
JMLR: Workshop and Conference Proceedings 13: 145-160
2nd Asian Conference on Machine Learning (ACML2010), Tokyo, Japan, Nov. 8–10, 2010.

Single versus Multiple Sorting in All Pairs Similarity Search

Yasuo Tabei yasuo.tabei@gmail.com
Minato Discrete Structure Manipulation System Project, ERATO, Japan Science and Technology
Agency, Sapporo, 060-0814, Japan

Takeaki Uno uno@nii.jp
National Institute of Informatics, Tokyo, 101-8430, Japan

Masashi Sugiyama sugi@cs.titech.ac.jp
Department of Computer Science, Tokyo Institute of Technology, Tokyo, 152-8552, Japan

Koji Tsuda koji.tsuda@aist.go.jp

Computational Biology Research Center, National Institute of Advanced Industrial Science and
Technology (AIST), Tokyo, 135-0064, Japan, and Minato Discrete Structure Manipulation System
Project, ERATO, Japan Science and Technology Agency, Sapporo, 060-0814, Japan

Editor: Masashi Sugiyama and Qiang Yang

Abstract

To save memory and improve speed, vectorial data such as images and signals are often
represented as strings of discrete symbols (i.e., sketches). Charikar (2002) proposed a
fast approximate method for finding neighbor pairs of strings by sorting and scanning
with a small window. This method, which we shall call “single sorting”, is applied to
locality sensitive codes and prevalently used in speed-demanding web-related applications.
To improve on single sorting, we propose a novel method that employs blockwise masked
sorting. Our method can dramatically reduce the number of candidate pairs which have
to be verified by distance calculation in exchange with an increased amount of sorting
operations. So it is especially attractive for high dimensional dense data, where distance
calculation is expensive. Empirical results show the efficiency of our method in comparison
to single sorting and recent fast nearest neighbor methods.

Keywords: SketchSort, Multiple sorting, Localty sensitive hashing, All pairs similarity
search, Nearest neighbor graph

1. Introduction

Recently it is increasingly popular in machine learning and data mining that vectorial data
such as images and signals are mapped to strings of discrete symbols (i.e., sketches). A
main motivation of using sketches is to save memory and increase speed of subsequent
learning algorithms. Locality sensitive hashing (LSH) employs random mapping to obtain
bit or integer strings such that the distance in the original space is preserved as the Ham-
ming distance among sketches (Gionis et al., 1999). There are several methods for different
distances, Hamming (Gionis et al., 1999), cosine (Goemans and Williamson, 1995) and
Euclidean (Datar et al., 2004). In view of machine learning, it is not always necessary to
preserve global geometry. Several methods aim to design the mapping such that essential
information is preserved for further inference. Examples are semantic hashing (Salakhut-

c©2010 Yasuo Tabei, Takeaki Uno, Masashi Sugiyama, and Koji Tsuda.

w

w

(b)Sort

 7:000000
 4:010000
 8:010110
 10:100100
 5:101000
 1:101111
 3:110010
 2:110101
 9:110110
 6:111100

(a)Input data

 1:101111
 2:110101
 3:110010
 4:010000
 5:101000
 6:111100
 7:000000
 8:010110
 9:110110
 10:100100

(c)Scan neighbors

 7:000000
 4:010000
 8:010110
 10:100100
 5:101000
 1:101111
 3:110010
 2:110101
 9:110110
 6:111100

Figure 1: Single sorting method.

dinov and Hinton, 2007), spectral hashing (Weiss et al., 2009), kernelized LSH (Kulis and
Grauman, 2009), locality sensitive binary codes for kernels (Raginsky and Lazebnik, 2010).
In addition, the mapping can be learned from data (Shakhnarovich et al., 2003; Kulis et al.,
2009; Kulis and Darrell, 2010)

In this paper, we deal with the problem of finding all neighbor pairs from sketches,
i.e., all pairs similarity search. From such pairs, one can build a neighborhood graph which
is a basis of many different tasks such as manifold modeling (Tennenbaum et al., 2000),
semi-supervised learning (Zhou et al., 2004), spectral clustering (Hein et al., 2007), inter-
esting region detection in images (G. Kim and A. Torralba, 2010), and retrieval of protein
sequences (Weston et al., 2004). One can solve this problem by building an index from
data, and give each point as a query to derive its neighbors (Beygelzimer et al., 2006).
Nevertheless, it is often reported that all pairs similarity search methods (Bayardo et al.,
2007; Ram et al., 2010) which find similar pairs without any index, are faster and consume
less storage.

Charikar (2002) proposed a very simple yet effective method for finding neighbors by
sorting (Figure 1). Sketches are lexicographically sorted, and the sorted table is scanned
with a small window of height 2w+1. For all pairs falling into the same window, the distance
in the original space is calculated. If the distance is small enough, the pair is regarded as
a valid neighbor. Neighbors sharing similar prefix can be found by this method, but some
neighbors can be missed if mismatches lie in the beginning. To reduce the number of missing
neighbor pairs, random permutation of letters is often introduced (Charikar, 2002). We shall
call it “single sorting method” (SSM). The effectiveness of the method has been evidenced
in Google news (Das et al., 2007), a computer-generated news site that aggregates news
articles from more than 4,500 news sources worldwide. In its recommendation engine, the
single sorting method is used to group similar stories together. Then, the story groups are
displayed according to reader’s personal interests.

