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Abstract

Dimensionality reduction is one of the important preprocessing steps in practical
pattern recognition. SEmi-supervised Local Fisher discriminant analysis (SELF)—
which is a semi-supervised and local extension of Fisher discriminant analysis—was
shown to work excellently in experiments. However, when data dimensionality is
very high, a naive use of SELF is prohibitive due to high computational costs and
large memory requirement. In this paper, we introduce computational tricks for
making SELF applicable to large-scale problems.
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1 Introduction

Reducing dimensionality of data is one of the important challenges in pattern recognition.
However, a naive use of supervised dimensionality reduction methods in high-dimensional
scenarios often results in overfitting. In such cases, the use of unlabeled samples could be
helpful [1]. A semi-supervised dimensionality reduction method called SEmi-supervised
Local Fisher discriminant analysis (SELF) [6] has been proposed and shown to work
excellently. SELF is a regularized variant of a supervised dimensionality reduction method
called Local Fisher discriminant analysis (LFDA) [5].

An advantage of SELF in addition to its good performance is that the globally op-
timal solution can be obtained analytically by solving a generalized eigenvalue problem.
Dimensionality of the generalized eigenvalue problem depends only on dimensionality of
the feature vectors, not on the number of samples. So SELF may be applicable to a
dataset with a large number of samples as long as dimensionality of the feature vectors
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Table 1: Computational issues of SELF. d and n are dimensionality and the number of
samples.

d n Sparseness Formulation

Moderate Large None Primal
Large Moderate None Dual
Large Large Sample Primal
Large Large Kernel Dual

is moderate. However, when the feature dimensionality is very high, solving the general-
ized eigenvalue problem may not be computationally tractable—even more critically, the
matrix which needs to be eigendecomposed cannot be stored in memory. This critical
limitation makes SELF inapplicable to high-dimensional real-world problems.

The purpose of this paper is to provide computationally efficient algorithms for SELF
and make it applicable to high-dimensional problems. More specifically, we introduce the
following computational tricks. The first is based on the dual formulation, where the size
of the generalized eigenvalue problem does not depend on the feature dimensionality but
only on the number of samples. Thus this dual formulation would be computationally
efficient if the number of samples is moderate. The other method makes use of the
sparsity of feature vectors—we show that the high-dimensional dense matrix which needs
to be eigendecomposed in SELF can be expressed by the sum of a sparse matrix and
low-rank matrices. This structure allows us to efficiently solve the primal generalized
eigenvalue problem even when the feature dimensionality is very high. The same trick
could be applied to the dual formulation (see Table 1). Through document classification
experiments, we show the effectiveness of the proposed method.

2 Dimensionality Reduction

In this section, we formulate the dimensionality reduction problem and review existing
methods.

2.1 Formulation

Let x (∈ Rd) be a d-dimensional sample and let z (∈ Rr) be a low-dimensional representa-
tion of x, where r (1 ≤ r ≤ d) is dimensionality of the reduced space. We consider linear
dimensionality reduction scenarios where an embedded representation z of a sample x is
obtained by using a d× r transformation matrix T as

z = T⊤x,

where ⊤ denotes the transpose of a matrix or a vector.
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2.2 Principal Component Analysis (PCA)

The most well-known dimensionality reduction method would be PCA. Given samples
{xi}ni=1, PCA seeks a transformation matrix T such that the variance of the data samples
in the embedding space is maximized. Let S(t) be the total scatter matrix :

S(t) :=
n∑

i=1

(xi − µ)(xi − µ)⊤

=
1

2

n∑
i,j=1

W
(t)
i,j (xi − xj)(xi − xj)

⊤,

where µ := 1
n

∑n
i=1 xi is the mean of all samples and W (t) is the n × n matrix with

W
(t)
i,j := 1/n. Then a PCA solution is given by the leading eigenvectors of

S(t)φ = λφ.

2.3 Fisher Discriminant Analysis (FDA) for Dimensionality Re-
duction

A popular supervised dimensionality reduction technique is Fisher discriminant analysis
(FDA) [3]. Suppose that we have n′ labeled samples {(xi, yi)}n

′
i=1, where yi (∈ {1, . . . , c})

is a class label associated with the sample xi and c is the number of classes. Let n′
m be

the number of labeled samples in class m.
Let S(b) and S(w) be the between-class scatter matrix and the within-class scatter

matrix :

S(b) :=
c∑

m=1

n′
m(µm − µ)(µm − µ)⊤,

S(w) :=
c∑

m=1

∑
i:yi=m

(xi − µm)(xi − µm)
⊤,

where µm := 1
n′
m

∑
i:yi=m xi is the mean of samples in class m.

