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Abstract

The discovery of non-linear causal relationship under
additive non-Gaussian noise models has attracted con-
siderable attention recently because of their high flex-
ibility. In this paper, we propose a novel causal infer-
ence algorithm calledeast-squares independence re-
gression(LSIR). LSIR learns the additive noise model
through minimization of an estimator of theguared-
loss mutual informatiorbetween inputs and residuals.
A notable advantage of LSIR over existing approaches
is that tuning parameters such as the kernel width and
the regularization parameter can be naturally optimized
by cross-validation, allowing us to avoid overfitting in
a data-dependent fashion. Through experiments with
real-world datasets, we show that LSIR compares favor-
ably with the state-of-the-art causal inference method.

independence between inputs and residuals (i.e., estimated
noise). Hoyer et al. (2009) proposed to learn the functions
f and f’ by the Gaussian procesgsP) (Bishop 2006), and
evaluate the independence between the inputs and the resid-
uals by theHilbert-Schmidt independence criterigHSIC)
(Gretton et al. 2005).

However, since standard regression methods such as GP
are designed to handle Gaussian noise, they may not be
suited for discovering causality in the non-Gaussian additive
noise formulation. To cope with this problem, a novel re-
gression method calledSIC regressiofHSICR) has been
introduced recently (Mooij et al. 2009). HSICR learns a
function so that the dependence between inputs and residu-
als is directly minimized based on HSIC. Since HSICR does
not impose any parametric assumption on the distribution

of additive noise, it is suited for non-linear non-Gaussian
) causal inference. Indeed, HSICR was shown to outperform
Introduction the GP-based method in experiments (Mooij et al. 2009).

Learningcausalityfrom data is one of the important chal- However, HSICR still has limitations for its practical use.
lenges in the artificial intelligence, statistics, and machine The first weakness of HSICR is that the kernel width of
learning communities (Pearl 2000). A traditional method of HSIC needs to be determined manually. Since the choice
learning causal relationship from observational data is based of the kernel width heavily affects the sensitivity of the in-

on the linear-dependence Gaussian-noise model (Geiger anddependence measure (Fukumizu, Bach, and Jordan 2009),
Heckerman 1994). However, the linear-Gaussian assump- the lack of systematic model selection strategies is critical in
tion is too restrictive and may not be fulfilled in practice. Re- causal inference. Setting the kernel width to the median dis-
cently, non-Gaussianity and non-linearity have been shown tance between sample points seems to be a popular heuristic
to be beneficial in causal inference, allowing one to break inkernel methods (Séhkopfand Smola 2002), but this does
symmetry between observed variables (Shimizu et al. 2006; not always perform well in practice. Another limitation of
Hoyer et al. 2009). Since then, much attention has been paid HSICR is that the kernel width of the regression model is
to the discovery of non-linear causal relationship through fixed to the same value as HSIC. This crucially limits the
non-Gaussian noise models (Mooij et al. 2009). flexibility of function approximation in HSICR.

In the framework of non-linear non-Gaussian causal in-  To overcome the above weaknesses, we propose an alter-
ference, the relation between a cauSeand an effect’ is native regression method callst-squares independence
assumed to be described by = f(X) + £, wheref is regression(LSIR). As HSICR, LSIR also learns a function
a non-linear function and’ is non-Gaussian additive noise  so that the dependence between inputs and residuals is di-
which is independent of the causé. Given two random  rectly minimized. However, a difference is that, instead of
variablesX andX’, the causal direction betweet and X’ HSIC, LSIR adopts an independence criterion calesbt-
is decided based on a hypothesis test of whether the modelsquares mutual informatiofLSMI) (Suzuki et al. 2009),

X" = f(X)+ E orthe alternative modeX = f'(X') + £’ which is a consistent estimator of tisquared-loss mutual
fits the data well—here, the goodness of fit is measured by information (SMI) with the optimal convergence rate. An
" *This work was supported by SCAT, AOARD, and the JST advantage of LSIR over HSICR is that tu_nin_g parameters
PRESTO program. such as the kernel width and the regularization parameter
Copyright(© 2010, Association for the Advancement of Artificial ~ can be naturally optimized through cross-validation (CV)
Intelligence (www.aaai.org). All rights reserved. with respect to the LSMI criterion.