A drawback of single sorting is that a large number of distance calculation is necessary for
achieving reasonable accuracy. In addition, it is impossible to derive an analytic estimate of
the fraction of missing neighbors, even if the probability of mismatch for each letter is given.
It is because the probability of neighbors falling into the same window is data-dependent.
This unfavorable property forces users to adjust the height w by trial-and-error for each
dataset. To cope with the problems above, we propose a novel method called SketchSort
that employs the multiple sorting method (MSM) (Uno, 2009) as a building block. MSM

146

Exact Match in

Masked Sorting

Block-level

Duplication?
Hamming dist

of sketches

Output as

Neighbors

Trash

NO <=d NO
Original

distance

Chunk-level

Duplication?

<=eps

Figure 2: Global flow of our approach.

Table 1: Summary of recent all pairs similarity search methods.
time comp. type detail data

brute-force O(n2) - exact real
cover tree (Beygelzimer et al., 2006) O(n ln n) partition exact, index real

allknn (Ram et al., 2010) O(n) partition exact, no index real
Bayardo et al. (Bayardo et al., 2007) O(n) inverted index exact, no index binary
Lanczos bisection (Chen et al., 2009) O(nt), 1 ≤ t ≤ 2 partition approx., no index real

Single Sorting (Charikar, 2002) O(wn) sorting approx., index/no index real

has been proposed for detecting pairs of similar strings, but never been used or evaluated
for real-valued feature vectors.

In MSM, sketches are divided into blocks. Some blocks are masked and sorting is done
with respect to unmasked blocks. It allows us to detect neighbors of dissimilar prefixes as
well. By trying all masking patterns, MSM offers a procedure to enumerate all pairs within
Hamming distance d, which is beneficial in the following two aspects. 1) The number of
distance calculation in the original space is significantly reduced by Hamming distance-based
prefiltering and duplication detection (Figure 2). 2) A bound of the expected fraction of
missing neighbors can be obtained in a data-independent manner.

As shown in Table 1, most of other state-of-the-art approaches employ “space partition-
ing” strategies, where the feature space is partitioned into several cells allowing overlap.
In cover tree (Beygelzimer et al., 2006), a tree shaped index is constructed to find neigh-
bors of a query quickly. Ram et al. (2010) proved that, based on the cover tree, exact
all pairs k-nearest neighbor (NN) search can be solved in linear time. While this result is
remarkable, it is often reported that the efficiency of tree-based methods is heavily data
dependent (e.g.,Weiss et al. (2009)). This unstable behaviour is backed by the fact that the
complexity is sharply dependent on the intrinsic dimensionality of data (Beygelzimer et al.,
2006). Lanczos bisection (Chen et al., 2009) is an approximate k-NN search method where
the space is partitioned into two halves recursively. If the number of points in each cell falls
below a threshold, neighbors are found by brute-force computation. Though theoretical
aspects of this method are not clear, high intrinsic dimensionality might pose a problem.
Notice that, for extremely sparse binary data, other specialized approaches are possible
(e.g.,Bayardo et al. (2007)) but they are not applicable to general data unfortunately.

In experiments, we first show, in near duplication detection experiments, that SketchSort
is generally faster than single sorting at the same accuracy level. It is mainly due to the
reduction of original distance calculations. Next, we compare SketchSort with recent space
partitioning methods in near duplicate detection and k-NN search settings. SketchSort was
faster in near duplicate detection by orders of magnitude. To our surprise, it performed
competitively in k-nearest neighbor discovery as well.

This paper is organized as follows. Section 2 reviews the multiple sorting method for
strings. The extension to real-valued data is explained in Section 3. A refinement procedure

147

EMILY
DAVID
CHRIS
ALICE
DAVID
BOBBY
DAVID
ALICE

ALICE
ALICE
BOBBY
CHRIS
DAVID
DAVID
DAVID
EMILY

Equivalence
Classes

Figure 3: Sorting and equivalence classes.

of our method for finding k-nearest neighbor is presented in Section 4. Extensive empirical
evaluations and comparisons are presented in Section 5. Finally concluding remarks are
provided in Section 6.

2. Multiple Sorting Method

As a building block of our method, we need a fast method to detect near duplicates in
short strings of equal length `. The problem is formulated as follows: Given a string pool
S = {s1, . . . , sn}, find all neighbor pairs (i, j), i < j whose Hamming distance is at most d,
HamDist(si, sj) ≤ d. In the following, the number of neighbor pairs in data is described
as m. Among several methods available (Abrahamson, 1987; Muthukrishnan and Sahinalp,
2000), we choose the multiple sorting method (MSM) (Uno, 2009) due to superior speed
and memory efficiency.

2.1 Basic Idea

To explain the idea of MSM intuitively, let us start from the special case d = 0, that is,
enumerating exactly same string pairs. In that case, the problem is solved by sorting the
strings and scanning the sorted list to detect equivalence classes, each of which consists of
more than 2 strings (Figure 3). Then, for each equivalence class, edges are built between all
pairs. Using radix sort, sorting takes only O(n) time. The edge building takes O(m) time,
where m is the number of all pairs within Hamming distance d. So the overall complexity
is O(n + m).

Even if d > 0, we can enumerate neighbor pairs by applying radix sort multiple times
(Figure 4b). Let C denote a set of `− d distinct integers taken from {1, . . . , `}. Denote by
sC
i the i-th string whose characters at positions in C are concatenated. Thus, the positions

not in C are masked. Obviously, the following two statements are equivalent.

• There exists C such that sC
i = sC

j , |C| = `− d.

• HamDist(si, sj) ≤ d.

