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Abstract

The discovery of non-linear causal relationship under
additive non-Gaussian noise models has attracted con-
siderable attention recently because of their high flex-
ibility. In this paper, we propose a novel causal infer-
ence algorithm calledleast-squares independence re-
gression(LSIR). LSIR learns the additive noise model
through minimization of an estimator of thesquared-
loss mutual informationbetween inputs and residuals.
A notable advantage of LSIR over existing approaches
is that tuning parameters such as the kernel width and
the regularization parameter can be naturally optimized
by cross-validation, allowing us to avoid overfitting in
a data-dependent fashion. Through experiments with
real-world datasets, we show that LSIR compares favor-
ably with the state-of-the-art causal inference method.

Introduction
Learningcausalityfrom data is one of the important chal-
lenges in the artificial intelligence, statistics, and machine
learning communities (Pearl 2000). A traditional method of
learning causal relationship from observational data is based
on the linear-dependence Gaussian-noise model (Geiger and
Heckerman 1994). However, the linear-Gaussian assump-
tion is too restrictive and may not be fulfilled in practice. Re-
cently, non-Gaussianity and non-linearity have been shown
to be beneficial in causal inference, allowing one to break
symmetry between observed variables (Shimizu et al. 2006;
Hoyer et al. 2009). Since then, much attention has been paid
to the discovery of non-linear causal relationship through
non-Gaussian noise models (Mooij et al. 2009).

In the framework of non-linear non-Gaussian causal in-
ference, the relation between a causeX and an effectY is
assumed to be described byY = f(X) + E, wheref is
a non-linear function andE is non-Gaussian additive noise
which is independent of the causeX. Given two random
variablesX andX ′, the causal direction betweenX andX ′

is decided based on a hypothesis test of whether the model
X ′ = f(X) +E or the alternative modelX = f ′(X ′) +E′

fits the data well—here, the goodness of fit is measured by
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independence between inputs and residuals (i.e., estimated
noise). Hoyer et al. (2009) proposed to learn the functions
f andf ′ by theGaussian process(GP) (Bishop 2006), and
evaluate the independence between the inputs and the resid-
uals by theHilbert-Schmidt independence criterion(HSIC)
(Gretton et al. 2005).

However, since standard regression methods such as GP
are designed to handle Gaussian noise, they may not be
suited for discovering causality in the non-Gaussian additive
noise formulation. To cope with this problem, a novel re-
gression method calledHSIC regression(HSICR) has been
introduced recently (Mooij et al. 2009). HSICR learns a
function so that the dependence between inputs and residu-
als is directly minimized based on HSIC. Since HSICR does
not impose any parametric assumption on the distribution
of additive noise, it is suited for non-linear non-Gaussian
causal inference. Indeed, HSICR was shown to outperform
the GP-based method in experiments (Mooij et al. 2009).

However, HSICR still has limitations for its practical use.
The first weakness of HSICR is that the kernel width of
HSIC needs to be determined manually. Since the choice
of the kernel width heavily affects the sensitivity of the in-
dependence measure (Fukumizu, Bach, and Jordan 2009),
the lack of systematic model selection strategies is critical in
causal inference. Setting the kernel width to the median dis-
tance between sample points seems to be a popular heuristic
in kernel methods (Schölkopf and Smola 2002), but this does
not always perform well in practice. Another limitation of
HSICR is that the kernel width of the regression model is
fixed to the same value as HSIC. This crucially limits the
flexibility of function approximation in HSICR.

To overcome the above weaknesses, we propose an alter-
native regression method calledleast-squares independence
regression(LSIR). As HSICR, LSIR also learns a function
so that the dependence between inputs and residuals is di-
rectly minimized. However, a difference is that, instead of
HSIC, LSIR adopts an independence criterion calledleast-
squares mutual information(LSMI) (Suzuki et al. 2009),
which is a consistent estimator of thesquared-loss mutual
information (SMI) with the optimal convergence rate. An
advantage of LSIR over HSICR is that tuning parameters
such as the kernel width and the regularization parameter
can be naturally optimized through cross-validation (CV)
with respect to the LSMI criterion.



Furthermore, we propose to determine the kernel width of
the regression model based on CV with respect to SMI itself.
Thus, the kernel width of the regression model is determined
independent of that in the independence measure. This al-
lows LSIR to have higher flexibility in non-linear causal in-
ference than HSICR. Through experiments with real-world
datasets, we demonstrate the superiority of LSIR.

