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Abstract

The goal of sufficient dimension reduction
in supervised learning is to find the low-
dimensional subspace of input features that
is ‘sufficient’ for predicting output values. In
this paper, we propose a novel sufficient di-
mension reduction method using a squared-
loss variant of mutual information as a de-
pendency measure. We utilize an analytic
approximator of squared-loss mutual infor-
mation based on density ratio estimation,
which is shown to possess suitable conver-
gence properties. We then develop a natu-
ral gradient algorithm for sufficient subspace
search. Numerical experiments show that the
proposed method compares favorably with
existing dimension reduction approaches.

1 Introduction

The purpose of dimension reduction in supervised
learning is to construct a map from input features to
their low-dimensional representation which has ‘suffi-
cient’ information for predicting output values. Su-
pervised dimension reduction methods can be divided
broadly into two types—wrappers and filters (Guyon
& Elisseeff, 2003). The wrapper approach performs
dimension reduction specifically for a particular pre-
dictor (such as support vector classification or Gaus-
sian process regression), while the filter approach is
independent of the choice of successive predictors.

If one wants to enhance the prediction accuracy, the
wrapper approach would be a suitable choice since pre-
dictors’ characteristics could be taken into account in
the dimension reduction phase. On the other hand,
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if one wants to interpret dimension-reduced features
(e.g., in bioinformatics, computational chemistry, or
brain analysis), the filter approach would be more ap-
propriate since the extracted features are independent
of the choice of successive predictors and therefore re-
liable in terms of interpretability. In this paper, we
focus on the filter approach.

A standard formulation of filter-type dimension reduc-
tion is sufficient dimension reduction (SDR), which is
aimed at finding a low-rank projection matrix such
that, given the relevant subspace of input features, the
rest becomes conditionally independent of output val-
ues (Cook, 1998; Chiaromonte & Cook, 2002; Fuku-
mizu et al., 2009). A traditional dependency measure
between random variables would be the Pearson corre-
lation coefficient (PCC). PCC can be used for detect-
ing linear dependency, so it is useful for Gaussian data.
However, the Gaussian assumption may be rarely ful-
filled in practice.

Recently, kernel-based dimension reduction has been
studied in order to overcome the weakness of PCC. The
Hilbert-Schmidt independence criterion (HSIC) (Gret-
ton et al., 2005) utilizes cross-covariance operators on
universal reproducing kernel Hilbert spaces (RKHSs)
(Steinwart, 2001). Cross-covariance operators are an
infinite-dimensional generalization of covariance ma-
trices. HSIC allows one to efficiently detect non-linear
dependency thanks to the kernel trick (Scholkopf &
Smola, 2002). Its usefulness in feature selection sce-
narios has been shown in Song et al. (2007). How-
ever, HSIC has several weaknesses both theoretically
and practically. Theoretically, HSIC evaluates inde-
pendence between random variables, not conditional
independence. Thus HSIC does not perform SDR in
a strict sense. From the practical point of view, HSIC
evaluates the covariance between random variables,
not the correlation. This means that the change of
input feature scaling affects the dimension reduction
solution, which is not preferable in practice.

Kernel dimension reduction (KDR) (Fukumizu et al.,
2004) can overcome these weaknesses. KDR evaluates
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Table 1: Summary of existing and proposed dependency measures.

[ Methods || Non-linear dependency | Model selection [ Distribution [Density estimation | Feature extraction |

[ PCC ] Not detectable [Not necessary| Gaussian | Not involved | Possible ]
HSIC Detectable Not available Free Not involved Possible
KDR Detectable Not available Free Not involved Possible
HIST Detectable Available Free Involved Not available
KDE Detectable Available Free Involved Possible

NN Detectable Not available Free Not involved Not available
EDGE Detectable Not necessary | Near Gaussian| Not involved Possible
MLMI Detectable Available Free Not involved Not available

[ LSMI ] Detectable | Available ] Free | Not involved | Possible ]

conditional covariance using the kernel trick. There-
fore, KDR directly performs SDR; furthermore, its
theoretical properties such as consistency have been
studied thoroughly (Fukumizu et al., 2009). However,
KDR still has a weakness in practice—the performance
of KDR (and HSIC) depends on the choice of kernel
parameters (e.g., the Gaussian width) and the regu-
larization parameter. So far, there seems no model
selection method for KDR and HSIC (as discussed in
Fukumizu et al. (2009))*.