Therefore, the neighbor pairs can be enumerated by trying every possible C of size d and

sorting the masked strings. It takes
(

`
d

)
times sorting, hence the time complexity is

polynomial to ` and exponential to d. Nevertheless, in terms of n and m, the time complexity
stays linear, yielding overall complexity O(n + m).

148

 1:1011 1111 0011 1110

 2:1101 0111 0111 0001

 3:1100 1000 1101 1100

 4:0100 0001 1101 1100

 5:1010 0010 1110 1010

 6:1111 0011 1001 0111

 7:0000 0001 0011 1110

 8:0101 1001 0111 1000

 9:1101 1000 1101 1110

10:1001 0011 1001 0111

(a)String pool containing two close pairs whose
 distance is at most 2: (3,9) and (6,10)

(b)Close pairs can be detected by masking 2 characters in
 every possible way and perform sorting on the masked
 strings. We show the masks to detect (3,9) and (6,10).

 7:0000 0001 0011 1110

 4:0100 0001 1101 1100

 8:0101 1001 0111 1000

10:1001 0011 1001 0111

 5:1010 0010 1110 1010

 1:1011 1111 0011 1110

 2:1101 0111 0111 0001

 3:1100 1000 1101 1100

 9:1101 1000 1101 1110

 6:1111 0011 1001 0111

 7:0000 0001 0011 1110

 4:0100 0001 1101 1100

 8:0101 1001 0111 1000

 5:1010 0010 1110 1010

 3:1100 1000 1101 1100

 6:1111 0011 1001 0111

10:1001 0011 1001 0111

 2:1101 0111 0111 0001

 9:1101 1000 1101 1110

 1;1011 1111 0011 1110

(c)Blockwise masking

 7:0000 0001 0011 1110

 4:0100 0001 1101 1100

 8:0101 1001 0111 1000

10:1001 0011 1001 0111

 5:1010 0010 1110 1010

 1:1011 1111 0011 1110

 3:1100 1000 1101 1100

 2:1101 0111 0111 0001

 9:1101 1000 1101 1110

 6:1111 0011 1001 0111

 7:0000 0001 0011 1110

 4:0100 0001 1101 1100

 8:0101 1001 0111 1000

10:1001 0011 1001 0111

 5:1010 0010 1110 1010

 1:1011 1111 0011 1110

 3:1100 1000 1101 1100

 2:1101 0111 0111 0001

 9:1101 1000 1101 1110

 6:1111 0011 1001 0111

 7:0000 0001 0011 1110

 4:0100 0001 1101 1100

 8:0101 1001 0111 1000

10:1001 0011 1001 0111

 5:1010 0010 1110 1010

 1:1011 1111 0011 1110

 3:1100 1000 1101 1100

 2:1101 0111 0111 0001

 9:1101 1000 1101 1110

 6:1111 0011 1001 0111

 7:0000 0001 0011 1110

 4:0100 0001 1101 1100

 5:1010 0010 1110 1010

 6:1111 0011 1001 0111

10:1001 0011 1001 0111

 2:1101 0111 0111 0001

 3:1100 1000 1101 1100

 9:1101 1000 1101 1110

 8:0101 1001 0111 1000

 1:1011 1111 0011 1110

 4:0100 0001 1101 1100

 7:0000 0001 0011 1110

 5:1010 0010 1110 1010

 6:1111 0011 1001 0111

10:1001 0011 1001 0111

 2:1101 0111 0111 0001

 3:1100 1000 1101 1100

 9:1101 1000 1101 1110

 8:0101 1001 0111 1000

 1:1011 1111 0011 1110

 1:1011 1111 0011 1110

 7:0000 0001 0011 1110

 2:1101 0111 0111 0001

 8:0101 1001 0111 1000

 4:0100 0001 1101 1100

 6:1111 0011 1001 0111

10:1001 0011 1001 0111

 3:1100 1000 1101 1100

 9:1101 1000 1101 1110

 5:1010 0010 1110 1010

Figure 4: Multiple sorting method.

 7:0100 0001 0011 1101

 4:0000 0001 0111 1110

 4:0100 0001 0011 1101

 7:0000 0001 0111 1110

 6:1111 0011 1001 0111

10:1001 0011 1001 0111

 3:1100 1000 1101 1100

 9:1101 1000 1101 1110

 3:1100 1000 1101 1100

 9:1101 1000 1101 1110

 4:0100 0001 0111 1101

 7:0000 0001 0011 1110

 5:1010 0010 1110 1010

 6:1111 0011 1001 0111

10:1001 0011 1001 0111

 2:1101 0111 0111 0001

 3:1100 1000 1101 1100

 9:1101 1000 1101 1110

 8:0101 1001 0111 1000

 1:1011 1111 0011 1110

 6:1111 0011 1001 0111

10:1001 0011 1001 0111

Figure 5: Updating equivalence classes in block concatenation. Strings in a block are sorted
and equivalence classes (shown as square frames) are detected. A next block is
concatenated to each equivalence class and sorted again.

2.2 Blockwise Masking

Empirical computation time of the above method is not optimal because a large number
of sorting operations are necessary. To reduce the number of sorting operations, blockwise
masking comes in useful.