FDA seeks a transformation matrix T such that between-class scatter in the embedding
space Rr is maximized and within-class scatter in the embedding space minimized—a
solution is given by the leading generalized eigenvectors of

S(b)φ = λS(w)φ.

S(b) and S(w) are related to the total scatter matrix S(t) as

S(t) = S(b) + S(w).
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This can also be confirmed from the fact that S(b) and S(w) are expressed in the pairwise
form as follows [5]:

S(b) =
1

2

n′∑
i,j=1

W
(b)
i,j (xi − xj)(xi − xj)

⊤,

S(w) =
1

2

n′∑
i,j=1

W
(w)
i,j (xi − xj)(xi − xj)

⊤,

where W (b) and W (w) are the n′ × n′ matrices with

W
(b)
i,j :=

{
1/n′ − 1/n′

yi
if yi = yj,

1/n′ if yi ̸= yj,

W
(w)
i,j :=

{
1/n′

yi
if yi = yj,

0 if yi ̸= yj.

Then we have
W (t) = W (b) +W (w).

2.4 Local Fisher Discriminant Analysis (LFDA)

LFDA [5] is a supervised dimensionality reduction technique which is a local extension of
FDA.

Let Ai,j (∈ [0, 1]) be the affinity between xi and xj; Ai,j is large if xi and xj are ‘close’
and Ai,j is small if xi and xj are ‘far apart’. We assume that the affinity is symmetric,
i.e., Ai,j = Aj,i. There are several different manners of defining the affinity; among them,
we use the local scaling heuristic [7]:

Ai,j = exp

(
−∥xi − xj∥2

σiσj

)
.

σi = ∥xi − x
(k)
i ∥ represents the local scaling around xi, where x

(k)
i is the k-th nearest

neighbor of xi. A heuristic choice of k = 7 was shown to be useful through extensive
simulations [7, 5].

Let S(lb) and S(lw) be the local between-class scatter matrix and the local within-class
scatter matrix:

S(lb) :=
1

2

n′∑
i,j=1

W
(lb)
i,j (xi − xj)(xi − xj)

⊤,

S(lw) :=
1

2

n′∑
i,j=1

W
(lw)
i,j (xi − xj)(xi − xj)

⊤,
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where W (lb) and W (lw) are the n′ × n′ matrices with1

W
(lb)
i,j :=

{
Ai,j(1/n

′ − 1/n′
yi
) if yi = yj,

1/n′ if yi ̸= yj,

W
(lw)
i,j :=

{
Ai,j/n

′
yi

if yi = yj,

0 if yi ̸= yj.

When Ai,j = 1 for all i, j (i.e., no locality), the above scatter matrices are reduced to
the ones used in original FDA. Thus, LFDA could be regarded as a ‘localized’ variant of
FDA since the effect of data pairs in the same class but having small affinity values are
deemphasized in the scatter matrices.

LFDA seeks a transformation matrix T such that local between-class scatter in the
embedding space is maximized and local within-class scatter in the embedding space is
minimized—a solution is given by the leading generalized eigenvectors of

S(lb)φ = λS(lw)φ.

LFDA is advantageous over original FDA in the following two respects. FDA is known
to perform poorly when within-class multimodality or outliers exist [3]. On the other
hand, LFDA can overcome this weakness by evaluating within-class scatter locally. The
reduced dimensionality r is at most c− 1 in FDA [3], which is a critical limitation when
the number of classes is small. On the other hand, LFDA can be generally applied to
dimensionality reduction into any dimensional spaces, thanks to the affinity factor Ai,j.

2.5 Semi-supervised LFDA (SELF)

LFDA (and any other supervised methods) tends to suffer from overfitting when the num-
ber of samples is small. For mitigating the overfitting problem, we assume the availability
of unlabeled samples; from here on, we consider the semi-supervised setup [1] where, in
addition to the labeled samples {(xi, yi)}n

′
i=1, unlabeled samples {xi}ni=n′+1 are available.

With the help of unlabeled samples, the overfitting problem of LFDA could be mit-
igated by combining it with PCA—SELF smoothly bridges LFDA and PCA [6]. More
specifically, a SELF solution is given by the leading generalized eigenvectors of

S(rlb)φ = λS(rlw)φ, (1)

where S(rlb) and S(rlw) are regularized local between-class scatter matrix and regularized

1A more compact expression would be

W
(lb)
i,j = Ai,j/n

′ −W
(lw)
i,j ,

W
(lw)
i,j = δyi,yj

Ai,j/n
′
yi
,

where δi,j denotes Kronecker’s delta and Ai,j = Ai,j if yi = yj and Ai,j = 1 otherwise.
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local within-class scatter matrix defined by

S(rlb) := (1− β)S(lb) + βS(t),

S(rlw) := (1− β)S(lw) + βId.