Furthermore, we propose to determine the kernel width of
the regression model based on CV with respect to SMI itself.
Thus, the kernel width of the regression model is determined

independent of that in the independence measure. This al-

lows LSIR to have higher flexibility in non-linear causal in-
ference than HSICR. Through experiments with real-world
datasets, we demonstrate the superiority of LSIR.

Dependence Minimizing Regression by LSIR

In this section, we formulate the problem of dependence
minimizing regression and propose a hovel regression
method Jeast-squares independence regresgiddiR).

Problem Formulation

Suppose random variablés € R andY” € R are connected
by the following additive noise model (Hoyer et al. 2009):

Y = f(X)+ E,

wheref(-) : R — R is some non-linear function arfd € R
is a zero-mean random variable independent ofThe goal
of dependence minimizing regression is, from i.i.d. paired

~

samples{(x;, y;)}"_,, to obtain a functionf(-) such that

input X and estimated additive noigeé = Y — f(X) are
independent.

Let us employ a linear model for dependence minimizing
regression:

falx) = Brbi(x) = B ep(x), 1)
=1

where m is the number of basis functionsg

(B1,...,Bm)" are regression parameter§, denotes the

transpose, andy(z) = (¢1(z),...,¥n(z))" are basis

functions. We use the Gaussian basis function in our ex-
(x —c)?

periments:
ute) e (-2,

where ¢; is the Gaussian center chosen randomly from
{z;}7_, without overlap and- is the kernel width.

In dependence minimization regression, the regression
paramete3 may be learned as

min [I(X, E)+ %ﬁTﬁ ,

whereI(X, E) is some measure of independence between
X and E, andy > 0 is the regularization parameter for
avoiding overfitting.

In this paper, we use theguared-loss mutual information
(SMI) as our independence measure:

% / / (% - 1)2p(w)p(€)dxda
5/ mp(x,é)dxdé— >

I(X, E) is thePearson divergendeom p(z, €) to p(z)p(),

and it vanishes if and only if(z, ¢) agrees withp(x)p(e),

I(X,E) =

i.e., X andE are independent. Note that ordinanutual
informationcorresponds to thiullback-Leibler divergence
from p(z, €) andp(x)p(e), and it can also be used as an in-
dependence measure. Nevertheless, we adhere to SMI since
it allows us to obtain an analytic-form estimator as explained
below.

Estimation of Squared-Loss Mutual Information

SMI cannot be directly computed since it contains unknown
densitiesp(z, e), p(x), andp(e). Here, we briefly review
an SMI estimator calledeast-squares mutual information
(LSMI) (Suzuki et al. 2009).

Since density estimation is known to be a hard problem
(Vapnik 1998), avoiding density estimation is critical for ob-
taining better SMI approximators (Kraskovo§bauer, and
Grassberger 2004). A key idea of LSMI is to directly esti-
mate thedensity ratio

. _ p(z,e)
w(r,e) = ——==,
0= L@
without going through density estimation pfx, €), p(z),

andp(e).
In LSMI, the density ratio functionuv(z,e) is directly
modeled by the following linear model:

b

wa(x7/e\) = Zal%’l(l’aé\) = aT(’D(.I'7/€\),
=1

where b is the number of basis functionse
(a1,...,ap)" are parameters, ande(z,e)
(p1(z,€),...,0p(x,€)) " are basis functions.
the Gaussian basis function:

x—w)?+ (6—71)2
mx,a—exp(—( Jiisl Ghi)
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where(u;, v;) is the Gaussian center chosen randomly from
{(z;, )}, without replacement, and is the kernel
width.
The parametes in the modehu, (z, €) is learned so that
the following squared errofy(a) is minimized:

hole) = 5 [ [ (wale,®) - wie. 0 pop(Edoe
— 5 | [ waleemap@dete
- // we (z,e)p(x, €)dzde + C,

where(C'is a constant independentafand therefore can be
safely ignored. Let us denote the first two termsjy):

®)

)

We use

1
J(a) = Jy(a) — C = §aTHoz —h'a,
where

H = [[ ola.20(@0) pop(Erdoce,
h— / / (. O)p(x, &)dude.



