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Abstract

Estimating the conditional mean of an input-
output relation is the goal of regression.
However, regression analysis is not suffi-
ciently informative if the conditional distri-
bution has multi-modality, is highly asym-
metric, or contains heteroscedastic noise. In
such scenarios, estimating the conditional
distribution itself would be more useful. In
this paper, we propose a novel method of con-
ditional density estimation. Our basic idea is
to express the conditional density in terms
of the ratio of unconditional densities, and
the ratio is directly estimated without going
through density estimation. Experiments us-
ing benchmark and robot transition datasets
illustrate the usefulness of the proposed ap-
proach.

1 Introduction

Regression is aimed at estimating the conditionalmean
of output y given input x. When the conditional
density p(y|x) is unimodal and symmetric, regression
would be sufficient for analyzing the input-output de-
pendency. However, estimating the conditional mean
may not be sufficiently informative, when the condi-
tional distribution possesses multi-modality (e.g., in-
verse kinematics learning of a robot, see Bishop, 2006)
or a highly skewed profile with heteroscedastic noise
(e.g., biomedical data analysis, see Hastie et al., 2001).
In such cases, it would be more informative to estimate
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the conditional distribution itself. In this paper, we
address the problem of estimating conditional densities
when x and y are continuous and multi-dimensional.

The mixture density network (MDN) (Bishop, 2006)
models the conditional density by a mixture of para-
metric densities, where the parameters are estimated
by a neural network. MDN was shown to work well,
although its training is time-consuming and only a lo-
cal optimal solution may be obtained due to the non-
convexity of neural network learning. Similarly, a mix-
ture of Gaussian processes was explored for estimating
the conditional density (Tresp, 2001). The mixture
model is trained in a computationally efficient manner
by an expectation-maximization algorithm (Dempster
et al., 1977). However, since the optimization problem
is non-convex, one may only access to a local optimal
solution in practice.

The kernel quantile regression (KQR)
method (Takeuchi et al., 2006; Li et al., 2007)
allows one to predict percentiles of the conditional
distribution. This implies that solving KQR for all
percentiles gives an estimate of the entire conditional
cumulative distribution. KQR is formulated as a
convex optimization problem, and therefore a unique
global solution can be obtained. Furthermore, the
entire solution path with respect to the percentile
parameter, which was shown to be piece-wise linear,
can be computed efficiently (Takeuchi et al., 2009).
However, the range of applications of KQR is limited
to one-dimensional output and solution path tracking
tends to be numerically rather unstable in practice.

In this paper, we propose a new method of condi-
tional density estimation named least-squares condi-
tional density estimation (LS-CDE), which can be ap-
plied to multi-dimensional inputs and outputs. The
proposed method is based on the fact that the condi-
tional density can be expressed in terms of uncondi-
tional densities as p(y|x) = p(x,y)/p(x). Our key
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idea is that we do not estimate the two densities
p(x,y) and p(x) separately, but we directly estimate
the density ratio p(x,y)/p(x) without going through
density estimation. Experiments using benchmark and
robot transition datasets show that our method com-
pares favorably with existing methods in terms of the
accuracy and computational efficiency.

2 A New Method of Conditional
Density Estimation

In this section, we formulate the problem of condi-
tional density estimation and give a new method.

2.1 Conditional Density Estimation via
Density Ratio Estimation

Let DX (⊂ RdX) and DY (⊂ RdY) be input and output
data domains, where dX and dY are the dimensional-
ity of the data domains, respectively. Let us consider a
joint probability distribution on DX×DY with proba-
bility density function p(x,y), and suppose that we are
given n independent and identically distributed (i.i.d.)
paired samples of input x and output y:

{zi | zi = (xi,yi) ∈ DX ×DY}ni=1.

The goal is to estimate the conditional density p(y|x)
from the samples {zi}ni=1. Our primal interest is
the case where both variables x and y are multi-
dimensional and continuous.

A key idea of our proposed approach is to consider the
ratio of two unconditional densities:

p(y|x) = p(x,y)

p(x)
:= r(x,y),

where we assume p(x) > 0 for all x ∈ DX. However,
naively estimating the two unconditional densities and
taking their ratio can result in large estimation er-
ror. In order to avoid this, we propose to estimate the
density ratio function r(x,y) directly without going
through density estimation of p(x,y) and p(x).