Let us divide the strings into k blocks of approximately equal length as in Figure 4c.
Define B as a set of k − d distinct integers taken from {1, . . . , k}. Denote by sB

i the i-th
string whose blocks listed in B are concatenated. The blocks not listed in B are masked. If
HamDist(si, sj) ≤ d, then there exists B such that sB

i = sB
j . However, the inverse does not

hold. When pairs are enumerated by trying every possible B and sorting the masked strings
as before, the solution set contains all neighbor pairs as well as a certain number of non-
neighbor pairs. To filter out non-neighbor pairs, we need to calculate the actual Hamming
distances. Since distance calculation is done only for pairs falling into an equivalence class,
the number of distance calculations is much smaller than exhaustive comparison.

149

2.3 Recursive Algorithm

Algorithm 1 Multiple Sorting Method. d: Hamming distance threshold, k: number of blocks.
1: function MultipleSortingMethod
2: I ← {1, ..., n}
3: B ← φ
4: Recursion(I, B)
5: return
6: end function
7: function Recursion(I, B)
8: if |B| = k − d then
9: for (i, j) ∈ I × I, i < j do

10: if sb
i 6= sb

j for all b < max(B), b /∈ B then
11: if HamDist(si, sj) ≤ d then
12: Report (i, j) to output file
13: end if
14: end if
15: end for
16: return
17: end if
18: for b in (max(B) + 1)..(d + |B|+ 1) do
19: J ← Sorted indices based on b-th block {sb

i}i∈I

20: T ← Intervals of equivalence classes in {sb
j}j∈J

21: for each interval (x, y) ∈ T do
22: Recursion(J [x : y], B ∪ b)
23: end for
24: end for
25: return
26: end function

In blockwise masking, one needs to detect equivalence classes in the concatenation of
unmasked blocks. If k = 4 and d = 2, we need to traverse the following concatenation
of blocks: (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), and detect all equivalence classes in them.
For efficient traversal, we adopt a recursive algorithm shown in Algorithm 1. First, it sorts
strings in a block, and detects all equivalence classes in this block. The strings not included
in any equivalence class are removed at this point. Then, sorting of the next block is done
only for the remaining strings, yielding equivalence classes of concatenated blocks (Figure 5).
The recursive structure of the algorithm allows us to avoid unnecessary computation. For
example, for (1,2), (1,3), (1,4), the equivalence classes of the first block are reused.

For efficiency, it is very important not to duplicate the same pairs in output. To ensure
that each pair is reported only once, we introduce canonicity in pairs of concatenated blocks.
Let us define the set of all block combinations,

Z = {(i1, . . . , ik−d) | 1 ≤ i1 < i2 < . . . < ik−d ≤ k},

and introduce lexicographical order (’<’) among elements of Z. Consider two identical
concatenated blocks sB

i and sB
j , sB

i = sB
j . If sZ

i 6= sZ
j for all Z < B, Z ∈ Z, this pair is

called canonical. By reporting canonical pairs only, duplication can be avoided. Fortunately,
it is not necessary to check all combinations due to the following property: the pair (sB

i , sB
j)

150

is canonical, iff sb
i 6= sb

j for all b < max(B), b /∈ B. So canonicity check can be done by
simply checking max(B)− |B| blocks in O(`) time (line 10).

In radix sort at line 19, the number of executed operations is proportional to c`/k, where
c is the number of strings of the equivalence class. We call it sorting volume of this radix
sort. The total sorting volume in a whole run will be used as a measure of complexity later
in experiments.

The worst-case complexity of blockwise sorting is worse than the complexity of letter
masking O(n + m), because the number of duplication checks can be larger than m. So the
complexity of MSM is O(n + m) which is achieved at k = ` (Uno, 2009).

3. SketchSort

To describe our method, we start from reviewing locality sensitive hashing. Then, the
methodology to exploit MSM for real-valued vectors is explained, together with a bound on
the fraction of missing neighbors.

3.1 Sparse Cosine LSH

In this section, we review exsting locality sensitive hashing (LSH) methods for nearest
neighbor discovery. For efficiency, we employ the very sparse random projection proposed
by Li et al. (2006) instead of the Gaussian-based dense matrix commonly used in litera-
ture (Gionis et al., 1999). Denote n data points in <D by x1, . . . ,xn. The cosine distance
is defined as :

∆(xi, xj) = 1− x>
i xj

||xi||||xj ||
. (1)

Let R ∈ <D×` be a random matrix defined as follows:

rij =
√

t

1 with prob. 1

2t ,
0 with prob. 1− 1

t ,
−1 with prob. 1

2t ,
(2)

where t =
√

D. Let s1, . . . , sn be bit strings of length `. The projection is defined as

sik = sign(r>
k xi), (3)

where sik is the k-th letter of the i-th string, rk is the k-th column of R and sign(t) produces
1 if t > 0 and 0 otherwise. The cosine distance is approximately preserved as the Hamming
distance, because of the following relationship:

Pr[sik 6= sjk] =
θij

π
, ∀k, (4)

where θij is the angle between xi and xj :

θij = arccos
(

x>
i xj

||xi||||xj ||

)
. (5)

151

This relationship guarantees that the expected value of the Hamming distance is a mono-
tonically increasing function of the cosine distance. Furthermore, in the limit ` → ∞, the
Hamming distance between two bit strings converges to the angle of the original vectors.

lim
`→∞

1
`
HamDist(si, sj) =

θij

π
. (6)

When ` is finite, HamDist(si, sj) is subject to the binomial distribution Binom(`, θij

π).

