
1Applied Optics, vol.48, no.18, pp.3497–3508, 2009.
Revised in Sep. 8, 2009.

The Interpolated Local Model Fitting Method
for Accurate and Fast Single-shot Surface Profiling

Tatsuya Yokota
Tokyo Institute of Technology

2-12-1-W8-74 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.
yokota@yy.ide.titech.ac.jp

Masashi Sugiyama
Tokyo Institute of Technology

2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
sugi@cs.titech.ac.jp http://sugiyama-www.cs.titech.ac.jp/˜sugi

Hidemitsu Ogawa
Toray Engineering Co., Ltd.

1-1-45 Oe, Otsu, Shiga, 520-2141, Japan.
hidemitsu-ogawa@kuramae.ne.jp

Katsuichi Kitagawa
Toray Engineering Co., Ltd.

1-1-45 Oe, Otsu, Shiga, 520-2141, Japan.
Katsuichi Kitagawa@toray-eng.co.jp

Kazuyoshi Suzuki
Toray Engineering Co., Ltd.

1-1-45 Oe, Otsu, Shiga, 520-2141, Japan.
Kazuyoshi Suzuki@toray-eng.co.jp

Abstract

The local model fitting (LMF) method is a useful single-shot surface profiling algo-
rithm based on spatial carrier frequency fringe patterns. The measurement principle
of the LMF method relies on the assumption that the target surface is locally flat.
In this paper, we first analyze the measurement error of the LMF method caused
by violation of the locally flat assumption. More specifically, we theoretically prove
that the measurement error is zero at fringe intensity extrema in an interference
pattern even when the locally flat assumption is violated. Based on this theo-
retical finding, we propose a new surface profiling method called the interpolated
LMF (iLMF) algorithm which is more accurate and computationally efficient than
the original LMF method. The practical usefulness of the iLMF method is shown
through experiments.
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1 Introduction

We address the problem of estimating the surface profile of a target object using an optical
interferometer with a tilted reference mirror. Such a device allows one to recover the
surface profile solely from a single image. Several single-shot methods based on spatial
carrier frequency fringe patterns have been developed so far, for example, the Fourier
transform method [1], the spatial phase synchronization method [2], the spatial phase-shift
method [3, 4], and the local model fitting (LMF) method [5].

One of the advantages of single-shot methods over multiple-shot methods such as
the phase shift method [6, 7] is their inherent immunity to vibration. Furthermore, the
measurement system of single-shot methods is simpler since mechanical devices such as
piezo actuators are not needed. Among various single-shot methods developed so far, the
LMF method [5] is shown to be more useful than other methods since one can measure
the surface profile of an object with sharp steps (which is an advantage over the Fourier
transform method [1] and the spatial phase synchronization method [2]) and the tilting
angle could be arbitrary (which is an advantage over the spatial phase-shift method [3, 4]).

The measurement principle of the LMF method relies on the assumption that the
target surface is locally flat. Based on this locally flat assumption, unknown parameters
in the fringe model such as the bias and the amplitude are reliably estimated from the
target and surrounding pixels in the observed interference pattern. However, when the
locally flat assumption is violated, the accuracy of the LMF method can be degraded.
For example, when the surface profile illustrated in Figure 3(a) is measured by the LMF
method, the estimated profile is inaccurate as illustrated in Figure 5(a).

The goal of this paper is to overcome this drawback of the LMF method and develop
a new surface profiling algorithm. To this end, we first analyze the measurement error of
the LMF method caused by violation of the locally flat assumption. More specifically, we
theoretically prove that the measurement error becomes zero at fringe intensity extrema
(i.e., minima and maxima; see Figure 4(a)) of an interference pattern.

Based on the theoretical finding, we propose an improved algorithm of the LMF
method which we refer to as the interpolated LMF (iLMF). The basic idea of the iLMF
method is to only use pixels in the interference pattern around fringe intensity extrema
for estimating the surface profile; the surface profile at other pixels are interpolated from
the estimates at the extremum pixels (see Figure 5(b)). This highly contributes to reduc-
ing the estimation error and, at the same time, improving the computational efficiency
since only a small portion of pixels in the interference pattern needs to be processed. We
demonstrate the usefulness of the iLMF algorithm through measurement experiments.

