sampling strategy for reinforcement
learning based on a statistical active learning method proposed by Sugiyama (2006). The
proposed procedure called active policy iteration (API)—which effectively combines the
framework of sample-reuse policy iteration (Hachiya et al., 2009) with active sampling-
policy selection—was shown to perform well in simulations with chain-walk and batting
robot control.

Our active learning strategy is a batch method and does not require previously col-
lected reward samples. However, in the proposed API framework, reward samples are
available from the previous iterations. A naive extension would be to include those pre-
vious samples in the generalization error estimator, for example, following the two-stage
active learning scheme proposed by Kanamori & Shimodaira (2003), in which both the
bias and variance terms are estimated using the labeled samples. However, such a bias-
and-variance approach was shown to perform poorly compared with the variance-only
approach (which we used in the current paper) (Sugiyama, 2006). Thus, developing an
active learning strategy which can effectively make use of previously collected samples is
an important future work.

For the case where the number of episodic samples to be gathered is fixed, we gathered
many samples in earlier iterations, rather than gathering samples evenly in each iteration.
Although this strategy was shown to perform well in the experiments, so far we do not have
strong justification for this heuristic yet. Thus theoretical analysis would be necessary for
understanding the mechanism of this approach and further improving the performance.

In the proposed method, the basis function ψ(s, a) defined by Eq.(14) was approxi-

mated by ψ̂(s, a,D) defined by Eq.(20) using samples. When the state-action space is
continuous, this is theoretically problematic since only a single sample is available for
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(Object Settings)

link 1: 0.65[m] (length), 11.5[kg] (mass)
link 2: 0.35[m] (length), 6.2[kg] (mass)

ball: 0.1[m] (radius), 0.1[kg] (mass)
pin: 0.3[m] (height), 7.5[kg] (mass)

Figure 9: A ball-batting robot.
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Figure 10: The mean performance over 500 trials in the ball-batting experiment. The
dotted lines denote the performance of passive learning (PL) and the solid lines denote
the performance of the proposed active learning (AL) method. The error bars are omitted
for clear visibility. For the ‘decreasing M ’ strategy, the performance of AL after the 7-th
iteration is significantly better than that of PL according to the two-tailed paired Student
t-test at the significance level 1% for the error values at the 7-th iteration.

approximation and thus consistency may not be guaranteed. Although we experimentally
confirmed that the single-sample approximation gave reasonably good performance, it is
important to theoretically investigate the convergence issue in the future work.

The R-max strategy (Brafman & Tennenholtz, 2002) is an approach to controlling the
trade-off between exploration and exploitation in the model-based RL framework. The
LSPI R-max method (Strehl et al., 2007; Li, Littman, & Mansley, 2009) is an application
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of the R-max idea to the LSPI framework. It is therefore interesting to investigate the
relation between the LSPI R-max method and the proposed method. Moreover, explor-
ing alternative active learning strategies in the model-based RL formulation would be a
promising research direction in the future.
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