Dependence Minimizing Regression by LSIR
In this section, we formulate the problem of dependence
minimizing regression and propose a novel regression
method,least-squares independence regression(LSIR).

Problem Formulation
Suppose random variablesX ∈ R andY ∈ R are connected
by the following additive noise model (Hoyer et al. 2009):

Y = f(X) + E,

wheref(·) : R→ R is some non-linear function andE ∈ R
is a zero-mean random variable independent ofX. The goal
of dependence minimizing regression is, from i.i.d. paired
samples{(xi, yi)}ni=1, to obtain a functionf̂(·) such that
inputX and estimated additive noisêE = Y − f̂(X) are
independent.

Let us employ a linear model for dependence minimizing
regression:

fβ(x) =
m∑
l=1

βlψl(x) = β
⊤ψ(x), (1)

where m is the number of basis functions,β =
(β1, . . . , βm)⊤ are regression parameters,⊤ denotes the
transpose, andψ(x) = (ψ1(x), . . . , ψm(x))⊤ are basis
functions. We use the Gaussian basis function in our ex-
periments:

ψl(x) = exp

(
− (x− cl)2

2τ2

)
,

where cl is the Gaussian center chosen randomly from
{xi}ni=1 without overlap andτ is the kernel width.

In dependence minimization regression, the regression
parameterβ may be learned as

min
β

[
I(X, Ê) +

γ

2
β⊤β

]
,

whereI(X, Ê) is some measure of independence between
X and Ê, andγ ≥ 0 is the regularization parameter for
avoiding overfitting.

In this paper, we use thesquared-loss mutual information
(SMI) as our independence measure:

I(X, Ê) =
1

2

∫∫ (
p(x, ê)

p(x)p(ê)
− 1

)2

p(x)p(ê)dxdê

=
1

2

∫∫
p(x, ê)

p(x)p(ê)
p(x, ê)dxdê− 1

2
.

I(X, Ê) is thePearson divergencefrom p(x, ê) to p(x)p(ê),
and it vanishes if and only ifp(x, ê) agrees withp(x)p(ê),

i.e.,X and Ê are independent. Note that ordinarymutual
informationcorresponds to theKullback-Leibler divergence
from p(x, ê) andp(x)p(ê), and it can also be used as an in-
dependence measure. Nevertheless, we adhere to SMI since
it allows us to obtain an analytic-form estimator as explained
below.

Estimation of Squared-Loss Mutual Information
SMI cannot be directly computed since it contains unknown
densitiesp(x, ê), p(x), andp(ê). Here, we briefly review
an SMI estimator calledleast-squares mutual information
(LSMI) (Suzuki et al. 2009).

Since density estimation is known to be a hard problem
(Vapnik 1998), avoiding density estimation is critical for ob-
taining better SMI approximators (Kraskov, Stögbauer, and
Grassberger 2004). A key idea of LSMI is to directly esti-
mate thedensity ratio:

w(x, ê) =
p(x, ê)

p(x)p(ê)
,

without going through density estimation ofp(x, ê), p(x),
andp(ê).

In LSMI, the density ratio functionw(x, ê) is directly
modeled by the following linear model:

wα(x, ê) =
b∑

l=1

αlφl(x, ê) = α
⊤φ(x, ê), (2)

where b is the number of basis functions,α =
(α1, . . . , αb)

⊤ are parameters, andφ(x, ê) =
(φ1(x, ê), . . . , φb(x, ê))

⊤ are basis functions. We use
the Gaussian basis function:

φl(x, ê) = exp

(
− (x− ul)2 + (ê− v̂l)2

2σ2

)
,

where(ul, v̂l) is the Gaussian center chosen randomly from
{(xi, êi)}ni=1 without replacement, andσ is the kernel
width.

The parameterα in the modelwα(x, ê) is learned so that
the following squared errorJ0(α) is minimized:

J0(α) =
1

2

∫∫
(wα(x, ê)− w(x, ê))2p(x)p(ê)dxdê

=
1

2

∫∫
wα(x, ê)p(x)p(ê)dxdê

−
∫∫

wα(x, ê)p(x, ê)dxdê+ C,

whereC is a constant independent ofα and therefore can be
safely ignored. Let us denote the first two terms byJ(α):

J(α) = J0(α)− C =
1

2
α⊤Hα− h⊤α, (3)

where

H =

∫∫
φ(x, ê)φ(x, ê)⊤p(x)p(ê)dxdê,

h =

∫∫
φ(x, ê)p(x, ê)dxdê.