3.2 Method

Our basic idea is to map the data points to strings by LSH, and enumerate pairs of similar
strings by MSM. However, considering the fact that the computational complexity of MSM
is a polynomial function of the string length, it is not a good strategy to create long strings
and process them by MSM at once. Thus, we employ the following chunking strategy:
First, long sketches of Q` bits are created from data points by LSH. Then, it is divided
into Q chunks of short strings of length `. Denote by sqi the q-th string corresponding to
xi. Basically, we would like to create the union of all MSM results, E =

∪Q
q=1 Pq, where

Pq is the set of MSM pairs of chunk q. Then, we finally report the pairs in E whose cosine
distance is small.

In straightforward implementation, MSM is called for each chunk separately, the derived
pairs are stored in memory and integrated into E. However, it is not optimal due to
O(n2) memory requirement. Instead, we take linear-memory implementation shown in
Algorithm 2. Here, MSM is repeated Q times for each chunk and two additional checks
are performed to remove unnecessary pairs. The first check (line 15) resolves chunk-level
duplication: When a pair (i, j) is found at the q-th chunk, the Hamming distances of chunks
r = 1, . . . , q−1 are calculated. The pair survives if all the distances are beyond the threshold
d. In the final check (line 16), the actual cosine distance of original vectors is calculated,
and qualifying pairs are reported to an output file.

3.3 Missing Edge Ratio

Given the true set of neighbors E∗

E∗ = {(i, j) | ∆(xi, xj) ≤ ε},

and the union of all MSM results E, there are two kinds of error.

• Type-I error (false positive): A non-neighbor pair has a Hamming distance within d
in at least one chunk.

F1 = {(i, j) | (i, j) ∈ E, (i, j) /∈ E∗}.

• Type-II error (false negative): A neighbor pair has a Hamming distance larger than
d in all chunks.

F2 = {(i, j) | (i, j) /∈ E, (i, j) ∈ E∗}.

152

Algorithm 2 SketchSort for near duplicate detection. Q: number of chunks, d: Hamming distance
threshold, k: number of blocks, ε: cosine distance threshold.

1: function SketchSort(x1, . . . ,xn)
2: Use LSH to obtain sketches {s1i, . . . , sqi}ni=1 from data {xi}ni=1

3: I ← {1, ..., n}
4: for q = 1 : Q do
5: B ← φ
6: Recursion(I, B, q)
7: end for
8: return
9: end function

10: function Recursion(I, B, q)
11: if |B| = k − d then
12: for (i, j) ∈ I × I, i < j do
13: if sb

qi 6= sb
qj for all b < max(B), b /∈ B then

14: if HamDist(sqi, sqj) ≤ d then
15: if HamDist(sri, srj) > d for all r < q then
16: if ∆(xi,xj) ≤ ε then
17: Report (i, j) to output file
18: end if
19: end if
20: end if
21: end if
22: end for
23: return
24: end if
25: for b in (max(B) + 1)..(d + |B|+ 1) do
26: J ← Sorted indices based on b-th block {sb

qi}i∈I

27: T ← Intervals of equivalence classes in {sb
qj}j∈J

28: for each interval (x, y) ∈ T do
29: Recursion(J [x : y], B ∪ b, q)
30: end for
31: end for
32: return
33: end function

The type-II errors are more critical in our method because the type-I errors are eventually
filtered out by calculating the cosine distances. The fraction of missing neighbors is defined
as |F2|/|E∗|, whose expectation is bounded as follows.

E

[
|F2|
|E∗|

]
≤

1−
bdc∑
k=0

(
`
k

)
pk(1− p)`−k

Q

, (7)

where p is an upper bound of the non-collision probability (4) for neighbors. For the cosine
LSH, p is set as follows,

p =
arccos(1− ε)

π
.

153

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

of chunks

M
is

si
n

g
 E

d
g

e
 R

a
ti

o

d=0
d=1
d=2
d=3

Figure 6: Bound of expected missing edge ra-
tio against the number of chunks.

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

0.0

0.2

0.4

0.6

0.8

CPU time (sec)

M
is

si
n

g
 E

d
g

e
 R

a
ti

o

SketchSort 0.10pi

SketchSort 0.15pi
SSM 0.10pi

SSM 0.15pi

Figure 7: Comparison of SketchSort and sin-
gle sorting on single 32 bit sketch.

We call this value missing edge ratio, because it amounts to the fraction of missing edges
in the resultant neighborhood graph.

Figure 6 depicts the missing edge ratio as a function of Q for different values of d. We
used the cosine LSH where the radius is set such that p = 0.15 and ` = 32. As d increases,
the number of required chunks reduces remarkably. To improve missing edge ratio, there
are two solutions, (i) increase the number of chunks Q, (ii) increase the Hamming distance
threshold d. The former has weaker effect, but the complexity grows only linearly. The
latter leads to exponential growth in MSM’s computational time, but has much stronger
effect.

3.4 Complexity of SketchSort

The complexity of SketchSort is O(n+m′), where m′ is the number of pairs whose Hamming
distance is at most d in at least one chunk,

m′ = {(i, j) | min
q

(HamDist(sqi, sqj)) ≤ d}.

It is derived from the fact that MSM’s complexity is O(n + m). Memory requirement is
O(n) which makes SketchSort particularly attractive for large datasets.

In general, the worst case analysis of all pairs similarity search is tricky, because if all the
entries are identical, we need O(n2) time simply to output all pairs. To avoid this vacuous
bound, we need assumptions on data such as intrinsic dimensionality (Beygelzimer et al.,
2006). The linear time result in (Ram et al., 2010) assumes that intrinsic dimensionality
stays constant as n grows, which might not be true in reality.

4. K-Nearest Neighbor Search

In the last section, we presented SketchSort for near duplicate detection (i.e., finding all
pairs within distance ε). To make SketchSort applicable to k-NN pairs search, the following
modification is done.