Approximating the expectations il and h by empirical
averages, we obtain the following optimization problem:

& =al rgmm{2 THa-h a+ o'«

(o7

where a regularization tertha: " o is included for avoiding
overfitting, and

n

—~ 1 N N
H = ﬁ Z ‘P(xiaej)cp(xiaej)—r?
\jfl
heiYe
= - xuez
n

Differentiating the above objective function with respect to
« and equating it to zero, we can obtain an analytic-form
solution:

a=(H+\,) 'h, 4)

wherel, denotes thé-dimensional identity matrix. Consis-
tency and the convergence rate of the above density ratio es-
timator has been theoretically studied in Kanamori, Suzuki,
and Sugiyama (2009).

Given a density ratio estimatar = wg, SMI can be sim-
ply approximated as

n

1 N - 1
I(X,E) = o Zw(mi,ei) ~3

=1

Model Selection in LSMI

LSMI contains three tuning parameters: the number of basis
functionsb, the kernel widtho, and the regularization pa-
rameterA. In our experiments, we fik = min(50, n), and
chooses and A by cross-validation (CV) with grid search
as follows. First, the samplels; | z; = (x;,€;)}7, are
divided into K disjoint subset$Zk} -, of (approximately)
the same size (we sét = 2 in experlments) Then, an
estimatora z, is obtained using Z;} 1, and the approxi-
mation error for the hold-out samplé%, is computed as

1 ST A~

JéI: CV) §aZkHZkaZk - h;kazky

where, for| 2| being the number of samples in the subset
2y,

—~ 1 . R
HZk =Tz 2 Z go(x,e)(p(x,e)—r,
|Zk|? <
T,e€Zy,
~ 1 N
hz, = — Z p(x,e).
| 25| 4
(z,€)eZy
This procedure is repeated fbr=1,..., K, and its av-
erageJ (5-°V) is outputted as
JECY) _ (K CV)
EWlad ©

We compute] (5-€V) for all model candidates (the kernel
width o and the regularization parametgrin the current

setup), and choose the model that minimiZ€§-¢V). Note
that.J(5X-CV) js an almost unbiased estimator of the objective
function (3), where the almost-ness comes from the fact that
the number of samples is reduced in the CV procedure due
to data splitting (Scblkopf and Smola 2002).

The LSMI algorithm is summarized below:

Input: {(z, &)}y, {oi}i—y, and{\; }_,
Output: LSMI parameteix

Compute CV score fofo; }7_, and{);}9_, by Eq.(6);
Chooses and)\ that minimize the CV score;
Computea by Eq.(4) witho and\;

Least-Squares Independence Regression

Given the SMI estimator (5), our next task is to learn the
parameteg3 in the regression model (1) as
B = argmm[ (X,E)+ ﬁTﬁ
B8
We call this methodeast-squares independence regression
SIR)

For regression parameter learning, we simply employ a
gradient descent method:
dI(X,E)
ﬂ%,@*U(TJﬁYﬁ)v (7)
wheren is a step size which may be chosen in practice by
some approximate line search method sucArasijo’s rule
(Patriksson 1999).

The partial derivative of (X, E) with respect tg3 can be
approximately expressed as

b N b
GI(aXﬂ,E) %; %7% z:: aA’aH”/
where
% _ i; 39015932 ei)7
LR Z_ <a¢l§g Do @2
+ sﬁz(xueg)awggel))
) - @D T ()

In the above derivation, we ignored the dependencg of
one;. Itis possible to exactly compute the derivative in
principle, but we use this approximated expression since it
is computationally efficient.

We assumed that the mean of the ndises zero. Taking
into account this, we modify the final regressor as

n

Flo) = 15+~ (wi-

=1

fa@).