Approximating the expectations inH andh by empirical
averages, we obtain the following optimization problem:

α̃ = argmin
α

[1
2
α⊤Ĥα− ĥ⊤α+ λα⊤α

]
,

where a regularization termλα⊤α is included for avoiding
overfitting, and

Ĥ =
1

n2

n∑
i,j=1

φ(xi, êj)φ(xi, êj)
⊤,

ĥ =
1

n

n∑
i=1

φ(xi, êi).

Differentiating the above objective function with respect to
α and equating it to zero, we can obtain an analytic-form
solution:

α̂ = (Ĥ + λIb)
−1ĥ, (4)

whereIb denotes theb-dimensional identity matrix. Consis-
tency and the convergence rate of the above density ratio es-
timator has been theoretically studied in Kanamori, Suzuki,
and Sugiyama (2009).

Given a density ratio estimator̂w = wα̂, SMI can be sim-
ply approximated as

Î(X, Ê) =
1

2n

n∑
i=1

ŵ(xi, êi)−
1

2
=

1

2
ĥ⊤α̂− 1

2
. (5)

Model Selection in LSMI
LSMI contains three tuning parameters: the number of basis
functionsb, the kernel widthσ, and the regularization pa-
rameterλ. In our experiments, we fixb = min(50, n), and
chooseσ andλ by cross-validation (CV) with grid search
as follows. First, the samples{zi | zi = (xi, êi)}ni=1 are
divided intoK disjoint subsets{Zk}Kk=1 of (approximately)
the same size (we setK = 2 in experiments). Then, an
estimatorα̂Zk

is obtained using{Zj}j ̸=k, and the approxi-
mation error for the hold-out samplesZk is computed as

J
(K-CV)
Zk

=
1

2
α̂⊤Zk

ĤZk
α̂Zk

− ĥ⊤Zk
α̂Zk

,

where, for|Zk| being the number of samples in the subset
Zk,

ĤZk
=

1

|Zk|2
∑

x,ê∈Zk

φ(x, ê)φ(x, ê)⊤,

ĥZk
=

1

|Zk|
∑

(x,ê)∈Zk

φ(x, ê).

This procedure is repeated fork = 1, . . . ,K, and its av-
erageJ (K-CV) is outputted as

J (K-CV) =
1

K

K∑
k=1

J
(K-CV)
Zk

. (6)

We computeJ (K-CV) for all model candidates (the kernel
width σ and the regularization parameterλ in the current

setup), and choose the model that minimizesJ (K-CV). Note
thatJ (K-CV) is an almost unbiased estimator of the objective
function (3), where the almost-ness comes from the fact that
the number of samples is reduced in the CV procedure due
to data splitting (Scḧolkopf and Smola 2002).

The LSMI algorithm is summarized below:

Input: {(xi, êi)}ni=1, {σi}pi=1, and{λj}qj=1

Output: LSMI parameter̂α

Compute CV score for{σi}pi=1 and{λj}qj=1 by Eq.(6);

Choosêσ andλ̂ that minimize the CV score;
Computeα̂ by Eq.(4) withσ̂ andλ̂;

Least-Squares Independence Regression
Given the SMI estimator (5), our next task is to learn the
parameterβ in the regression model (1) as

β̂ = argmin
β

[
Î(X, Ê) +

γ

2
β⊤β

]
.

We call this methodleast-squares independence regression
(LSIR).

For regression parameter learning, we simply employ a
gradient descent method:

β ←− β − η
(∂Î(X, Ê)

∂β
+ γβ

)
, (7)

whereη is a step size which may be chosen in practice by
some approximate line search method such asArmijo’s rule
(Patriksson 1999).

The partial derivative of̂I(X, Ê) with respect toβ can be
approximately expressed as

∂Î(X, Ê)

∂β
≈

b∑
l=1

α̂l
∂ĥl
∂β
− 1

2

b∑
l,l′=1

α̂lα̂
′
l

∂Ĥl,l′

∂β
,

where

∂ĥl
∂β

=
1

n

n∑
i=1

∂φl(xi, êi)

∂β
,

∂Ĥl,l′

∂β
=

1

n2

n∑
i,j=1

(
∂φl(xi, êj)

∂β
φl′(xj , êi)

+ φl(xi, êj)
∂φl(xj , êi)

∂β

)
,

∂φl(x, ê)

∂β
= − 1

2σ2
φl(x, ê)(ê− v̂l)ψ(x).