2.2 Linear Density-ratio Model

We model the density ratio function r(x,y) by the
following linear model:

r̂α(x,y) := α⊤ϕ(x,y), (1)

where ⊤ denotes the transpose of a matrix or a vector,

α = (α1, α2, . . . , αb)
⊤

are parameters to be learned from samples, and

ϕ(x,y) = (ϕ1(x,y), ϕ2(x,y), . . . , ϕb(x,y))
⊤

are basis functions such that ϕ(x,y) ≥ 0b for all
(x,y) ∈ DX×DY. 0b denotes the b-dimensional vector
with all zeros. The inequality for vectors is applied in
an element-wise manner.

Note that the number b of basis functions is not nec-
essarily a constant; it can depend on the number n of
samples. Similarly, the basis functions ϕ(x,y) could
be dependent on the samples {xi,yi}ni=1. This means
that kernel models (i.e., b = n and ϕi(x,y) is a kernel
function ‘centered’ at (xi,yi)) are also included in the
above formulation. We explain how the basis functions
ϕ(x,y) are practically chosen in Section 2.5.

2.3 A Least-squares Approach to Conditional
Density Estimation

We determine the parameter α in the model r̂α(x,y)
so that the following squared error J0 is minimized:

J0(α) :=
1

2

∫∫
(r̂α(x,y)− r(x,y))

2
p(x)dxdy.

This can be expressed as

J0(α) =
1

2

∫∫
r̂α(x,y)

2p(x)dxdy

−
∫∫

r̂α(x,y)r(x,y)p(x)dxdy + C

=
1

2

∫∫ (
α⊤ϕ(x,y)

)2
p(x)dxdy

−
∫∫

α⊤ϕ(x,y)p(x,y)dxdy + C, (2)

where C = 1
2

∫∫
r(x,y)p(x,y)dxdy is a constant and

therefore can be safely ignored. Let us denote the first
two terms of Eq.(2) by J :

J(α) := J0(α)− C =
1

2
α⊤Hα− h⊤α,

where

H :=

∫
Φ(x)p(x)dx, h :=

∫∫
ϕ(x,y)p(x,y)dxdy,

Φ(x) :=

∫
ϕ(x,y)ϕ(x,y)⊤dy. (3)

The matrix H and the vector h included in J(α) con-
tain the expectations over unknown densities p(x) and
p(x,y), so we approximate the expectations by sample
averages. Then we have

Ĵ(α) :=
1

2
α⊤Ĥα− ĥ⊤α,

where

Ĥ :=
1

n

n∑
i=1

Φ(xi), ĥ :=
1

n

n∑
i=1

ϕ(xi,yi). (4)
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Note that the integral over y included in Φ(x) (see
Eq.(3)) can be computed in principle since it does
not contain any unknown quantity. As shown in Sec-
tion 2.5, this integration can be computed analytically
in our basis function choice.

Now our optimization criterion is summarized as

α̃ := argmin
α∈Rb

[
Ĵ(α) + λα⊤α

]
, (5)

where a regularizer λα⊤α (λ > 0) is included for sta-
bilization purposes. Taking the derivative of the above
objective function and equating it to zero, we can see
that the solution α̃ can be obtained just by solving the

following system of linear equations. (Ĥ+λIb)α = ĥ,
where Ib denotes the b-dimensional identity matrix.
Thus, the solution α̃ is given analytically as

α̃ = (Ĥ + λIb)
−1ĥ. (6)

Since the density ratio function is non-negative by def-
inition, we modify the solution α̃ as1

α̂ := max(0b, α̃), (7)

where the ‘max’ operation for vectors is applied in
an element-wise manner. Thanks to this rounding-up
processing, the solution α̂ tends to be sparse, which
contributes to reducing the computation time in the
test phase.