The rest of this paper is organized as follows. In Section 2, the original LMF method
is briefly reviewed. In Section 3, a theoretical error analysis of the LMF method under
violation of the locally flat assumption is carried out and the iLMF algorithm is intro-
duced. Experimental results are reported in Section 4, and concluding remarks are given
in Section 5.
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2 The Local Model Fitting Algorithm

In this section, we review a single-shot surface profiling algorithm called the LMF
method [5].

We tilt the reference mirror in an arbitrary angle. Then the model of an interference
pattern is given as follows [1, 2, 3, 4]:

g(x, y) := a(x, y) + b(x, y) cos
(
ϕ(x, y) + 2πfxx+ 2πfyy

)
,

where a(x, y) and b(x, y) are the bias and the amplitude, ϕ(x, y) contains the information
on the surface profile which we would like to extract, and fx and fy are the spatial carrier
frequencies along the x-axis and y-axis, respectively. We can easily show that g(x, y) can
be equivalently expressed as

g(x, y) = a(x, y) + ξc(x, y)φc(x, y) + ξs(x, y)φs(x, y),

where

ξc(x, y) := b(x, y) cosϕ(x, y), φc(x, y) := cos(2πfxx+ 2πfyy),

ξs(x, y) := b(x, y) sinϕ(x, y), φs(x, y) := − sin(2πfxx+ 2πfyy).

Suppose we have samples {g(xi, yi)}ni=1 in the vicinity of a point of interest (x0, y0). Our
goal is to estimate ϕ(x0, y0) from {g(xi, yi)}ni=1. Here we make the following assumption:
a(x, y), b(x, y), and ϕ(x, y) are constant in the vicinity of (x0, y0), i.e., our local model is
given by

g(x, y) = a+ ξcφc(x, y) + ξsφs(x, y), (1)

where
ξc := b cosϕ and ξs := b sinϕ. (2)

Suppose we have reasonable estimates of the spatial carrier frequencies fx and fy,

denoted by f̂x and f̂y, respectively; f̂x and f̂y may be obtained from the fringe image of a
flat area. Note that the spatial carrier frequencies fx and fy are global quantities which
do not depend on the target object and are determined by the (relative) tilting angle of
the reference mirror.

Then the unknown parameters in the simplified model (1) are only a, ξc, and ξs—they
are determined by solving the following least-squares problem:

(â, ξ̂c, ξ̂s) := argmin
(a,ξc,ξs)

n∑
i=1

(
g(xi, yi)− a− ξcφc(xi, yi)− ξsφs(xi, yi)

)2
.

Since the above model is linear with respect to the parameters a, ξc, and ξs, the least-
squares solutions â, ξ̂c, and ξ̂s can be analytically obtained as follows [8]: â

ξ̂c
ξ̂s

 = (A⊤A)−1A⊤

g(x1, y1)
...

g(xn, yn)

 ,
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where

A :=

1 φc(x1, y1) φs(x1, y1)
...

...
...

1 φc(xn, yn) φs(xn, yn)

 .

Given ξ̂c and ξ̂s, we can obtain an estimate ϕ̂ of the surface profile at (x0, y0) by

ϕ̂ := arctan
(
ξ̂s/ξ̂c

)
+ 2mπ,

where m is an unknown integer. Note that we can determine the value of arctangent upto
a 2π range by using the signs of cosϕ and sinϕ. Since b is always positive, the signs of
cosϕ and sinϕ could be estimated by the signs of ξ̂c and ξ̂s, respectively (cf. Eq.(2)). m
may be determined by a phase-unwrapping algorithm [9, 10].