Model Selection in LSIR

tribution of SMI estimates under the null-hypothesis (i.e., in-

LSIR contains three tuning parameters—the number of basis dependence) is constructed. Finally, fhealue is approxi-

functionsm, the kernel widthr, and the regularization pa-
rametery. In our experiments, we fixe = min(50,n), and
chooser and~ by CV with grid search as follows. First, the
samples{z; | z; = (z;,€;)},; are divided intdl" disjoint
subsets{ 2, }7_, of (approximately) the same size (we set
T = 2 in experiments). Then, an estimaj@g, is obtained
using{Z;},x, and the independence criterion for the hold-
out samplesZ; is computed as

jrev) _ L L
2 2 2

This procedure is repeated foe 1,...,T, and its average

IT-CV) is computed as

1~v 1
h;tazt -

7rcv) _ Fr-cv)

Zy

>

t=1

(8)

Nl

We computel(T-V) for all model candidates (the kernel
width 7 and the regularization parameterin the current

setup), and choose the model that minimiz&&cV).
The LSIR algorithm is summarized below:
Input: {(z:, yi) ey, {7 2:1’ and{v;}%_,
Output: LSIR parametep

Compute CV score for all; };_; and{v;}j_, by Eq.(8);
Chooser and? that minimize the CV score;
Compute3 by gradient descent (7) withand~;

Causal Direction Inference by LSIR

We gave a dependence minimizing regression method,
LSIR, that is equipped with CV for model selection. In this
section, we explain how LSIR can be used for causal direc-
tion inference following Hoyer et al. (2009).

Our final goal is, given i.i.d. paired samplse;, y;) - ;,
to determine whethek caused” or vice versa. To this end,
we test whether the causal modél= fy (X) + Ey or the
alternative modeK = fx(Y)+Ex fits the data well, where

mated by evaluating the relative ranking of the SMI estimate
computed from the original input-residual data over the dis-
tribution of SMI estimates for randomly permuted data.

In order to decide the causal direction, we compute the
p-valuespx .y andpx . y for both directionsX — Y (i.e.,

X causes) and X « Y (i.e., Y causesX). For a given
significance leveb, if px_.y > d andpx.y < 6§, the
modelX — Y ischosen; ibbx._y > d andpx_y < ¢, the
model X «+ Y is selected. lbx_v,pxy < ¢, then we
conclude that there is no causal relation betw&eandY'.

If px_v,pxey > ¢, perhaps our modeling assumption is
not correct.

When we have prior knowledge that there exists a causal
relation betweenX andY but their the causal direction is
unknown, we may simply compare the valuepgf .y and
pxoy: if px_y > pxcy, we conclude thak causes’;
otherwise we conclude that causesX. This allows us to
avoid the computational expensive permutation process.

In our preliminary experiments, we empirically observed
that SMI estimates obtained by LSIR tend to be affected
by the way data samples were split in the CV procedure of
LSIR. To mitigate this problem, we run LSIR and compute
an SMI estimatd 0 times, randomly changing the data split
in the CV procedure of LSIR. Then the regression function
which gave the median SMI estimate amadrigrepetitions
is selected and the permutation test is performed for that re-
gression function.

Experiments

In this section, we first illustrate the behavior of LSIR us-
ing a toy example, and then we evaluate the performance of
LSIR using real-world datasets.

Illustrative Examples
Let us consider the following additive noise model:
Y =X°+E,
where X is subject to the uniform distribution oft-1, 1)

the goodness of fit is measured by independence betweenandE is subject to the exponential distribution with rate pa-
inputs and residuals (i.e., estimated noise). Independencerameterl (and its mean is adjusted to have mean zero). We

of inputs and residuals may be decided in practice by the
permutation tes(Efron and Tibshirani 1993).

More specifically, we first run LSIR fof (z;,v:)},
as usual, and obtain a regression functjon This proce-
dure also provides an SMI estimate fofz;,e;) | e; =

yi — f(xi)}?:l. Next, we randomly permute the pairs of
input and residuaf{ (z;, €;) };; as{(zs, €x(i)) }iz,, Where

drew 300 paired samples oK andY following the above
generative model (see Figure 1), where the ground truth is
that X and E are independent. Thus, the null-hypothesis
should be accepted (i.e., thevalues should be large).