Another popular criterion for SDR is mutual infor-
mation (MI) (Cover & Thomas, 1991). MI could
be directly employed in the context of SDR since
maximizing MI between output and projected in-
put leads to conditional independence between out-
put and input given the projected input. A great
deal of effort has been made to estimate MI accu-
rately, e.g., based on an adaptive histogram (HIST)
(Darbellay & Vajda, 1999), kernel density estimation
(KDE) (Torkkola, 2003), the nearest neighbor distance
(NN) (Kraskov et al., 2004), the Edgeworth expan-
sion (EDGE) (Hulle, 2005), and maximum likelihood
MI estimation (MLMI) (Suzuki et al., 2008). Among
them, MLMI has been shown to possess various ad-
vantages as summarized in Table 1.

So we want to employ the MLMI method for dimension
reduction. However, this may not be possible since
the MLMI estimator is not explicit (i.e., the MLMI
estimator is implicitly defined as the solution of an
optimization problem and is computed numerically)—
in the dimension reduction scenarios, the projection

n principle, it is possible to choose the Gaussian width
and the regularization parameter by cross validation over
a successive predictor. However, this is not preferable due
to the following two reasons. The first is significant in-
crease of the computational cost. When cross validation
is used, the tuning parameters in KDR (or HSIC) and
hyper-parameters in the target predictor (such as the ker-
nel parameters and the regularization parameter) should
be optimized at the same time. This results in a deeply
nested cross validation procedure and therefore this could
be computationally very expensive. Another reason is that
features extracted based on cross validation are no longer
independent of predictors. Thus a merit of the filter ap-
proach (i.e., the obtained features are ‘reliable’) is lost.
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matrix needs to be optimized over an MI approxima-
tor. To cope with this problem, we adopt a squared-
loss variant of MI called the squared-loss MI (SMI) as
our independence measure, and apply an SMI approx-
imator called least-squares MI (LSMI) (Suzuki et al.,
2009). LSMI inherits the good properties of MLMI,
and moreover it provides an analytic MI estimator (see
Table 1 again).

Based on LSMI, we develop a dimension reduction
algorithm called Least-squares dimension reduction
(LDR). LDR optimizes the projection matrix using a
natural gradient algorithm (Amari, 1998) on the Stiefel
manifold. Through numerical experiments, we show
the usefulness of the LDR method.

2 Dimension Reduction via SMI
Estimation

In this section, we first formulate the problem of
sufficient dimension reduction (SDR) (Cook, 1998;
Chiaromonte & Cook, 2002; Fukumizu et al., 2009)
and show how squared-loss mutual information (SMI)
could be employed in the context of SDR. Then we in-
troduce a method of approximating SMI without going
through density estimation and develop a dimension
reduction method. Finally, several theoretical issues
such as convergence properties of the proposed SMI
estimator are investigated.

2.1 Sufficient Dimension Reduction

Let Dx (C R™) be the domain of input features and
Dy be the domain of output data. In the following, Dy
could be multi-dimensional and either continuous (i.e.,
regression) or categorical (i.e., classification); struc-
tured outputs can also be handled in our framework
as shown later.

The purpose of dimension reduction is to find a good
low-dimensional representation of & which ‘describes’
output y. Here we focus on linear dimension reduc-
tion, i.e.,

z=Wg,

where W' is a projection matrix onto a d-dimensional
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subspace. That is, W is a member of the Stiefel man-
ifold S (R):

ST(R) :={W ¢ R*™ | WW T = I},

where I; is the d-dimensional identity matrix. We
assume that d is known when developing a theory and
an algorithm; practically d may be chosen by cross
validation.

SDR is the problem of finding a projection matrix W
such that
yllax|z (1)

This means that, given the projected feature z, the
(remaining) feature x is conditionally independent of
output y and therefore can be discarded without sac-
rificing the prediction ability.