Id is the d-dimensional identity matrix. β (∈ [0, 1]) is a trade-off parameter that controls
the ‘degree’ of unsupervisedness—when β = 0, SELF is fully supervised and is reduced to
LFDA; when β = 1, SELF is fully unsupervised and is reduced to PCA; otherwise, SELF
inherits the properties of both LFDA and PCA.

It is practically useful to down-weight the eigenvectors according to their associated
eigenvalues [6]; more specifically, the transformation matrix is given by

T (SELF) = (
√
λ1φ1| · · · |

√
λrφr),

where {φk}dk=1 are the generalized eigenvectors associated with the generalized eigenvalues
λ1 ≥ · · · ≥ λd of Eq.(1); {φk}dk=1 are normalized as

φ⊤
k S

(rlw)φk = 1 for k = 1, . . . , d.

SELF was shown to be useful even when only a small number of labeled samples are
available [6].

3 Computational Issues of SELF for Large-scale and

High-dimensional Datasets

Here, we address computational issues of SELF.

3.1 Primal Formulation for Moderate Dimensionality

Dimensionality of the generalized eigenvalue problem (1) depends only on dimensionality
of feature vectors, not on the number of samples. Thus SELF may be applicable to a
dataset with a large number of samples as long as dimensionality of the feature vectors
is moderate. However, when the feature dimensionality is very high, solving the general-
ized eigenvalue problem may not be computationally tractable—even more critically, the
matrix which needs to be eigendecomposed cannot be stored in memory. This critical
limitation makes SELF inapplicable to high-dimensional problems.

In the rest of this section, we show how the computational problem of SELF could be
alleviated.

3.2 Dual Formulation for Moderate Sample Size

When d is very large but n is moderate, the SELF solution can be computed efficiently
using the dual formulation.
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For obtaining the dual problem, let us first express the primal problem (1) in terms
of the sample matrix

X = (x1| · · · |xn)
⊤.

Let W (rlb) be the n× n matrix with

W
(rlb)
i,j :=


(1− β)Ai,j(1/n

′ − 1/n′
yi
) + β/n if yi = yj,

(1− β)/n′ + β/n if yi ̸= yj,

β/n otherwise,

and let D(rlb) and D(lw) be the n× n diagonal matrices with

D
(rlb)
i,i :=

n∑
j=1

W
(rlb)
i,j ,

D
(lw)
i,i :=

n∑
j=1

W
(lw)
i,j .

Let

L(rlb) := D(rlb) −W (rlb),

L(rlw) := (1− β)(D(lw) −W (lw)) + β(X⊤X)†,

where † denotes the Moore-Penrose generalized inverse. Then the primal problem (1) can
be expressed as follows [6]2:

XL(rlb)X⊤φ = λXL(rlw)X⊤φ. (2)

Since X⊤φ belongs to the range of X⊤, it can be expressed by using some vector α
(∈ Rn) as

X⊤φ = X⊤Xα = Kα,

where K is the n× n matrix with

Ki,j := x⊤
i xj.

Then multiplying Eq.(2) byX⊤ from the left-hand side yields the following dual eigenvalue
problem:

KL(rlb)Kα = λKL(rlw)Kα. (3)

Note that KL(rlw)K has a simpler expression:

KL(rlw)K = (1− β)K(D(lw) −W (lw))K + βK,

2This eigenvalue problem would be indeterminate due to rank deficiency. However, this is not a
problem since we only work in the range of X⊤.
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so the Moore-Penrose generalized inverse of X⊤X does not have to be computed. Let
{αk}dk=1 be the eigenvectors associated with the eigenvalues λ1 ≥ · · · ≥ λd of Eq.(3),
which are normalized as

α⊤
k KL(rlw)Kαk = 1 for k = 1, . . . , d.

Then the embedded representation z of a sample x can be computed in terms of {αk}rk=1

as
z = (

√
λ1α1| · · · |

√
λrαr)

⊤(x⊤
1 x, . . . ,x

⊤
nx)

⊤.

Since Eq.(3) is an n-dimensional eigenvalue problem which is independent of d, it may be
solved efficiently even when d is large as long as n is moderate.

Note that the dual formulation does not directly include the feature vectors, but
only through their inner product x⊤x′. This means that SELF can be non-linearized by
replacing the inner product x⊤x′ with a reproducing kernel K(x,x′) [6]. Furthermore,
the use of kernels for structured data such as sequences, trees, and graphs allows us to
reduce dimensionality in the structured domain.