In order to assure that the obtained density-ratio func-
tion is a conditional density, we renormalize the solu-
tion in the test phase—given a test input point x̃, our
final solution is given as

p̂(y|x = x̃) =
α̂⊤ϕ(x̃,y)∫
α̂⊤ϕ(x̃,y)dy

. (8)

We call the above method Least-Squares Conditional
Density Estimation (LS-CDE). LS-CDE can be re-
garded as an application of the direct density-ratio
estimation method called the unconstrained Least-
Squares Importance Fitting (uLSIF) (Kanamori et al.,
2009) to the problem of density ratio estimation.

2.4 Convergence Analysis

Here, we briefly show a non-parametric convergence
rate of the LS-CDE solution.

1A variant of the proposed method would be to include
the positivity constraint α ≥ 0n directly in Eq.(6). Our
preliminary experiments showed that the estimation accu-
racy of this modified algorithm turned out to be compa-
rable to Eq.(7), while the constrained version was compu-
tationally less efficient than Eq.(7) since we need to use a
numerical quadratic program solver for computing the so-
lution. For this reason, we only consider Eq.(7) in the rest
of this paper.

Let G be a general set of functions on DX ×DY. Note
that G corresponds to the span of our model, which
could be non-parametric (i.e., an infinite dimensional
linear space). For a function g (∈ G), let us consider a
non-negative function R(g) such that

max

{
sup
x

[∫
g(x,y)dy

]
, sup

x,y
[g(x,y)]

}
≤ R(g).

Then the problem (5) can be generalized as

r̂ := argmin
g∈G

[
1

2n

n∑
i=1

∫
g(xi,y)

2dy

− 1

n

n∑
i=1

g(xi,yi) + λnR(g)
2

]
,

where λn is the regularization parameter depending
on n. We assume that the true density ratio function
r(x,y) is contained in G and there existsM (> 0) such
that R(r) < M . We also assume that there exists γ
(0 < γ < 2) such that

H[](GM , ϵ, L2(px × µY)) = O ((M/ϵ)
γ
) ,

where GM := {g ∈ G | R(g) ≤M}. µY is the Lebesgue
measure on DY, px × µY is a product measure of px
and µY, and H[] is the bracketing entropy of GM with
respect to the L2(px × µY)-norm (van der Vaart &
Wellner, 1996).

Under the above assumptions, we have the following
theorem (its proof is omitted since it follows essentially
the same line as Sugiyama et al., 2008).

Theorem 1 Under the above setting, if λn → 0 and
λ−1
n = o(n2/(2+γ)), then

∥r̂ − r∥2 = Op(λ
1/2
n ),

where ∥ · ∥2 denotes the L2(px × µY)-norm and Op

denotes the asymptotic order in probability.

Note that the conditions λn → 0 and λ−1
n =

o(n2/(2+γ)) intuitively means that λn should converge
to zero as n tends to infinity, but the speed of conver-
gence should not be too fast.

2.5 Basis Function Design

It is straightforward to show that cross-validation is
available for model selection. A good model may
be chosen by cross-validation, given that a family of
promising model candidates is prepared. As model
candidates, we propose to use a Gaussian kernel model:
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for z = (x⊤,y⊤)⊤,

ϕℓ(x,y) = exp

(
−∥z −wℓ∥2

2σ2

)
= exp

(
−∥x− uℓ∥2

2σ2

)
exp

(
−∥y − vℓ∥2

2σ2

)
,

(9)

where {wℓ | wℓ = (u⊤
ℓ ,v

⊤
ℓ )

⊤}bℓ=1 are center points
randomly chosen from {zi | zi = (x⊤

i ,y
⊤
i )⊤}ni=1. We

may use different Gaussian widths for x and y. How-
ever, for simplicity, we decided to use the common
Gaussian width σ for both x and y under the setting
where the variance of each element of x and y is nor-
malized to one.

An advantage of the above Gaussian kernel model is
that the integrals over y in matrix Φ (see Eq.(3)) and
in the normalization factor (see Eq.(8)) can be com-
puted analytically; indeed, a simple calculation yields

Φℓ,ℓ′(x) =

∫
ϕℓ(x,y)ϕℓ′(x,y)dy

= (
√
πσ)dY exp

(
−ξℓ,ℓ

′(x)

4σ2

)
,∫

α̂⊤ϕ(x̃,y)dy = (
√
2πσ)dY

b∑
ℓ=1

α̂ℓ exp

(
−∥x− uℓ∥2

2σ2

)
,

where ξℓ,ℓ′(x) := 2∥x−uℓ∥2+2∥x−uℓ′∥2+∥vℓ−vℓ′∥2.