Suppose that we are given n independent and identi-
cally distributed (i.i.d.) paired samples

D" = {(x;,v:) | ®i € Dx, y; € Dy, i=1,...,n}

drawn from a joint distribution with density pyy (x, y).
Our goal is to estimate the subspace (or to find the
projection matrix on it) such that Eq.(1) is fulfilled.
We write z; = Wa;.

A direct approach to SDR would be to determine W
so that Eq.(1) is fulfilled. To this end, we adopt SMI
as our criterion to be maximized with respect to W:

2
1Y, 2) = 4 | (5582 = 1) py(w)pa(2)dydz,

(2)
where py,(y, z) denotes the joint density of y and z,
and py(y) and p,(z) denote the marginal densities of
y and z, respectively. I(Y, Z) allows us to evaluate
independence between y and z since I4(Y, Z) vanishes
if and only if

pyz(y7 z) = py(y)pz(z)'
Note that Eq.(2) corresponds to the f-divergence
(Ali & Silvey, 1966; Csiszar, 1967) from py,(y, z) to
Dy (yY)p.(z) with the squared loss, while ordinary MI
corresponds to the f-divergence with the log loss (i.e.,
the Kullback-Leibler divergence). Thus SMI could be
regarded as a natural alternative to ordinary MI.

The rationale behind SMI in the context of SDR relies
on the following lemma:

Lemma 1 Let pxy\z(may|z)7 px\z(a:"z); and py\z(y|z)
be conditional densities. Then we have

I,(X,Y)-I1,(2,Y)

. pXY\Z(w’ylz) 2pyz(y,z)2px(a:) x
/ (1 pxz<mz>py|z<y|z>> P20y () Y
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G:={a"py,z2)|a=(a,...,

A proof of this lemma is given in Appendix. Lemma 1
implies that I;(X,Y) > I,(Z,Y) and the equality
holds if and only if

pxy|z(w» y‘z) = pxlz(wlz)pylz(y|z)7

which is equivalent to Eq.(1). Thus, Eq.(1) can be
achieved by maximizing I3(Z,Y") with respect to W
then the ‘sufficient’ subspace can be identified.

Now we want to find the projection matrix W that
maximizes I4(Z,Y). However, SMI is inaccessible in
practice since densities py,(y, 2), py(y), and p,(z) are
unknown. Thus SMI needs to be estimated from data
samples. Our key constraint when estimating SMI is
that we want to avoid density estimation since this
would be harder than dimension reduction itself. To
accomplish this requirement, we employ an estimator
of SMI proposed recently in Suzuki et al. (2009). The
estimator utilizes density ratio estimation instead of
density estimation itself based on the density ratio es-
timator proposed by Kanamori et al. (2009). Below,
we explain the details.

2.2 SMI Approximation via Density Ratio
Estimation

For the moment, we consider a fixed projection matrix
W and let Dz = WDx. Using convex duality (Boyd
& Vandenberghe, 2004), we can express SMI as

I.S(Y’ Z) = _infg ‘](g) - %a
1

79) =5 [ 90,2, (Wp.(2)dyd

- /g(ya z)pyz(ya Z)dydz7

where inf ; is taken over all measurable functions. Thus
computing I, is reduced to finding the minimizer g* of
J(g)—it was shown that g* is given as follows (Nguyen
et al., 2008)2:

Py2(Y,%) (3)

9'(y,2) = Py (Y)pa(2)

Thus, estimating I5(Y, Z) amounts to estimating the
density ratio (3).

However, directly minimizing J(g) is not possible due
to the following two reasons. The first reason is that
finding the minimizer over all measurable functions is
not tractable in practice since the search space is too
vast. To overcome this problem, we restrict the search
space to some linear subspace G:

o) €R’}, (4)

2 A more general result—the solution is given by Eq.(3)
for any f-divergence—was obtained in Nguyen et al.
(2008).
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where « is a parameter to be learned from samples,
T denotes the transpose of a matrix or a vector, and
¢(y, z) is a basis function such that, for 0, being the
b-dimensional vector with all zeros,

0y, 2) = (p1(¥,2),...,0(y,2)) " >0, forall y, z.