3 Improving Measurement Accuracy and Computa-

tional Efficiency of the LMF Method

The key idea of the LMF method is that a(x, y), b(x, y), and ϕ(x, y) are assumed to be
constant in the vicinity of (x0, y0). This enables us to estimate the unknown parameters
in the model at (x0, y0) from the observed data around (x0, y0). However, when the target
surface is curved, the locally flat assumption (i.e., ϕ(x, y) is constant) may not be exactly
fulfilled and therefore some measurement error is incurred. In this section, we first analyze
the measurement error incurred by violation of the locally flat assumption theoretically.
Then, based on this theoretical result, we develop a more accurate and computationally
efficient algorithm called the iLMF method.

3.1 Theoretical Error Analysis of the LMF Method

For making the analysis simple, let us assume that the vicinity data are taken only along
the x-axis in an equidistant manner; more specifically, the vicinity data are taken as
{g(xi, y0)}ni=−n, where for ∆x (> 0),

xi = x0 + i∆x.

For brevity, we omit y0 below; then the fringe intensity at x0 is expressed as

g(x0) = a+ b cos(θ),

where
θ := ϕ(x0) + 2πfx0.

We assume that the bias a(x) and the amplitude b(x) are locally constant around x0, and
analyze the measurement error when ϕ(x, y) is not locally constant around x0.
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Let us define the measurement error at x0 by

ε := ϕ̂− ϕ. (3)

Then if terms with O(∆x5) are ignored, tan ε can be expressed as

tan ε =
S(1− cos 2θ)−R sin 2θ

1 +R(1 + cos 2θ)− S sin 2θ
, (4)

where R and S depend on the unknown surface profile {ϕ(xi)}ni=−n. The detailed defini-
tions of R and S as well as the derivation of Eq.(4) are summarized in Appendix A.

3.2 The iLMF Algorithm

Equation (4) implies that the error ε becomes zero if

θ = mπ (5)

with m being an integer. An important observation is that Eq.(5) can be fulfilled without
knowing the true surface profile {ϕ(xi)}ni=−n. Indeed, setting x0 to fringe intensity extrema
(i.e., minima and maxima; see Figure 4) in the interference pattern satisfies Eq.(5).

So our finding above can be summarize as follows:

At any fringe intensity minimum and maximum of the interference pattern,
the measurement error is always zero even when the locally flat assumption is
violated.

Based on this result, we propose to compute the LMF solutions only at fringe intensity
extrema of the interference pattern; the surface estimates at other points are interpolated,
e.g., linearly or by some spline methods [11]. We call this algorithm the interpolated LMF
(iLMF) method. This will improve the measurement accuracy of the LMF method. The
computational efficiency might be affected by the algorithm for the localization of the
extrema.

The period of fringe intensity extrema depends on the spatial carrier frequencies; if
the reference mirror is tilted strongly, then we have many fringe intensity extrema and
thus measurement results will be more accurate.

3.3 Geometric Interpretation

In the rest of this section, we give a geometric interpretation of the above theoretical
result. Those who are interested in the experimental performance of the iLMF method
may skip the rest of this section.

In the LMF method, the unknown quantities ξc and ξs at x0 in the model of interference
patterns are estimated by least-squares fitting based on the locally flat assumption. Let
us define the error caused by the estimates ξ̂c and ξ̂s as

∆ξc := ξ̂c − ξc and ∆ξs := ξ̂s − ξs.
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Below, we use vector notation:

∆ξ :=

(
∆ξc
∆ξs

)
, ξ̂ :=

(
ξ̂c
ξ̂s

)
, and ξ :=

(
ξc
ξs

)
.

Then, as detailed in Appendix B, we have

∆ξ ∝ ξβ + ξ−β−2θ, (6)

where ξβ denotes a rotated vector of ξ by angle β and

β := arctan(S/R).

Note that β is not accessible since R and S are unknown.
Equation (6) shows that the vector ∆ξ is proportional to the sum of ξ rotated by

−β − 2θ and ξ rotated by β (see Figure 1). Since the measurement error ε is the angle

between ξ̂ and ξ (see Eq.(3) and Figure 1), it vanishes if and only if ξ̂ and ξ are parallel
or ∥∆ξ∥ = 0 (i.e., the parameter estimation error is zero). As illustrated in Figure 2, this
is achieved either when

θ = mπ (ξ̂ and ξ point to the same direction),

or

θ =
(2m+ 1)π

2
− β (∥∆ξ∥ vanishes),

where m is an arbitrary integer. The first condition can be fulfilled without the knowledge
of β, while the second condition may not be useful in practice since β is unknown.