Instead of cutting off at the threshold at line 16, we maintain the best-h neighbors of
each point as a linked list. If the distance of a new pair is smaller than the current h-
best pair, it is replaced by the new one. After all computation is done, a neighborhood

154

Table 2: SketchSort and single sorting (SSM) on MNIST dataset on single 32-bit sketch.
SketchSort d MER (0.10π) MER (0.15π) sorting volume # of HamDist # of cosdist time (sec)

1 0.79 0.89 3,897,528 244,050 114,830 78.29
2 0.52 0.81 7,053,642 892,193 236,551 79.22
3 0.20 0.69 10,675,856 4,199,689 615,035 81.00
4 0.17 0.19 14,699,954 18,266,846 3,593,240 88.00
5 0.10 0.19 19,920,000 42,609,173 3,693,937 107.88
6 0.01 0.10 24,660,000 110,253,094 7,963,091 152.61
7 0.01 0.08 30,540,000 224,195,158 16,768,097 243.54
8 0.00 0.01 36,720,000 368,724,926 27,866,624 370.95
9 0.00 0.01 44,580,000 611,893,757 55,695,612 679.80

SSM w MER (0.10π) MER (0.15π) sorting volume # of cosdist time (sec)
100 0.69 0.84 19,200,000 11,983,539 145.81
300 0.58 0.74 19,200,000 35,901,099 289.21
500 0.51 0.70 19,200,000 59,739,467 430.72
750 0.45 0.67 19,200,000 89,425,328 605.90
1000 0.40 0.65 19,200,000 118,986,462 780.62
2500 0.32 0.52 19,200,000 293,733,201 1,813.78
5000 0.24 0.37 19,200,000 574,979,323 3,484.08
7500 0.21 0.34 19,200,000 843,726,162 5,102.95
10000 0.15 0.29 19,200,000 1,099,972,420 6,595.80

graph is constructed, where each node has h adjacent nodes. For each node, we seek k
neighbors in terms of cosine distance from the surrounding nodes within graph distance
2. It requires at most O(h2) computation of cosine distances per node, but increases the
accuracy significantly. Notice that this refinement procedure is employed in (Chen et al.,
2009) as well.

5. Experiments

In our experiments, we used two image datasets. One is MNIST handwritten digit recogni-
tion dataset of 60000 data and 748 dimensions (LeCun and Cortes, 2000). The other is the
tiny image dataset collected by Torralba et al. (2008), which will be referred to as TinyImage
later on. TinyImage has 80 million images in total, but we used a smaller version containing
1.6 million images, which was immediately downloadable1. Using GIST descriptors (Douze
et al., 2009), a 960 dimensional feature vector was made for each image. While our method
is based on the cosine distance, several methods used in our experiments are based on the
Euclidean distance. For a fair comparison, features are centralized and normalized to norm
1. All experiments are performed on a linux machine on an AMD Opteron ProcessorTM

854 2.8GHz with 64GB memory.

5.1 Near Duplication Detection

Here, MSM is compared to SSM (Charikar, 2002; Ravichandran et al., 2005) with respect
to missing edge ratio (MER) and execution time in near duplication detection. We tried
two different values of cosine distance radius ε = 0.0489 and 0.109 which translate to 0.10π
and 0.15π in terms of angle, respectively. The results for one chunk of 32 bits are presented

1. http://people.csail.mit.edu/torralba/tinyimages/

155

in Table 2. Here, the number of blocks k are always set to d + 3. As shown in comparative
plots in Figure 7, SketchSort is faster by orders of magnitude at most levels of missing edge
ratio. This is mainly due to the reduced number of cosine distance calculations. The sorting
volume is constant for SSM and variable in MSM. For large d, the sorting volume of MSM
exceeds SSM, but it did not have large impact on the computational time.

We also conducted similar experiments using multiple chunks on the two datasets,
MNIST and TinyImage. TinyImage is downsampled to 100,000 points, because the ground-
truth result have to be obtained by brute-force computation. For SketchSort, the parameters
(d, k) is fixed either to (2, 5) or (3, 6), and the number of chunks Q is varied as 2, 6, 10, . . . , 50.
For SSM, the window height w is fixed to 50 or 100 and the number of chunks is varied in
the same manner. For comparison, an engineered version of Lanczos bisection Chen et al.
(2009) is included. In the original version, Lanczos bisection detects k-nearest neighbors at
the end of recursive bisection. Here we modified the source code2, so that near duplicates
are detected instead. Lanczos bisection has two types, Lanczos-glue and Lanczos-overlap.
They are different with respect to the way of dividing regions (see Chen et al., 2009). Both
types have a parameter p to control the maximum number of data points for brute-force
search, which is varied as 10, 100, 200, . . . , 1000. The results for MNIST and TinyImage
datasets are shown in Figure 8. Our method was significantly faster than SSM and Lanc-
zos bisection methods at the same level of missing edge ratio. In TinyImage dataset, the
difference is clearer, due to the larger number of data points and higher dimensionality.