In the above derivation, we ignored the dependence ofβ
on êi. It is possible to exactly compute the derivative in
principle, but we use this approximated expression since it
is computationally efficient.

We assumed that the mean of the noiseE is zero. Taking
into account this, we modify the final regressor as

f̂(x) = fβ̂(x) +
1

n

n∑
i=1

(
yi − fβ̂(xi)

)
.



Model Selection in LSIR
LSIR contains three tuning parameters—the number of basis
functionsm, the kernel widthτ , and the regularization pa-
rameterγ. In our experiments, we fixm = min(50, n), and
chooseτ andγ by CV with grid search as follows. First, the
samples{zi | zi = (xi, êi)}ni=1 are divided intoT disjoint
subsets{Zt}Tt=1 of (approximately) the same size (we set
T = 2 in experiments). Then, an estimatorβ̂Zt is obtained
using{Zj}j ̸=t, and the independence criterion for the hold-
out samplesZt is computed as

Î
(T -CV)
Zt

=
1

2
ĥ⊤Zt

α̂Zt
− 1

2
.

This procedure is repeated fort = 1, . . . , T , and its average
Î(T -CV) is computed as

Î(T -CV) =
1

T

T∑
t=1

Î
(T -CV)
Zt

. (8)

We computeÎ(T -CV) for all model candidates (the kernel
width τ and the regularization parameterγ in the current
setup), and choose the model that minimizesÎ(T -CV).

The LSIR algorithm is summarized below:

Input: {(xi, yi)}ni=1, {τi}pi=1, and{γj}qj=1

Output: LSIR parameter̂β

Compute CV score for all{τi}pi=1 and{γj}qj=1 by Eq.(8);
Choosêτ andγ̂ that minimize the CV score;
Computeβ̂ by gradient descent (7) witĥτ andγ̂;

Causal Direction Inference by LSIR
We gave a dependence minimizing regression method,
LSIR, that is equipped with CV for model selection. In this
section, we explain how LSIR can be used for causal direc-
tion inference following Hoyer et al. (2009).

Our final goal is, given i.i.d. paired samples{(xi, yi)}ni=1,
to determine whetherX causesY or vice versa. To this end,
we test whether the causal modelY = fY (X) + EY or the
alternative modelX = fX(Y )+EX fits the data well, where
the goodness of fit is measured by independence between
inputs and residuals (i.e., estimated noise). Independence
of inputs and residuals may be decided in practice by the
permutation test(Efron and Tibshirani 1993).

More specifically, we first run LSIR for{(xi, yi)}ni=1

as usual, and obtain a regression functionf̂ . This proce-
dure also provides an SMI estimate for{(xi, êi) | êi =

yi − f̂(xi)}ni=1. Next, we randomly permute the pairs of
input and residual{(xi, êi)}ni=1 as{(xi, êκ(i))}ni=1, where
κ(·) is a randomly generated permutation function. Note
that the permuted pairs of samples are independent of each
other since the random permutation breaks the dependency
betweenX and Ê (if exists). Then we compute SMI es-
timates for the permuted data{(xi, êκ(i))}ni=1 by LSMI,
changing the permutation functionκ(·) randomly. This ran-
dom permutation process is repeated many times (in experi-
ments, the number of repetitions is set to1000), and the dis-

tribution of SMI estimates under the null-hypothesis (i.e., in-
dependence) is constructed. Finally, thep-value is approxi-
mated by evaluating the relative ranking of the SMI estimate
computed from the original input-residual data over the dis-
tribution of SMI estimates for randomly permuted data.

In order to decide the causal direction, we compute the
p-valuespX→Y andpX←Y for both directionsX → Y (i.e.,
X causesY ) andX ← Y (i.e., Y causesX). For a given
significance levelδ, if pX→Y > δ and pX←Y ≤ δ, the
modelX → Y is chosen; ifpX←Y > δ andpX→Y ≤ δ, the
modelX ← Y is selected. IfpX→Y , pX←Y ≤ δ, then we
conclude that there is no causal relation betweenX andY .
If pX→Y , pX←Y > δ, perhaps our modeling assumption is
not correct.

When we have prior knowledge that there exists a causal
relation betweenX andY but their the causal direction is
unknown, we may simply compare the values ofpX→Y and
pX←Y : if pX→Y > pX←Y , we conclude thatX causesY ;
otherwise we conclude thatY causesX. This allows us to
avoid the computational expensive permutation process.