4 Experiments

In this section, we report experimental results of the iLMF algorithm. For simplicity, we
use naive linear interpolation for the iLMF method.

4.1 Computer Simulations

First, we illustrate the behavior of the iLMF algorithm through one-dimensional com-
puter simulations. Let us consider two target surfaces: a quadratic function and a sharp
bump illustrated in Figure 3(a) and Figure 3(b), respectively. Note that the locally flat
assumption is not exactly satisfied everywhere in the quadratic function and it is satisfied
in the bump except for the regions around the sharp edges. The interference patterns of
these surfaces are depicted in Figure 4(a) and Figure 4(b), respectively, where the circles
(‘◦’) denote the fringe intensity extrema of the interference patterns.

The estimated surfaces of the quadratic function obtained by the LMF and iLMF
algorithms with vicinity size n = 10 (i.e., 21 points) are depicted in Figure 5(a) and
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Figure 1: Geometric interpretation. ξβ denotes a rotated vector of ξ by angle β. The

measurement error ε is the angle between ξ̂ and ξ.

(a) ξ̂ and ξ point to the same direction.

(b) ∥∆ξ∥ vanishes.

Figure 2: Geometric interpretation when the measurement error ε is zero.
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(a) Quadratic function
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Figure 3: True surface profile ϕ(x) in artificial one-dimensional experiments.
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Figure 4: Observed interference pattern g(x) in artificial one-dimensional experiments.

Figure 5(b), respectively. Figure 5(a) shows that the recovered surface is highly fluctuated
due to violation of the locally flat assumption. Figure 5(b) shows that estimation results
at the extremum points (9 points indicated by ‘◦’) are very accurate and the interpolated
surface profile is less fluctuated than the surface profile estimated by the original LMF
method.

Figure 6(a) depicts the ‘raw’ estimation result of the bump by the LMF algorithm
with vicinity size n = 5 (i.e., 11 points). The recovered surface is very accurate in the
flat areas, while it is noisy at the edges—this is due to violation of the locally flat as-
sumption. Figure 6(b) depicts the post-processed result of Figure 6(a) by the median
filter with width 20 (i.e., 41 points), showing that the impulse-like noise at the edges can
be successfully removed. However, the application of median filters is generally compu-
tationally expensive. Figure 6(c) depicts the estimation result by the iLMF algorithm.
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Figure 5: Recovered surface of the quadratic function.

Although the iLMF algorithm is shown not to suffer from impulse noise, interpolation
causes degradation in spacial resolution. The spacial resolution can easily be enhanced
by increasing the spacial carrier frequency, which can be achieved by tilting the reference
mirror strongly. Figure 6(d) depicts the result of the iLMF algorithm with a high spacial
carrier frequency. This shows that the quality of the recovered surface is highly improved
without the use of median filters which requires high computation resources.

4.2 Actual Experiments

We installed the iLMF algorithm in the optical surface profiler SP-500 by Toray Engi-
neering Co., Ltd.1. Each pixel takes an integer value from 0 to 255 (i.e., 8-bit intensity).
We measured the surface of a magnetic head and a bump—we have prior knowledge that
the magnetic head possesses a smooth arch-like profile and the bump is sharp with the
flat top. Figure 7(a) and Figure 7(b) depict fringe images g(x, y) of the magnetic head
and the bump obtained by SP-500; the size of the images is 200 by 50 and 70 by 35,
respectively.

Figure 8 and Figure 9 depict the surfaces of the magnetic head recovered by the LMF
method and the iLMF method, respectively; we set the vicinity window size to 21 by 21.
These figures show that the iLMF method gives a smoother surface with less fluctuation
than the original LMF method. Thus the iLMF method can overcome the weakness of
the LMF method against violation of the locally flat assumption. The computation time
of the LMF algorithm for this experiment is 0.78[sec] by a modern laptop computer, while
the computation time of the iLMF algorithm is 0.16[sec]. Thus the iLMF algorithm is
approximately five times faster than the LMF algorithm. This speed-up is brought by the
fact that the number of points to be processed is much smaller in the iLMF algorithm.