5.2 k-Nearest Neighbor Search

We evaluated SketchSort’s empirical performance on the k-nearest neighbor search task.
Our method is extended as stated in Section 4, setting h=25, and compared with Lanczos
bisection (Chen et al., 2009), cover tree (Beygelzimer et al., 2006) and allknn (Ram et al.,
2010). For cover tree and allknn, we used the source codes from http://hunch.net/~jl/
projects/cover_tree/cover_tree_2.tar.gz and http://mloss.org/software/view/152/,
respectively. The error rate of a k-nearest neighbor graph G′ against the true graph G is
defined as

error-rate(G′) = 1− |E(G′) ∩ E(G)|
|E(G)|

,

where E(·) denotes the set of edges in the graph.
Figure 9 shows that our method is significantly faster than the exact methods, cover

tree and allknn. In MNIST, it showed speed-accuracy trade-off comparable to Lanczos
bisection. In TinyImage, SketchSort was faster by substantial margin. Space-partitioning
methods are considered as good at finding nearest neighbors which lie far away from each
other (Chen et al., 2009), whereas SketchSort is designed for finding close neighbors in
principle. Nevertheless, this result shows that SketchSort can be a viable alternative in
k-nearest neighbor search as well.

5.3 Near Duplicate Detection in 1.6 Million Images

To demonstrate SketchSort’s scalability, we conducted near duplicate detection experiments
using the full set of TinyImage at three angle thresholds 0.05π, 0.10π and 0.15π which cor-

2. http://www-users.cs.umn.edu/~saad/software/knn.tar.gz

156

MNIST TinyImage

0

5
0

0

1
0

0
0

1
5

0
0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

CPU time (sec)

M
is

si
n

g
 E

d
g

e
 R

a
ti

o
SketchSort d=2
SketchSort d=3
SSM w=50
SSM w=100

Lanczos-overlap
Lanczos-glue

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

0.0

0.2

0.4

0.6

0.8

1.0

CPU time (sec)

M
is

si
n

g
 E

d
g

e
 R

a
ti

o

SketchSort d=2
SketchSort d=3
SSM w=50
SSM w=100

Lanczos-overlap
Lanczos-glue

0

5
0

0

1
0

0
0

1
5

0
0

0.0

0.2

0.4

0.6

0.8

1.0

CPU time (sec)

M
is

si
n

g
 E

d
g

e
 R

a
ti

o

SketchSort d=2
SketchSort d=3
SSM w=50
SSM w=100

Lanczos-overlap
Lanczos-glue

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

0.0

0.2

0.4

0.6

0.8

1.0

CPU time (sec)

M
is

si
n

g
 E

d
g

e
 R

a
ti

o

SketchSort d=2
SketchSort d=3
SSM w=50
SSM w=100

Lanczos-overlap
Lanczos-glue

Figure 8: Near duplicate detection on MNIST and TinyImage datasets for cosine distance
thresholds 0.10π (top) and 0.15π (bottom).

MNIST TinyImage

5
0

1
0

0

2
0

0

5
0

0

1
0

0
0

2
0

0
0

5
0

0
0

0.0

0.2

0.4

0.6

0.8

1.0

CPU time (sec)

e
rr

o
r

ra
te

SketchSort d=4
SketchSort d=5
Lanczos-glue
Lanczos-overlap
cover tree
allknn

5
0

1
0

0

2
0

0

5
0

0

1
0

0
0

2
0

0
0

5
0

0
0

1
0

0
0

0

2
0

0
0

0

5
0

0
0

0

0.0

0.2

0.4

0.6

0.8

1.0

CPU time (sec)

e
rr

o
r

ra
te

SketchSort d=4
SketchSort d=5
Lanczos-glue
Lanczos-overlap
cover tree
allknn

Figure 9: Error rate for 5-nearest neighbor search on MNIST and TinyImage datasets.

respond to cosine distance radiuses 0.0123, 0.0489 and 0.109, respectively. The parameters
(d, k) are fixed to (2, 6), and Q is set such that the missing edge ratio bound is approxi-
mately 1.0× 10−6 to make error rate negligibly small. To observe the growth rate, we also
generated smaller datasets of different sizes by talking the first n records. Figure 10 shows
the efficiency results in comparison with exact methods, cover tree and brute force. Within

157

0
e

+
0

0

5
e

+
0

5

1
e

+
0

6

1
.5

e
+

0
6

0e+00

5e+04

1e+05

1.5e+05

2e+05

of data points

ti
m

e
 (

se
c)

SketchSort

cover tree

brute-force

0
e

+
0

0

5
e

+
0

5

1
e

+
0

6

1
.5

e
+

0
6

0e+00

5e+04

1e+05

1.5e+05

2e+05

of data points

ti
m

e
 (

se
c)

SketchSort

cover tree

brute-force

0
e

+
0

0

5
e

+
0

5

1
e

+
0

6

1
.5

e
+

0
6

0e+00

5e+04

1e+05

1.5e+05

2e+05

of data points

ti
m

e
 (

se
c)

SketchSort

cover tree

brute-force

Figure 10: Near duplicate detection in up to 1.6 million images at thresholds 0.05π (left),
0.10π (middle) and 0.15π (right).

the time limit of 60 hours, cover tree could scale only up to 500,000 samples even at the
smallest threshold 0.05π. On the other hand, SketchSort processed the full set in 4.3 hours.

6. Conclusions

In this paper, we proposed a novel algorithm for all pairs similarity search. Single sorting is
used in diverse applications probably due to its simplicity. However, we have shown that a
more deliberate algorithm can achieve significant improvement in speed. In experiments, we
solely used the locality sensitive hashing, but our method is applicable to other non-random
sketches such as spectral hashing (Weiss et al., 2009) and semantic hashing (Salakhutdinov
and Hinton, 2007).