Note that ¢(y,z) could be dependent on the sam-
ples {(yi, zi)},, i.e., kernel models are also allowed.
Later, we explain how the basis functions ¢(y, z) are
designed in practice.

The second reason why directly minimizing J(g) is not
possible is that the true probability densities py,(y, 2),
py(y), and p,(z) contained in the density ratio (3) are
unavailable. To cope with this problem, we approxi-
mate them by their empirical distributions—then we
have

. . 1 +—= -~ A

a:=argmin |~a' He—h'a+Za Ra|, (5)
a€eR? 2

where we included Aa” R (A > 0) for regularization

purposes; R is some positive definite matrix,

H:= 53" oizi)eyi,zo)",
and  h:=23" o(y;,2).

Differentiating the objective function (5) with respect
to o and equating it to zero, we obtain

a=(H+AR) 'h.

Thus, the solution can be computed analytically by
solving a system of linear equations. Then we
can analytically approximate SMI as follows, which
is called least-squares mutual information (LSMI)
(Suzuki et al., 2009):

L,Z2)=h"a -

2.3 Least-squares Dimension Reduction

Next, we show how the LSMI approximator could be
employed in dimension reduction scenarios. Since W
is a projection matrix, dimension reduction involves an
optimization problem over the Stiefel manifold S*(R).

Here we employ a gradient ascent algorithm to find
the maximizer of the LSMI approximator with respect
to W. After a few lines of calculations, we can show
that the gradient is given by

o, _ 0hT (o~ A\ _ AT _0H (34 A
W, W, (2a-p)-a W, (za—p)

+ Aa—r 83/12[, (/8 - a)v

where 8 := (H + AR)"'Ha.
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In the Euclidean space, the ordinary gradient %

gives the steepest direction. However, on a manifold,
the natural gradient (Amari, 1998) gives the steepest

direction. The natural gradient VI,(W) at W is the

projection of the ordinary gradient gé;, to the tangent

space of ST'(R) at W. If the tangent space is equipped
with the canonical metric (G, G2) = $tr(G{ G2), the
natural gradient is given by

-Ww

VI.W) = (8

oI,
oW w

+
% W),

Then the geodesic from W' to the direction of the nat-
ural gradient VI,(W) over S7'(R) can be expressed

using ¢t (€ R) as

- - T
W, .= Wexp (t(WT g‘%, — géf, W)),

where ‘exp’ for a matrix denotes the matriz exponen-
tial. Thus line search along the geodesic in the natural
gradient direction is equivalent to finding the maxi-
mizer from {W; | ¢t > 0}. More details of the geomet-
ric structure of the Stiefel manifold can be found in
Nishimori and Akaho (2005).

For choosing the step size of each gradient update, we
may use Armijo’s rule (Patriksson, 1999). We call the
proposed dimension reduction algorithm Least-squares
Dimension Reduction (LDR). The entire algorithm is
summarized in Figure 1.

2.4 Convergence Analysis

Here, we analyze convergence properties of LSMI for
parametric and non-parametric setups.

Let us begin with the case where the function class G
is a parametric model:

G=1{90(y,2)| 0 cOCR".

Suppose that the true density ratio g* is contained
in the model G, i.e., there exists 8* (€ ©) such that
g* = gg~. Then we have the following theorem (its
proof is omitted due to lack of space).

Theorem 1 We have

Is(Y7 Z) - IS(Y7 Z) = Op(l/\/ﬁ)a

where O, denotes the asymptotic order in probability.
Furthermore, we have

Epn [I,(Y, Z) — I(Y, Z)] = 3=tr(A~'B) + o(1/n),

where Epn denotes the expectation over data samples
D™. A and B are b X b matrices defined as

A =Eyp p, 10090+ (y, 2)0r go- (y, 2)],
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Initialize projection matrix W.

= W

Repeat 2. and 3. until W converges.

Optimize Gaussian width o and regularization parameter A by CV (explained later).
Update W by W «— W_, where step-size € may be chosen using Armijo’s rule.

Figure 1: The LDR algorithm.