In our preliminary experiments, we empirically observed
that SMI estimates obtained by LSIR tend to be affected
by the way data samples were split in the CV procedure of
LSIR. To mitigate this problem, we run LSIR and compute
an SMI estimate10 times, randomly changing the data split
in the CV procedure of LSIR. Then the regression function
which gave the median SMI estimate among10 repetitions
is selected and the permutation test is performed for that re-
gression function.

Experiments
In this section, we first illustrate the behavior of LSIR us-
ing a toy example, and then we evaluate the performance of
LSIR using real-world datasets.

Illustrative Examples
Let us consider the following additive noise model:

Y = X3 + E,

whereX is subject to the uniform distribution on(−1, 1)
andE is subject to the exponential distribution with rate pa-
rameter1 (and its mean is adjusted to have mean zero). We
drew 300 paired samples ofX andY following the above
generative model (see Figure 1), where the ground truth is
thatX andE are independent. Thus, the null-hypothesis
should be accepted (i.e., thep-values should be large).

Figure 1 depicts the regressor obtained by LSIR, giving
a good approximation to the true function. We repeated the
experiment1000 times with the random seed changed. For
the significance level5%, LSIR successfully accepted the
null-hypothesis963 times out of1000 runs.

As Mooij et al. (2009) pointed out, beyond the fact that
thep-values frequently exceed the pre-specified significance
level, it is important to have a wide margin beyond the sig-
nificance level in order to cope with, e.g., multiple variable
cases. The upper graph of Figure 2(a) depicts the histogram
of pX→Y obtained by LSIR over1000 runs. The plot shows
that LSIR tends to produce much largerp-values than the
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Figure 2: Illustrative example. (a: upper) Histogram ofpX→Y obtained by LSIR over1000 runs. The ground truth is to accept
the null-hypothesis (thus thep-values should be large). (a: lower) Histograms ofpX←Y obtained by LSIR over1000 runs. The
ground truth is to reject the null-hypothesis (thus thep-values should be small). (b) Comparison ofp-values for both directions
(pX→Y vs.pX←Y ). (c) Comparison of values of independence measures for both directions (ŜMIX→Y vs. ŜMIX←Y ).
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Figure 1: Illustrative example. The solid line denotes the
true function, the circles denote samples, and the dashed line
denotes the regressor obtained by LSIR.

significance level; the mean and standard deviation of thep-
values over1000 runs are0.5638 and0.2404, respectively.

Next, we consider the backward case where the roles of
X andY were swapped. In this case, the ground truth is
that the input and the residual are dependent (see Figure 1).
Therefore, the null-hypothesis should be rejected (i.e., the
p-values should be small). The lower graph of Figure 2(a)
shows the histogram ofpX←Y obtained by LSIR over1000
runs. LSIR rejected the null-hypothesis966 times out of
1000 runs; the mean and standard deviation of thep-values
over1000 runs are0.0067 and0.0309, respectively.

Figure 2(b) depicts thep-values for both directions in a
trial-wise manner. The graph shows that LSIR results in
the correct causal direction (i.e.,pX→Y > pX←Y ) 996
times out of1000 trials, and themarginbetweenpX→Y and
pX←Y seems to be clear (i.e., most of the points are clearly
below the diagonal line). This illustrates the usefulness of
LSIR in causal direction inference.

Finally, we investigate the values of independence mea-
sureŜMI, which are plotted in Figure 2(c) again in a trial-
wise manner. The graph implies that the values of̂SMI may

be simply used for determining the causal direction, instead
of the p-values. Indeed, the correct causal direction (i.e.,
ŜMIX→Y < ŜMIX←Y ) can be found997 times out of1000
trials by this simple method. This would be a practically
useful heuristic since we can avoid performing the compu-
tationally intensive permutation test.

Real-world datasets

Next, we evaluate the performance of LSIR on the datasets
of the ‘Cause-Effect Pairs’ task in theNIPS 2008 Causal-
ity Competition(Mooij, Janzing, and Scḧolkopf 2008). The
task contains8 datasets, each has two statistically depen-
dent random variables possessing inherent causal relation-
ship. The goal is to identify the causal direction from the
observational data. Since these datasets consist of real-world
samples, our modeling assumption may be only approxi-
mately satisfied. Thus, identifying causal directions in these
datasets would be highly challenging.