Figure 1 depicts the regressor obtained by LSIR, giving
a good approximation to the true function. We repeated the
experimentl000 times with the random seed changed. For
the significance leveb%, LSIR successfully accepted the

k(+) is a randomly generated permutation function. Note null-hypothesi®63 times out ofL000 runs.
that the permuted pairs of samplc_es are independent of each agq Mooij et al. (2009) pointed out, beyond the fact that
other since the random permutation breaks the dependencyine-values frequently exceed the pre-specified significance

betweenX and E (if exists). Then we compute SMI es-
timates for the permuted datg(x;,e,.(;))}i-; by LSMI,
changing the permutation functief-) randomly. This ran-

dom permutation process is repeated many times (in experi-

ments, the number of repetitions is sei @9)0), and the dis-

level, it is important to have a wide margin beyond the sig-
nificance level in order to cope with, e.g., multiple variable
cases. The upper graph of Figure 2(a) depicts the histogram
of px_,y obtained by LSIR ovet000 runs. The plot shows
that LSIR tends to produce much largewvalues than the
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Figure 2: lllustrative example. (a: upper) Histogranpgf_,y obtained by LSIR ovet000 runs. The ground truth is to accept
the null-hypothesis (thus thevalues should be large). (a: lower) Histogramg @f y obtained by LSIR ovet000 runs. The
ground truth is to reject the null-hypothesis (thus phealues should be small). (b) Comparisorpefalues for both directions

(px—v VS.px«v). (c) Comparison of values of independence measures for both dire(§M\1§Qy vs.S/I\WIXey).
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Figure 1: lllustrative example. The solid line denotes the
true function, the circles denote samples, and the dashed line
denotes the regressor obtained by LSIR.

significance level; the mean and standard deviation opthe
values oveil 000 runs are).5638 and0.2404, respectively.

Next, we consider the backward case where the roles of
X andY were swapped. In this case, the ground truth is
that the input and the residual are dependent (see Figure 1).
Therefore, the null-hypothesis should be rejected (i.e., the
p-values should be small). The lower graph of Figure 2(a)
shows the histogram @fx . y obtained by LSIR ovet000
runs. LSIR rejected the null-hypothegig6 times out of
1000 runs; the mean and standard deviation ofjhalues
over1000 runs are).0067 and0.0309, respectively.

Figure 2(b) depicts the-values for both directions in a
trial-wise manner. The graph shows that LSIR results in
the correct causal direction (i.epx vy > pxcy) 996
times out of1000 trials, and thenmarginbetweerpx v and
px+«y Seems to be clear (i.e., most of the points are clearly
below the diagonal line). This illustrates the usefulness of
LSIR in causal direction inference.

Finally, we investigate the values of independence mea-
sureSMI, which are plotted in Figure 2(c) again in a trial-

wise manner. The graph implies that the valueSkli may

be simply used for determining the causal direction, instead
of the p-values. Indeed, the correct causal direction (i.e.,

SMlx_,y < SMlx. y) can be found97 times out ofl 000
trials by this simple method. This would be a practically
useful heuristic since we can avoid performing the compu-
tationally intensive permutation test.

Real-world datasets

Next, we evaluate the performance of LSIR on the datasets
of the ‘Cause-Effect Pairgask in theNIPS 2008 Causal-

ity Competition(Mooij, Janzing, and Scéikopf 2008). The

task contains®3 datasets, each has two statistically depen-
dent random variables possessing inherent causal relation-
ship. The goal is to identify the causal direction from the
observational data. Since these datasets consist of real-world
samples, our modeling assumption may be only approxi-
mately satisfied. Thus, identifying causal directions in these
datasets would be highly challenging.

Thep-values and the independence scores for each dataset
and each direction are summarized in Table 1. LSIR with
kernel widthr in the regression model optimized by CV is
denoted by ‘LSIR(CV)'. We also tested ‘LSIR(med)’, where
the kernel widthr was set to the median distance between
samples. This is a popular heuristic in kernel methods, and is
also used in HSICR. The values of HSICR, which were also
computed by the permutation test, were taken from Mooij et
al. (2009), but the-values were rounded off to three deci-
mal places to be consistent with the results of LSIR. When
the p-values of both directions are less theaT 2, we con-
cluded that the causal direction cannot be determined (indi-
cated by ‘?").