In the experiments, we fix the number of basis func-
tions to b = min(100, n), and choose the Gaussian
width σ and the regularization parameter λ by CV
from σ, λ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}.

3 Discussion

In this section, we discuss the characteristics of exist-
ing and proposed methods of conditional density esti-
mation.

3.1 ϵ-neighbor Kernel Density Estimation
(ϵ-KDE)

For estimating the conditional density p(y|x), ϵ-
neighbor kernel density estimation (ϵ-KDE) employs
the standard kernel density estimator using a subset of
samples, {yi}i∈Ix,ϵ for some threshold ϵ (≥ 0), where
Ix,ϵ is the set of sample indices such that ∥xi−x∥ ≤ ϵ.

In the case of Gaussian kernels, ϵ-KDE is expressed as

p̂(y|x) = 1

|Ix,ϵ|
∑

i∈Ix,ϵ

N(y;yi, σ
2IdY),

where N(y;µ,Σ) denotes the Gaussian density with
mean µ and covariance matrix Σ. The threshold ϵ

and the bandwidth σ may be chosen based on CV.
ϵ-KDE is simple and easy to use, but it may not be
reliable in high-dimensional problems. Slightly more
sophisticated variants have been proposed based on
weighted kernel density estimation (Fan et al., 1996;
Wolff et al., 1999), but they may still share the same
weakness.

3.2 Mixture Density Network (MDN)

The mixture density network (MDN) models the con-
ditional density by a mixture of parametric densi-
ties (Bishop, 2006). In the case of Gaussian densities,
MDN is expressed as

p̂(y|x) =
t∑

ℓ=1

πℓ(x)N(y;µℓ(x), σ
2
ℓ (x)IdY),

where πℓ(x) denotes the mixing coefficient such that∑t
ℓ=1 πℓ(x) = 1 and 0 ≤ πℓ(x) ≤ 1 for all x ∈ DX. All

the parameters {πℓ(x),µℓ(x), σ
2
ℓ (x)}tℓ=1 are learned

as a function of x by a neural network with regular-
ized maximum likelihood estimation. The number t of
Gaussian components, the number of hidden units in
the neural network, and the regularization parameter
may be chosen based on CV. MDN has been shown
to work well, although its training is time-consuming
and only a local solution may be obtained due to the
non-convexity of neural network learning.

3.3 Kernel Quantile Regression (KQR)

Kernel quantile regression (KQR) allows one to predict
the 100τ -percentile of conditional distributions for a
given τ (∈ (0, 1)) when y is one-dimensional (Takeuchi
et al., 2006; Li et al., 2007). For the Gaussian kernel
model

f̂τ (x) =

n∑
i=1

αi,τϕi(x) + bτ ,

where ϕi(x) = exp
(
−∥x−xi∥2

2σ2

)
, the parameters

{αi,τ}ni=1 and bτ are learned by

min
{αi,τ}n

i=1,bτ

 n∑
i=1

ψτ (yi − f̂τ (xi))+λ
n∑

i,j=1

ϕi(xj)αi,ταj,τ

,
where ψτ (r) denotes the pin-ball loss function defined
by

ψτ (r) =

{
(1− τ)|r| (r ≤ 0),

τ |r| (r > 0).

Thus, solving KQR for all τ ∈ (0, 1) gives an estimate
of the entire conditional distribution. The bandwidth
σ and the regularization parameter λ may be chosen
based on CV.
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A notable advantage of KQR is that the solution of
KQR is piece-wise linear with respect to τ , so the entire
solution path can be computed efficiently (Takeuchi
et al., 2009). This implies that the conditional cumu-
lative distribution can be computed efficiently. How-
ever, solution path tracking tends to be numerically
rather unstable and the range of applications of KQR
is limited to one-dimensional output y. Furthermore,
some heuristic procedure is needed to convert condi-
tional cumulative distributions into conditional densi-
ties, which can cause additional estimation errors.