Thep-values and the independence scores for each dataset
and each direction are summarized in Table 1. LSIR with
kernel widthτ in the regression model optimized by CV is
denoted by ‘LSIR(CV)’. We also tested ‘LSIR(med)’, where
the kernel widthτ was set to the median distance between
samples. This is a popular heuristic in kernel methods, and is
also used in HSICR. The values of HSICR, which were also
computed by the permutation test, were taken from Mooij et
al. (2009), but thep-values were rounded off to three deci-
mal places to be consistent with the results of LSIR. When
thep-values of both directions are less than10−3, we con-
cluded that the causal direction cannot be determined (indi-
cated by ‘?’).

Table 1 shows that LSIR(CV) successfully found the cor-
rect causal direction for7 out of 8 cases, while LSIR(med)
performed correctly only for5 out of8 cases. This illustrates
the usefulness of CV in causal direction inference. HSICR
gave the correct decision only for5 out of8 cases, implying
that LSIR(CV) compares favorably with HSICR. For dataset
2, thep-values obtained by LSIR are large for both direc-
tions. We conjecture that our modeling assumption was not



Table 1: Results on datasets of the ‘Cause-Effect Pairs’ task
in the NIPS 2008 Causality Competition(Mooij, Janzing,
and Scḧolkopf 2008). When thep-values of both directions
are less than10−3, we concluded that the causal direction
cannot be determined (indicated by ‘?’).

(a) LSIR(CV)
Data- p-values ŜMI (×103) Direction
set X → Y X ← Y X → Y X ← Y EstimatedTruth

1 0.920 < 10−3 -0.2404 6.1334 → →
2 0.972 0.899 -0.3618 -0.1061 → →
3 0.314 < 10−3 -0.0994 4.4031 → →
4 0.023 0.591 0.0017 -0.1624 ← ←
5 < 10−3 0.020 3.7799 -0.0406 ← ←
6 0.946 0.040 -0.1628 -0.0989 → →
7 0.001 0.208 3.4429 -0.0508 ← ←
8 < 10−3 < 10−3 0.3468 0.4064 ? →

(b) LSIR(med)
Data- p-values ŜMI (×103) Direction
set X → Y X ← Y X → Y X ← Y EstimatedTruth

1 0.977 < 10−3 -0.0823 6.5753 → →
2 0.103 0.573 -0.0757 -0.0983 ← →
3 0.374 < 10−3 -0.1031 4.2570 → →
4 0.087 0.962 -0.0608 -0.3944 ← ←
5 0.063 0.987 0.3794 -0.2078 ← ←
6 0.953 0.974 -0.1946 -0.2830 ← →
7 0.168 0.972 -0.0637 -0.2481 ← ←
8 < 10−3 < 10−3 0.0093 0.1267 ? →

(c) HSICR
Data- p-values ĤSIC Direction
set X → Y X ← Y X → Y X ← Y EstimatedTruth

1 0.290 < 10−3 0.0012 0.0060 → →
2 0.037 0.014 0.0020 0.0021 → →
3 0.045 0.003 0.0019 0.0026 → →
4 0.376 0.012 0.0011 0.0023 → ←
5 < 10−3 0.160 0.0028 0.0005 ← ←
6 < 10−3 < 10−3 0.0032 0.0026 ? →
7 < 10−3 0.272 0.0021 0.0005 ← ←
8 < 10−3 < 10−3 0.0015 0.0017 ? →

really fulfilled for this dataset.
The values of independence measures described in Ta-

ble 1 show that merely comparing the values of̂SMI is
again sufficient for deciding the correct causal direction in
LSIR(CV). Actually, this heuristic also allows us to cor-
rectly identify the causal direction in Dataset 8. On the other
hand, this convenient heuristic does not seem to be useful in
HSICR.

Conclusions
In this paper, we proposed a new method of dependence
minimization regression calledleast-squares independence
regression(LSIR). LSIR adopts thesquared-loss mutual in-
formationas an independence measure, and it is estimated
by the method ofleast-squares mutual information(LSMI).
Since LSMI provides an analytic-form solution, we can ex-

plicitly compute the gradient of the LSMI estimator with re-
spect to regression parameters. A notable advantage of the
proposed LSIR method over the state-of-the-art method of
dependence minimization regression (Mooij et al. 2009) is
that LSIR is equipped with a natural cross-validation proce-
dure, allowing us to objectively optimize tuning parameters
such as the kernel width and the regularization parameter
in a data-dependent fashion. We applied the LSIR method
to the discovery of non-linear causal relationship in non-
Gaussian additive noise models, and experimentally showed
that LSIR is promising in real-world causal direction infer-
ence.
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