Figure 10 and Figure 11 depict the surfaces of the bump recovered by the LMF method,

1See ‘http://www.toray-eng.co.jp/semicon/inspection/lineup/sp-500.html’ for detail.
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(a) LMF
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(b) Median-filtered LMF

0 50 100 150 200 250 300 350 400

0

0.2

0.4

0.6

0.8

1

x [pixel]

φ(
x)

 [r
ad

]

 

 

True
iLMF

(c) iLMF
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(d) iLMF with high spacial carrier fre-
quency

Figure 6: Recovered surface of the bump.

the LMF method followed by the application of a median filter, and the iLMF method,
respectively; we set the window size of the vicinity to 5 by 5 and the window size of the
median filter to 7 by 7. The measurement result obtained by the LMF method is depicted
in Figure 10(a), exhibiting two sources of estimation error: an impulse-like error at the
sharp edge around x = 60 and a small error at the gentle slope around x = 25 (see also
Figure 11(a)). The impulse-like error at the edge can be successfully removed by the
application of the median filter, as shown in Figure 10(b) and Figure 11(b). However,
the error at the slope still remains even after the application of the median filter. On the
other hand, the proposed iLMF method can successfully eliminate both estimation errors
and gives a sharper profile, as shown in Figure 10(c) and Figure 11(c).

The computation time of the LMF, median-filtered LMF, and iLMF methods are
0.14[sec], 0.22[sec], and 0.09[sec], respectively. Thus the iLMF algorithm is still compu-
tationally more efficient than the LMF algorithm. This speed-up is brought by the facts
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(a) Fringe image of the magnetic head
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Figure 7: Interferometer and fringe images.

that the number of points to be processed is much smaller in the iLMF algorithm and the
post-processing by the median filter is not needed.

5 Conclusions

Single-shot surface profiling based on spatial carrier frequency fringe patterns is useful
in real-world situations due to its inherent immunity to vibration; moreover, the mea-
surement system of single-shot surface profilers tends to be simpler than that of the
multiple-shot profilers since mechanical devices such as piezo actuators are not needed.
In this paper, we first analyzed the measurement error of a single-shot surface profiling al-
gorithm called the local model fitting (LMF) algorithm [5]. Our theoretical result showed
that although the error depends on the unknown target surface, it can be minimized with
respect to the measurement location without knowing the true surface; we also provided
a geometric interpretation of the mechanism why this is possible.

This theoretical result showed that at fringe intensity extrema (minima and maxima)
of an interference pattern, the measurement error is always zero irrespective of the true
surface profile. Based on this finding, we proposed a new single-shot surface profiling
algorithm called the interpolated LMF (iLMF) method, which only uses pixels in the
interference pattern around fringe intensity extrema for estimating the surface profile; the
surface profile at other pixels are interpolated from the estimates at the extremum pixels.

Through experiments, we demonstrated that the iLMF method is more accurate than
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(b) iLMF: Computation time is 0.16[sec]

Figure 8: Measurement results of the actual magnetic head in 3-dimensional plots.
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(b) iLMF

Figure 9: Measurement results of the actual magnetic head in 2-dimensional plots.

the original LMF method; furthermore, since only a small portion of pixels in the interfer-
ence pattern needs to be processed and post-processing by median filters are not required
in the iLMF method, it is computationally more efficient than the LMF method.

In our current implementation of the iLMF algorithm, extrema points are found by
naively searching for locally maximal pixels. Although this naive implementation per-
formed sufficiently well in the experiments reported in Section 4, a more sophisticated
algorithm for localizing the extrema points could potentially improve the accuracy of
the iLMF method, e.g., in highly noisy environment. Thus developing robust and com-
putationally efficient algorithms for localizing the extrema points would be a promising
direction for further investigation.