3.4 Other Methods of Density Ratio
Estimation

A naive method for estimating the density ratio
p(x,y)/p(x) is to first approximate the two densities
p(x,y) and p(x) by standard kernel density estimation
and then taking the ratio of the estimated densities.
We refer to this method as the ratio of kernel density
estimators (RKDE). As we will show through experi-
ments in the next section, RKDE does not work well
since taking the ratio of estimated quantities signifi-
cantly magnifies the estimation error.

To overcome the above weakness, we decided to di-
rectly estimate the density ratio without going through
density estimation under the squared-loss. The kernel
mean matching method (Huang et al., 2007) and the
logistic regression based method (Qin, 1998; Cheng &
Chu, 2004; Bickel et al., 2007) also allow one to di-
rectly estimate a density ratio q(x)/q′(x). However,
the derivation of these methods heavily relies on the
fact that the two density functions q(x) and q′(x)
share the same domain, which is not fulfilled in the
current setting. For this reason, these methods may
not be employed for conditional density estimation.

Other methods of direct density ratio estima-
tion (Sugiyama et al., 2008; Nguyen et al., 2008) em-
ploys the Kullback-Leibler (KL) divergence as the loss
function, instead of the squared-loss. It is possible to
use these methods for conditional density estimation
in the same way as the proposed method. Indeed,
our preliminary experiments showed that a KL-based
method was comparable to the squared-loss method
in terms of accuracy. However, the KL-based method
was computationally less efficient. For this reason, we
decided to focus on the squared-loss method.

4 Numerical Experiments

In this section, we investigate the experimental perfor-
mance of the proposed and existing methods.

4.1 Illustrative Examples

Here we illustrate how the proposed LS-CDE method
behaves using toy datasets.

Let dX = dY = 1. Inputs {xi}ni=1 were independently
drawn from U(−1, 1), where U(a, b) denotes the uni-
form distribution on (a, b). Outputs {yi}ni=1 were gen-
erated by the following heteroscedastic noise model:

yi = sinc(2πxi) +
1

8
exp(1− xi) · εi.

We tested the following three different distributions
for {εi}ni=1:

(a) Gaussian: εi
i.i.d.∼ N(0, 1).

(b) Bimodal: εi
i.i.d.∼ 1

2N(−1, 49 ) +
1
2N(1, 49 ).

(c) Skewed: εi
i.i.d.∼ 3

4N(0, 1) + 1
4N( 32 ,

1
9 ).

‘
i.i.d.∼ ’ denotes ‘independent and identically distributed’
and N(µ, σ2) denotes the Gaussian distribution with
mean µ and variance σ2. The number of training sam-
ples was set to n = 200. The numerical results were de-
picted in Figure 1, illustrating that LS-CDE well cap-
tures heteroscedasticity, bimodality, and asymmetric-
ity.

We have also investigated the experimental perfor-
mance of LS-CDE using the following real datasets:

(d) Bone Mineral Density dataset: Relative
spinal bone mineral density measurements on 485
North American adolescents (Hastie et al., 2001),
having a heteroscedastic asymmetric conditional
distribution.

(e) Old Faithful Geyser dataset: The durations
of 299 eruptions of the Old Faithful Geyser (Weis-
berg, 1985), having a bimodal conditional distri-
bution.

Figure 2 depicts the experimental results, showing that
heteroscedastic and multi-modal structures were nicely
revealed by LS-CDE.

4.2 Benchmark Datasets

We applied the proposed and existing methods to the
benchmark datasets accompanied with the R package
(see Table 1) and evaluate their experimental perfor-
mance.

In each dataset, 50% of samples were randomly cho-
sen for conditional density estimation and the rest was
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Figure 1: Illustrative examples of LS-CDE for artificial
datasets.

used for computing the estimation accuracy. The ac-
curacy of a conditional density estimator p̂(y|x) was
measured by the negative log-likelihood for test sam-
ples {z̃i | z̃i = (x̃i, ỹi)}ñi=1:

NLL := − 1

ñ

ñ∑
i=1

log p̂(ỹi|x̃i). (10)

Thus, the smaller the value of NLL is, the better
the performance of the conditional density estimator
p̂(y|x) is.