By :=Ep,,[(0cgo- (Y, 2) — Ep,  [Oege-(y, 2')]
—Ep,,,[0c90- (Y, 2)] + Ep,,,, [0eg0- (y', 2)])
x (O go-(y,2) — Ep,, [0rge- (y,2")]
—Ep,,,[0090- (¥, 2)] + Ey ,, [0r go- (Y. 2)])],
where y' and z' are copies of y and z. The partial

derivative Op is taken with respect to the £-th element
0; of the parameter 6.

This theorem means that LSMI retains optimality in
terms of the order of convergence in n since Op(n’%) is
the optimal convergence rate in the parametric setup.

Next, we consider non-parametric cases. Let G be a
general set of functions on Dy X Dz. For a function
g (€ G), let us consider a non-negative regularization
functional R(g) such that

supy, -[9(y, 2)] < R(g). (7)
If G is an RKHS with kernel k(-,-) and there ex-
ists C' such that sup,, . k((y, 2), (y,2)) < C, R(g) :=
VC|gllg satisfies Eq.(7):

g(y,z) = <k((y7z)’ )79()>
< V(Y 2), (y,2)lglg < VClglg,

where we used the reproducing property of the ker-
nel (Aronszajn, 1950) and Schwartz’s inequality. Note
that the Gaussian RKHS satisfies this with C' = 1.

Let us consider a non-parametric version of the prob-
lem (5):

W=

n n

Tl 1 An
argmin [—Zg(yi,Zj)2— I Zg(yi,Zi)-ﬁ-?R(g)z .

2n2

9€9 ij=1 i=1

Note that if G is an RKHS, the above optimization
problem is reduced to a form of the finite dimensional
optimization problem (5). We assume that the true
density ratio function ¢g*(y, z) is contained in model G
and is bounded from above:

g (y,z) < My for all (y,z)€ Dy x Dy.

We also assume that there exists v (0 < v < 2) such
that

Hy(Gurs €, La(pyps)) = O((M/e€)?),
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Gu:={9€G|R(g) <M},

where H|j is the bracketing entropy of Gy with respect
to the La(pyp,)-norm (van der Vaart & Wellner, 1996).
This quantity represents a complexity of function class
G—the larger + is, the more complex the function class
G is. The Gaussian RKHS satisfies this condition for
arbitrarily small v (Steinwart & Scovel, 2007). Then
we have the following theorem (its proof is omitted due
to lack of space; we used Theorem 5.11 in van de Geer
(2000)).

Theorem 2 Under the above setting, if A, — 0 and
AL = o(n?/ ), then we have

I.(Y, Z) — I,(Y, Z) = Op(max(\,,n " /3)).  (8)

The conditions \,, — 0 and \;' = o(n? 2+7)) roughly
means that the regularization parameter A, should
be sufficiently small but not too small. This theo-
rem shows that the convergence rate of non-parametric
LSMI is slightly slower than the parametric coun-
terpart (O, (n~'/2)), but the non-parametric method
would require a milder model assumption for elimi-
nating the modeling error. According to Nguyen et al.
(2008) where a log-loss version of the above theorem
has been proven in the context of KL-divergence esti-
mation, the above convergence rate achieves the opti-
mal minimax rate under some setup. Thus the con-
vergence property of non-parametric LSMI would also
be optimal in the same sense.

2.5 Model Selection by Cross Validation

As shown above, LSMI has preferable convergence
properties. Nevertheless, its practical performance de-
pends on the choice of basis functions and the reg-
ularization parameter. In order to determine basis
functions ¢(y, z) and the regularization parameter A,
cross validation (CV) is available for the LSMI estima-
tor: First, the samples {(y;, z;)}7, are divided into K
disjoint subsets {S}&_ ;| of (approximately) the same
size. Then an estimator &g, is obtained using {S;};zk
(i.e., without Si) and the approximation error for the
hold-out samples Sy, is computed; this procedure is
repeated for k = 1,..., K and its mean JE-CV) ig
outputted:

~ e K ~ == T ~
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For model selection, we compute JUE-CV) for all model

candidates (the basis function ¢(y, z) and the regular-
ization parameter A) and choose the best model that
minimizes JE-CV). We can show that J&-CV) is an
almost unbiased estimator of the objective function J,
where ‘almost’-ness comes from the fact that the sam-
ple size is reduced in the CV procedure due to data
splitting (Scholkopf & Smola, 2002).