Table 1 shows that LSIR(CV) successfully found the cor-
rect causal direction for out of 8 cases, while LSIR(med)
performed correctly only fof out of 8 cases. This illustrates
the usefulness of CV in causal direction inference. HSICR
gave the correct decision only férout of 8 cases, implying
that LSIR(CV) compares favorably with HSICR. For dataset
2, thep-values obtained by LSIR are large for both direc-
tions. We conjecture that our modeling assumption was not



Table 1: Results on datasets of ti@ause-Effect Pairgask

in the NIPS 2008 Causality CompetitiofMooij, Janzing,
and Schilkopf 2008). When the-values of both directions
are less thari0—3, we concluded that the causal direction
cannot be determined (indicated by ‘?’).

(a) LSIR(CV)
SMI (x10% [ Direction
X — Y[X « Y |EstimatedTruth
-0.2404] 6.1334
-0.3618| -0.1061
-0.0994| 4.4031
0.0017| -0.1624
3.7799| -0.0406
-0.1628| -0.0989
3.4429| -0.0508
0.3468| 0.4064

Data-
set

p-values
X—-Y[X«Y
0.920 [< 1073
0.972 | 0.899
0.314 | < 1073
0.023 | 0.591
<107%| 0.020
0.946 | 0.040
0.001 | 0.208
<1073 |< 1073

~TLT Ll

O~NOUTAWNE
A A A

(b) LSIR(med)
SMI (x10%) [ Direction
X — Y[ X « Y|EstimatedTruth

-0.0823| 6.5753
-0.0757| -0.0983
-0.1031| 4.2570
-0.0608| -0.3944
0.3794|-0.2078
-0.1946| -0.2830
-0.0637| -0.2481
0.0093| 0.1267

Data- p-values

X-oY[X«Y

0.977 [< 1073
0.103 | 0.573
0.374 | < 1073
0.087 | 0.962
0.063 | 0.987
0.953 | 0.974
0.168 | 0.972
<1073 <1073

(%2}
@
—~

~TTT T LT

O~NOUTAWNR
A A N

(c) HSICR
p-values [ HSIC [ Direction

X 5 Y[X « Y|X > Y[X « Y |Estimated Truth
0.290 [< 10~ 0.0012] 0.0060
0.037 | 0.014 | 0.0020| 0.0021
0.045 | 0.003 | 0.0019| 0.0026
0.376 | 0.012 | 0.0011| 0.0023
<107%| 0.160 | 0.0028| 0.0005
<1072 | < 1072 0.0032| 0.0026
<107%| 0.272 | 0.0021| 0.0005
<1073 < 1073| 0.0015| 0.0017

Data-

n
0]
—

O~NO U DWNE

~ToT 1Ll 4]

LTl rrlild

really fulfilled for this dataset.
The values of independence measures described in Ta-

ble 1 show that merely comparing the valuesS#ll is
again sufficient for deciding the correct causal direction in
LSIR(CV). Actually, this heuristic also allows us to cor-
rectly identify the causal direction in Dataset 8. On the other
hand, this convenient heuristic does not seem to be useful in
HSICR.

Conclusions

In this paper, we proposed a new method of dependence
minimization regression callel@ast-squares independence
regressionLSIR). LSIR adopts thequared-loss mutual in-
formationas an independence measure, and it is estimated
by the method ofeast-squares mutual informatighSMI).
Since LSMI provides an analytic-form solution, we can ex-

plicitly compute the gradient of the LSMI estimator with re-
spect to regression parameters. A notable advantage of the
proposed LSIR method over the state-of-the-art method of
dependence minimization regression (Mooij et al. 2009) is
that LSIR is equipped with a natural cross-validation proce-
dure, allowing us to objectively optimize tuning parameters
such as the kernel width and the regularization parameter
in a data-dependent fashion. We applied the LSIR method
to the discovery of non-linear causal relationship in non-
Gaussian additive noise models, and experimentally showed
that LSIR is promising in real-world causal direction infer-
ence.
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