We compared LS-CDE, ϵ-KDE, MDN, KQR, and
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(b) Old Faithful Geyser

Figure 2: Illustrative examples of LS-CDE for real
datasets.

RKDE. For model selection, we used CV based on the
log-likelihood. In MDN, CV over three tuning parame-
ters (the number of Gaussian components, the number
of hidden units in the neural network, and the regular-
ization parameter) was unbearably slow, so the num-
ber of Gaussian components was fixed to t = 3 and
the other two tuning parameters were chosen by CV.

The experimental results are summarized in Table 1.
ϵ-KDE was computationally very efficient, but it
tended to perform rather poorly. MDN worked well,
but it is computationally highly demanding. KQR
overall performed well and it was computationally
slightly more efficient than LS-CDE. However, its so-
lution path tracking algorithm was numerically rather
unstable and we could not obtain solutions for the ‘en-
gel’ and ‘cpus’ datasets. RKDE did not perform well
for all cases, implying that density ratio estimation via
density estimation is not reliable in practice. Overall,
the proposed LS-CDE was shown to be a promising
method for conditional density estimation in terms of
the accuracy and computational efficiency.
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Table 1: Experimental results on benchmark datasets (dY = 1). The average and the standard deviation of NLL
(see Eq.(10)) over 10 runs are described (smaller is better). The best method in terms of the mean error and
comparable methods according to the two-sided paired t-test at the significance level 5% are specified by bold
face. Mean computation time is normalized so that LS-CDE is one.

Dataset (n, dX) LS-CDE ϵ-KDE MDN KQR RKDE
caution (50,2) 1.24 ± 0.29 1.25 ± 0.19 1.39 ± 0.18 1.73 ± 0.86 17.11 ± 0.25

ftcollinssnow (46,1) 1.48 ± 0.01 1.53 ± 0.05 1.48 ± 0.03 2.11 ± 0.44 46.06 ± 0.78
highway (19,11) 1.71 ± 0.41 2.24 ± 0.64 7.41 ± 1.22 5.69 ± 1.69 15.30 ± 0.76
heights (687,1) 1.29 ± 0.00 1.33 ± 0.01 1.30 ± 0.01 1.29 ± 0.00 54.79 ± 0.10
sniffer (62,4) 0.69 ± 0.16 0.96 ± 0.15 0.72 ± 0.09 0.68 ± 0.21 26.80 ± 0.58

snowgeese (22,2) 0.95 ± 0.10 1.35 ± 0.17 2.49 ± 1.02 2.96 ± 1.13 28.43 ± 1.02
ufc (117,4) 1.03 ± 0.01 1.40 ± 0.02 1.02 ± 0.06 1.02 ± 0.06 11.10 ± 0.49

birthwt (94,7) 1.43 ± 0.01 1.48 ± 0.01 1.46 ± 0.01 1.58 ± 0.05 15.95 ± 0.53
crabs (100,6) -0.07 ± 0.11 0.99 ± 0.09 -0.70 ± 0.35 -1.03 ± 0.16 12.60 ± 0.45

GAGurine (157,1) 0.45 ± 0.04 0.92 ± 0.05 0.57 ± 0.15 0.40 ± 0.08 53.43 ± 0.27
geyser (149,1) 1.03 ± 0.00 1.11 ± 0.02 1.23 ± 0.05 1.10 ± 0.02 53.49 ± 0.38
gilgais (182,8) 0.73 ± 0.05 1.35 ± 0.03 0.10 ± 0.04 0.45 ± 0.15 10.44 ± 0.50
topo (26,2) 0.93 ± 0.02 1.18 ± 0.09 2.11 ± 0.46 2.88 ± 0.85 10.80 ± 0.35

BostonHousing (253,13) 0.82 ± 0.05 1.03 ± 0.05 0.68 ± 0.06 0.48 ± 0.10 17.81 ± 0.25
CobarOre (19,2) 1.58 ± 0.06 1.65 ± 0.09 1.63 ± 0.08 6.33 ± 1.77 11.42 ± 0.51

engel (117,1) 0.69 ± 0.04 1.27 ± 0.05 0.71 ± 0.16 N.A. 52.83 ± 0.16
mcycle (66,1) 0.83 ± 0.03 1.25 ± 0.23 1.12 ± 0.10 0.72 ± 0.06 48.35 ± 0.79