For the parametric setup, we can derive an asymp-
totic unbiased estimator of J (a.k.a. an information
criterion (Akaike, 1974)) based on Theorem 1, which
could be employed for model selection. However, we
omit the detail due to lack of space.

2.6 Design of Basis Functions

The above CV procedure would be useful when good
candidates of basis functions are prepared. Here we
propose to use the product kernel of the following form
as basis functions:

ey, z) = oy (y)¢7(2)

since the number of kernel evaluation when computing
Hy ¢ is reduced from n2 to 2n:

ﬁfz,e' = # ( 2?11 (bz(yi)(é%]/(yi)) ( Z?ﬂ ¢?(Zj)¢?/(zj))-

In the regression scenarios where vy is continu-
ous, we use the Gaussian kernel as the ‘base’ ker-
nels: 6} (y) = exp(—|ly — ue|?/(20%) and ¢5(2) =
exp(—|lz — v¢||?/(202)) , where {(us, ve)})_; are Gaus-
sian centers randomly chosen from {(y;, z;) }{;—more
precisely, we set u; := y.) and vy = 2z.y), where
{c(0)}b_, are randomly chosen from {1,...,n} with-
out replacement.

The rationale behind this basis function choice is as
follows: The density ratio tends to take large values
if py(y)p.(2) is small and py,(y, z) is large (and vise
versa). When a non-negative function is approximated
by a Gaussian kernel model, many kernels may be
needed in the region where the output of the target
function is large; on the other hand, only a small num-
ber of kernels would be enough in the region where the
output of the target function is close to zero. Fol-
lowing this heuristic, we decided to allocate many
kernels in the regions where py,(y, z) is large; this
can be achieved by setting the Gaussian centers at?

{(yi, Zi)}?:l-

In the classification scenarios where y is categorical,
we use the delta kernel for y: ¢)(y) := d(y = wuy),

3 Alternatively, we may locate n? Gaussian kernels at
{(yi,24)}i j=1. However, in our preliminary experiments,
this did not further improve the performance, but signifi-
cantly increased the computational cost.
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where §(y = uy) is 1 if y = uy and 0 otherwise. More
generally, when y is structured (e.g., strings, trees, and
graphs), we may employ kernels for structured data
(Gértner, 2003) as ¢} (y).

3 Numerical Experiments

In this section, we experimentally investigate the per-
formance of the proposed and existing dimension re-
duction methods using artificial and real datasets. In
the proposed method, we use the Gaussian kernel
as basis functions and employ the regularized kernel
Gram matrix as the regularization matrix R: R =
K + eIy, where K is the kernel Gram matrix for the
chosen centers: Ky = ¢} (up)dj(ve). el is added to
K for avoiding non-degeneracy; we set € = 0.01. We
fix the number of basis functions at b = min(100, n),
and choose the Gaussian width ¢ and the regulariza-
tion parameter A based on 5-fold CV with grid search.
we restart the natural gradient search 10 times with
random initial points and choose the one having the
minimum CV score (9).

3.1 Dimension Reduction for Artificial
Datasets

We use 6 artificial datasets (3 datasets designed by us
and 3 datasets borrowed from Fukumizu et al. (2009);
see Figure 2), and compare LDR with kernel dimen-
sion reduction (KDR) (Fukumizu et al., 2009), the
Hilbert-Schmidt independence criterion (HSIC) (Gret-
ton et al., 2005), sliced inverse regression (SIR) (Li,
1991), and sliced average variance estimation (SAVE)
(Cook, 2000). In KDR and HSIC, the Gaussian width
is set to the median sample distance, following the sug-
gestions in the original papers (Gretton et al., 2005;
Fukumizu et al., 2009). We evaluate the performance
of each method by

\/%Ti HWTW - W*TW* ”Frobeniusa
where || - ||Frobenius denotes the Frobenius norm, W is

an estimated projection matrix, and W* is the optimal
projection matrix. Note that the above error measure
takes its value in [0, 1].