We have used a locally constant model (the zeroth order polynomial) in the proposed
iLMF method. A natural direction for extension would be to use richer models such as
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(c) iLMF: Computation time 0.09[sec]

Figure 10: Measurement results of the actual bump in 3-dimensional plots.

a linear model (the first order polynomial) or even non-linear (higher order polynomials)
models. In the ordinary phase-shift method (i.e., multiple shots), the use of a locally linear
model has already been addressed [12]. On the other hand, in the single-shot method with
a tilted reference mirror, this extension seems to be less straightforward since the locally
linear term cannot be separated from the spacial carrier frequency terms (which are also
linear). Our future work includes further investigation of this modeling issue.
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(b) Median-filtered LMF
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Figure 11: Measurement results of the actual bump in 2-dimensional plots.

A Sketch of Proof of Eq.(4)

In this appendix, we give a sketch of proof of Eq.(4).
First, we define notations used in the proof. In the current setup, the observed samples

{g(xi)}ni=−n are expressed as

g(xi) = a(x0) + b(xi) cos
(
ϕ(xi) + 2πfxi

)
= a(x0) + ξc(xi)φc(xi) + ξs(xi)φs(xi).

Then the LMF estimate ϕ̂ of the surface profile is given as

ϕ̂ = arctan(ξ̂s/ξ̂c) + 2mπ,
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where  â

ξ̂c
ξ̂s

 = (A⊤A)−1A⊤

g(x−n)
...

g(xn)

 and A =

1 φc(x−n) φs(x−n)
...

...
...

1 φc(xn) φs(xn)

 .

Let us consider ‘ideal’ samples {g0(xi)}ni=−n, where

g0(xi) := a(x0) + ξc(x0)φc(xi) + ξs(x0)φs(xi).

Then the true surface profile ϕ can be expressed as

ϕ = arctan(ξs(x0)/ξc(x0)) + 2mπ,

where a(x0)
ξc(x0)
ξs(x0)

 = (A⊤A)−1A⊤

g0(x−n)
...

g0(xn)

 .

Let {∆g(xi)}ni=−n be the ‘difference’ samples:

∆g(xi) := g(xi)− g0(xi)

=
(
ξc(xi)− ξc(x0)

)
φc(xi) +

(
ξs(xi)− ξs(x0)

)
φs(xi).

Let ∆ξc(x0) and ∆ξs(x0) be the difference of parameters:∆a(x0)
∆ξc(x0)
∆ξs(x0)

 :=

 â

ξ̂c
ξ̂s

−

a(x0)
ξc(x0)
ξs(x0)


= (A⊤A)−1A⊤

∆g(x−n)
...

∆g(xn)

 .

Let ∆ϕ(xi) be the amount of violation of the locally flat assumption:

∆ϕ(xi) := ϕ(xi)− ϕ(x0).

Below, we analyze the tangent of the measurement error

ε := ϕ̂− ϕ.

To this end, we use the following lemmas (we omit the proofs since they are rather
straightforward but lengthy).
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Lemma A.1 It holds that

tan ε =
ξc(x0)∆ξs(x0)− ξs(x0)∆ξc(x0)

ξ2c (x0) + ξ2s (x0) + ξc(x0)∆ξc(x0) + ξs(x0)∆ξs(x0)
. (7)

Lemma A.2 It holds that

(A⊤A)−1 =
1

2p2p3

(2N − p2)p2 p1p2φc(x0) p1p2φs(x0)
p1p2φc(x0) p5 + p4φc(2x0) p4φs(2x0)
p1p2φs(x0) p4φs(2x0) p5 − p4φc(2x0)

 ,

where

N := n+
1

2
, p1 := 1 + 2

n∑
i=1

φc(i∆x), p2 := n−
n∑

i=1

φc(2i∆x),

p3 := p5 −Np2, p4 := −p5 + 2Np2, p5 := 2N2 − 1

2
p21.

Lemma A.3 It holds that

∆g(xi) =
(
− 2ξc(x0) sin

2 ∆ϕ(xi)

2
− ξs(x0) sin∆ϕ(xi)

)
φc(xi)

+
(
− 2ξs(x0) sin

2 ∆ϕ(xi)

2
+ ξc(x0) sin∆ϕ(xi)

)
φs(xi).