BigMac2003 (34,9) 1.32 ± 0.11 1.29 ± 0.14 2.64 ± 0.84 1.35 ± 0.26 13.34 ± 0.52
UN3 (62,6) 1.42 ± 0.12 1.78 ± 0.14 1.32 ± 0.08 1.22 ± 0.13 11.43 ± 0.58
cpus (104,7) 1.04 ± 0.07 1.01 ± 0.10 -2.14 ± 0.13 N.A. 15.16 ± 0.72

Time 1 0.004 267 0.755 0.089

4.3 Robot Transition Estimation

We further applied the proposed and existing methods
to the problem of robot transition estimation. We used
the pendulum robot and the Khepera robot simulators
illustrated in Figure 3.

The pendulum robot consists of wheels and a pendu-
lum hinged to the body. The state of the pendulum
robot consists of angle θ and angular velocity θ̇ of the
pendulum. The amount of torque τ applied to the
wheels can be controlled, by which the robot can move
left or right and the state of the pendulum is changed
to θ′ and θ̇′. The task is to estimate p(θ′, θ̇′|θ, θ̇, τ),
the transition probability density from state (θ, θ̇) to
state (θ′, θ̇′) by action τ .

The Khepera robot is equipped with two infra-red sen-
sors and two wheels. The infra-red sensors dL and dR
measure the distance to the left-front and right-front
walls. The speed of left and right wheels vL and vR can
be controlled separately, by which the robot can move
forward/backward and rotate left/right. The task is
to estimate p(d′L, d

′
R|dL, dR, vL, vR), where d′L and d′R

are the next state.

The state transition of the pendulum robot is highly
stochastic due to slip, friction, or measurement er-
rors with strong heteroscedasticity. Sensory inputs of
the Khepera robot suffer from occlusions and contain
highly heteroscedastic noise, so the transition prob-
ability density may possess multi-modality and het-

(a) Pendulum robot. (b) Khepera robot.

Figure 3: Illustration of robots used for experiments.

eroscedasticity. Thus transition estimation of dynamic
robots is a challenging task. Note that transition esti-
mation is highly useful in model-based reinforcement
learning.

For both robots, 100 samples were used for conditional
density estimation and additional 900 samples were
used for computing NLL (see Eq.(10)). The number
of Gaussian components was fixed to t = 3 in MDN,
and all other tuning parameters were chosen by CV
based on the log-likelihood. Experimental results are
summarized in Table 2, showing that LS-CDE is still
useful in this challenging task of robot transition esti-
mation.
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Table 2: Experimental results on robot transition estimation. The average and the standard deviation of NLL
(see Eq.(10)) over 10 runs are described (smaller is better). The best method in terms of the mean error and
comparable methods according to the two-sided paired t-test at the significance level 5% are specified by bold
face. Mean computation time is normalized so that LS-CDE is one. KQR was not included here since it is
applicable only when dY = 1.

Dataset (n, dX , dY ) LS-CDE ϵ-KDE MDN RKDE
Pendulum1 (100,3,2) 1.27 ± 0.05 2.04 ± 0.10 1.44 ± 0.67 11.24 ± 0.32
Pendulum2 (100,3,2) 1.38 ± 0.05 2.07 ± 0.10 1.43 ± 0.58 11.24 ± 0.32
Khepera1 (100,4,2) 1.69 ± 0.01 2.07 ± 0.02 1.90 ± 0.36 11.03 ± 0.03
Khepera2 (100,4,2) 1.86 ± 0.01 2.10 ± 0.01 1.92 ± 0.26 11.09 ± 0.02

Time 1 0.164 1134 0.431

5 Conclusions

We proposed a novel approach to conditional density
estimation called LS-CDE. Our basic idea was to di-
rectly estimate the ratio of unconditional density func-
tions without going through density estimation. LS-
CDE was shown to offer a sparse solution in an analytic
form and therefore is computationally efficient. A non-
parametric convergence rate of the LS-CDE algorithm
was also provided. Experiments on benchmark and
robot-transition datasets demonstrated the usefulness
of LS-CDE.
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