In future work, we would like to explore the following questions. 1) Is it really necessary
to map the vectors to discrete symbols? Apart from locality sensitive hashing, there are
a variety of random projection algorithms that maps a vector to a real-value (Li et al.,
2006). Can they be used for better accuracy? Sorting continuous values takes more time
than radix sort, but it is possible in O(n log n) time. 2) Hierarchical organization of the
multiple sorting method. Our current algorithm has a two-level structure that Q chunks
are created, each of which is divided into k blocks. We are not yet sure if it is the optimal
architecture. Further efficiency could possibly be achieved by organizing the algorithm
in a hierarchy of more than two levels. 3) Implementation of SketchSort in a many-core
processor. Though we performed all sorting operations serially, our method is inherently
amenable to parallelization.

7. Acknowledgments

This work is partly supported by MEXT Kakenhi 21680025, the research fellowship from
the Japan Society for the Promotion of Science (JSPS) for Young Scientists, the FIRST
program, and Synthesis of Knowledge for Information Oriented Society of the PRESTO
program (JST).

158

References

K. Abrahamson. Generalized string matching. SIAM Journal on Computing, 16:1039–1051,
1987.

J.R. Bayardo, Y. Ma, and R. Srikant. Scaling Up All Pairs Similarity Search. In Proceedings
of the 16th International Conference on World Wide Web, 2007.

A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In Interna-
tional Conference on Machine Learning, pages 97–104, 2006.

Moses Charikar. Similarity Estimation Techniques from Rounding Algorithms. In Proceed-
ings of the 34th Annual ACM Symposium on Theory of Computing, 2002.

J. Chen, H. Fang, and Y. Saad. Fast Approximate kNN Graph Construction for High Di-
mensional Data via Recursive Lanczos Bisection. Journal of Machine Learning Research,
10:1989–2012, 2009.

A.S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable online
collaborative filtering. In Proceedings of the 16th International Conference on World Wide
Web, page 280. ACM, 2007.

M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality sensitive hashing scheme
based on p-stable distributions. In Proceedings of the ACM Symposium on Computational
Geometry, 2004.

M. Douze, H. Jégou, H. Sandhawalia, L. Amsaleg, and C. Schmid. Evaluation of GIST
descriptors for web-scale image search. In ACM International Conference on Image and
Video Retrieval, 2009.

G. Kim and A. Torralba. Unsupervised Detection of Regions of Interest Using Iterative
Link Analysis. In Advances in Neural Information Processing Systems, 2010.

A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In
Proceedings of the 25th International Conference on Very Large Data Base, 1999.

M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42
(6):1115–1145, 1995.

M. Hein, J.-Y. Audibert, and U. von Luxburg. Graph Laplacians and their convergence
on random neighborhood graphs. Journal of Machine Learning Research, 8:1325–1368,
2007.

B. Kulis and T. Darrell. Learning to Hash with Binary Reconstructive Embeddings. In
Advances in Neural Information Processing Systems, 2010.

B. Kulis and K. Grauman. Kernelized Locality-Sensitive Hashing for Scalable Image Search.
In International Conference on Computer Vision, 2009.

159

B. Kulis, P. Jain, and K. Grauman. Fast Similarity Search for Learned Metrics. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 31(12):2143, 2009.

Y. LeCun and C. Cortes. MNIST database. http://yann.lecun.com/exdb/mnist/, 2000.

P. Li, T.J. Hastie, and K.W. Church. Very Sparse Random Projections. In Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, page 296. ACM, 2006.

S. Muthukrishnan and S.C. Sahinalp. Approximate nearest neighbors and sequence compar-
ison with block operations. In Proceedings of 32nd annual ACM Symposium on Theory
of Computing, pages 416–424, 2000.

M. Raginsky and S. Lazebnik. Locality-Sensitive Binary Codes from Shift-Invariant Kernels.
In Advances in Neural Information Processing Systems, 2010.

P. Ram, D. Lee, W. March, and A. Gray. Linear-time Algorithms for Pairwise Statistical
Problems. In Advances in Neural Information Processing Systems, 2010.

D. Ravichandran, P. Pantel, and E. Hovy. Randomized Algorithms and NLP: Using Locality
Sensitive Hash Function for High Speed Noun Clustering. In Annual Meeting of the
Association for Computational Linguistics, pages 345–356, 2005.

R.R. Salakhutdinov and G.E. Hinton. Semantic hashing. In SIGIR Workshop on Informa-
tion Retrieval and Applications of Graphical Models, 2007.

G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter-sensitive
hashing. In Proceedings of the Ninth IEEE International Conference on Computer Vision,
page 750, 2003.

J.B. Tennenbaum, V. de Silva, and J.C. Langford. A global geometric framework for non-
linear dimensionality reduction. Science, 290:2319–2323, 2000.

A. Torralba, R. Fergus, and W.T. Freeman. 80 million tiny images; a large dataset for
non-parametric object and scene recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 30(11):1958–1970, 2008.

T. Uno. Multi-sorting algorithm for finding pairs of similar short substrings from large-scale
string data. Knowledge and Information Systems, 2009. published online.

Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Advances in Neural Information
Processing Systems, 2009.

J. Weston, A. Elisseeff, D. Zhou, C. Leslie, and W.S. Noble. Protein ranking: from local to
global structure in the protein similarity network. Proceedings of the National Academy
of Sciences of USA, 101(17):6559–6563, 2004.

D. Zhou, O. Bousquet, J. Weston, and B. Schölkopf. Learning with local and global con-
sistency. In Advances in Neural Information Processing Systems, pages 321–328. MIT
Press, 2004.

160