Lemma A.4 It holds that

A⊤

∆g(x−n)
...

∆g(xn)

 = −

 0
q3ξs(x0) + q4ξc(x0)
q4ξs(x0) + q3ξc(x0)

+

 (−q1ξs(x0) + q2ξc(x0))φc(x0)
(−q5ξs(x0) + q6ξc(x0))φc(2x0)
(−q6ξs(x0)− q5ξc(x0))φc(2x0)


+

 (q2ξs(x0) + q1ξc(x0))φs(x0)
(q6ξs(x0) + q5ξc(x0))φs(2x0)
(−q5ξs(x0) + q6ξc(x0))φs(2x0)

 ,

where

q1 =
n∑

i=−n

φc(i∆x) sin∆ϕ(xi) + 2
n∑

i=−n

φs(i∆x) sin2 ∆ϕ(xi)

2
,

q2 =
n∑

i=−n

φs(i∆x) sin∆ϕ(xi)− 2
n∑

i=−n

φc(i∆x) sin2 ∆ϕ(xi)

2
,

q3 =
1

2

n∑
i=−n

sin∆ϕ(xi), q4 =
n∑

i=−n

sin2 ∆ϕ(xi)

2
,

q5 =
1

2

n∑
i=−n

φc(2i∆x) sin∆ϕ(xi) +
n∑

i=−n

φs(2i∆x) sin2 ∆ϕ(xi)

2
,

q6 =
1

2

n∑
i=−n

φs(2i∆x) sin∆ϕ(xi)−
n∑

i=−n

φc(2i∆x) sin2 ∆ϕ(xi)

2
.
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Lemma A.5 When ∆x tends to be zero,

∆ξc(x0) = b(x0){R cos(ϕ(x0) + 4πfx0)− S sin(ϕ(x0) + 4πfx0)}
+Rξc(x0)− Sξs(x0) +O(∆x5),

∆ξs(x0) = b(x0){−S cos(ϕ(x0) + 4πfx0)−R sin(ϕ(x0) + 4πfx0)}
+ Sξc(x0) +Rξs(x0) +O(∆x5),

where

R =
p1q2
4p3

+
N∆x2

p2p3

n∑
i=1

i2(q6 − q4) +
2N∆x4

3p2p3

n∑
i=1

i4
n∑

i=−n

sin2 ∆ϕ(xi)

2
,

S =
p1q1
4p3

+
N∆x2

p2p3

n∑
i=1

i2(q5 + q3)−
N∆x4

3p2p3

n∑
i=1

i4
n∑

i=−n

sin∆ϕ(xi).

Thus, if terms with O(∆x5) are ignored, we have Eq.(4).

B Supplement to Geometric Interpretation

If terms with O(∆x5) are ignored, Lemma A.5 yields(
∆ξc(x0)
∆ξs(x0)

)
= b(x0)

(
R −S
−S −R

)(
cos(2θ − ϕ(x0))
sin(2θ − ϕ(x0))

)
+

(
R −S
S R

)(
ξc(x0)
ξs(x0)

)
= b(x0)

(
R −S
−S −R

)(
cos 2θ cosϕ(x0) + sin 2θ sinϕ(x0)
sin 2θ cosϕ(x0)− cos 2θ sinϕ(x0)

)
+

(
R −S
S R

)(
ξc(x0)
ξs(x0)

)
=

(
R S
−S R

)(
cos 2θ sin 2θ
− sin 2θ cos 2θ

)(
ξc(x0)
ξs(x0)

)
+

(
R −S
S R

)(
ξc(x0)
ξs(x0)

)
.

We can easily confirm that

1√
R2 + S2

(
R S
−S R

)
and

1√
R2 + S2

(
R −S
S R

)
are the rotation matrices of angle −β (= arctan(S/R)) and β, respectively. Moreover,(

cos 2θ sin 2θ
− sin 2θ cos 2θ

)
is the rotation matrix of angle −2θ. Thus Eq.(6) holds.
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