The performance of each method is summarized in Ta-
ble 2, which depicts the mean and standard deviation
of the above Frobenius-norm error over 50 trials when
the number of samples is n = 100. LDR overall shows
good performance; in particular, it performs the best
for datasets (b), (c), and (¢). KDR also tends to work
reasonably well, but it sometimes performs poorly; this
seems to be caused by the inappropriate choice of the
Gaussian kernel width, implying that the heuristic of
using the median sample distance as the kernel width is
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Table 2: Mean and standard deviation of Frobenius-
norm error for toy datasets. The best method in terms
of the mean error and comparable ones based on the
one-sided t-test at the significance level 1% are indi-
cated by boldface.
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m d| LDR KDR HSIC SIR SAVE
(a) 5 1].13(.04) .13(.05) .17(.07) .11(.04) .19(.10)
(b) 5 1].15(.06) .25(.21) .44(.36) .83(.20) .24(.08)
(c) 5 1/.10(.05) .44(.32) .68(.32) .85(.20) .31(.11)
(d) 4 2[.20(.14) .16(.06) .18(.08) .29(.16) .40(.17)
(e) 4 1[.09(.06) .13(.06) .16(.07) .20(.10) .21(.14)
(f) 10 1|.35(.12) .40(.12) .49(.17) .64(.22) .73(.20)
Table 3: Mean and standard deviation of misclassifi-
cation rates for benchmark datasets.
d LDR KDR HSIC
5 | .078(.017) .115(.034) .154(.040)
image 9 | .091(.015) .100(.031) .107(.025)
14 | .090(.019) .086(.017) .088(.019)
6 | .133(.015) .132(.013) .157(.017)
waveform | 11 | .123(.012) .138(.013) .162(.013)
16 | .117(.009) .137(.010) .159(.016)
2 | .249(.022) .246(.018) .252(.021)
pima 4 | .251(.019) .255(.020) .261(.027)
6 | .249(.021) .246(.021) .253(.021)
1 | .029(.007) .025(.009) .034(.010)
letter 8 | .026(.008) .018(.009) .019(.007)
(a,b&c) | 12 | .015(.007) .015(.007) .015(.007)

Figure 2: Artificial datasets.

not always appropriate. On the other hand, LDR with
CV performs stably well for various types of datasets.

3.2 Classification for Benchmark Datasets

Finally, we evaluate the classification performance
after dimension reduction for several benchmark
datasets. We use ‘image’, ‘waveform’; ‘pima-indians-
diabetes’, and ‘letter recognition’ in the UCI repos-
itory. We randomly choose 200 samples from the
dataset and apply LDR, KDR, and HSIC to obtain
projections onto low-dimension subspaces with d =
[m/4], [m/2], and [3m/4]. Then we train the sup-
port vector machine on the projected 200 training sam-
ples.

The generalization error is computed for the samples
not used for training. Table 3 summarizes the mean
and standard deviation of the classification error over
20 iterations. This shows that the proposed method
overall compares favorably with the other methods.

4 Conclusions

In this paper, we proposed a new dimension reduction
method utilizing a squared-loss variant of mutual in-
formation (SMI). The proposed method inherits sev-
eral preferable properties of the SMI estimator, e.g.,
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density estimation is not involved, it is distribution-
free, and model selection by cross validation is avail-
able. The effectiveness of the proposed method over
existing methods was shown through experiments.
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Proof of Lemma 1
Let ¢ = (2,2, ). By de = dzdz, , we have
I,(X,)Y) - I1,(Z)Y)

Pxy (2,Y)

2 f (px(:c)py y)) px(:l:)py(y)dasdy

-3/

Pxy(Z,Y

—2 f (px(m)py(y)

Pv*g;;)) pa(2)py (y)dzdy

2
L@ @)y (@) dudy,

Pxy (T,Y)Py2 (Y,2)

because [ 7@ o, ) @ P(®IPy (W) ddy =
J (%) py(y)p.(2)dydz. Noticing that

Lo Pl Pys o where we used the relation
Pxpy Px|Py|s PyPa
Px(x) = pyj2(x|2)p,(2), Then we have
2
LOY) = L(ZY) = 4 [ (1- g) Seedady.
|
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