3.3 Primal Formulation with Sparse Data

If X is sparse (i.e., only a small number of elements are non-zero), we may solve the
primal eigenvalue problem efficiently even when n and d are both large.

S(rlb) and S(rlw) can be expressed as

S(rlb) = XD(rlb)X⊤ −XW (rlb)X⊤,

S(rlw) = (1− β)XD(lw)X⊤− (1− β)XW (lw)X⊤+ βId.

If X is sparse, then S(rlw) is also sparse since D(lw), W (lw), and Id are all sparse. On the
other hand, D(rlb) is sparse but W (rlb) is dense, so S(rlb) is not sparse. However, S(rlb)

has nice structure as explained below.
We can show that W (rlb) is expressed as

W (rlb) = H + {(1− β)/n′}ηη⊤ + (β/n)11⊤, (4)

where H is the n× n matrix with

Hi,j :=

{
(1− β){Ai,j(1/n

′ − 1/n′
yi
)−1/n′} if yi = yj,

0 otherwise.

η is the n-dimensional vector with ηi := 1 for 1 ≤ i ≤ n′ (i.e., xi is labeled) and ηi := 0
otherwise. 1 denotes the vector with all ones. Since the number of labeled samples is
usually small in the semi-supervised setup (i.e., n′ ≪ n), H would be sparse; furthermore,
if samples are sorted according to the labels, H becomes block-diagonal. Let us denote
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the m-th ‘diagonal-block’ matrix by Hm, which are dense but small. Then S(rlb) can be
expressed as

S(rlb) =XD(rlb)X⊤ −
c∑

m=1

XmHmX
⊤
m

− (1− β)n′ξξ⊤ − βnµµ⊤,

where ξ := 1
n′

∑n′

i=1 xi is the mean of labeled samples; Xm is a matrix of samples in class

m, which is sparse. Thus S(rlb) is the sum of a sparse matrix and low-rank matrices.
This structure is highly useful since S(rlb)φ can be computed efficiently—for example, the
eigs function in MATLAB R⃝ that sequentially solves a sparse eigenvalue problem can take
advantage of this structure for improving computational efficiency.

3.4 Dual Formulation with Sparse Kernel

The above computational trick could be applied also to the dual formulation (3). Thus,
when the kernel matrix K is sparse, the dual eigenvalue problem may be solved efficiently
even when both n and d are large.

4 Experiments

We have made SELF applicable to high-dimensional problems. Here, we apply it to
real-world document classification tasks and evaluate its performance.

We use the Technion Repository of Text Categorization3 (TechTC), which contains 295
binary document classification tasks. Each task contains a few hundred documents with
category labels. We use term frequency/inverse document frequency (TFIDF) features for
classification [4], whose dimensionality ranges from thousands to tens of thousands (their
dimensionality varies depending on the task since we removed entries which are zero for
all documents in the dataset). The number of document samples is relatively small in
this dataset, so we use the dual formulation for computing the SELF solution. Note that
the original primal formulation cannot be employed for this experiment due to its high
dimensionality.

We compare the performance of ‘Plain’ (without dimensionality reduction), LFDA,
PCA, and SELF with β = 0.5. In each method, dimensionality of the reduced space
r is chosen by 5-fold cross-validation from {1, . . . , 10}. For each dataset, we consider 3
configurations with different degrees of semi-supervisedness; given n document samples,
we randomly choose 10%, 50%, 90% of them as labeled training samples and the rest are
treated as unlabeled samples. We employ the 1-nearest neighbor method for evaluating
the classification accuracy of the unlabeled samples. For each dataset and each training

3The dataset is available from ‘http://techtc.cs.technion.ac.il/techtc300/techtc300.html’. See [2] for
its specification.
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Table 2: Document classification results. The mean and standard deviation of the mis-
classification rate over 295 datasets for 100 runs are described in the row of ‘Error’. For
each dataset, the best method and comparable ones in terms of the mean misclassification
rate over 100 runs based on the t-test at the significance level 5% are described in bold
face. The number of times the corresponding method is judged to be the best over 295
datasets is described in the row of ‘Bests’. The mean value of the reduced dimensionality
r chosen by 5-fold cross validation is described in the row of ‘r’.

n′/n Plain LFDA SELF PCA

Error 21.8 (2.6) 23.9 (2.6) 19.4 (2.4) 20.4 (2.0)
0.1 Bests 91/295 17/295 239/295 122/295

r — 2.0 2.6 3.7

Error 21.0 (3.6) 14.3 (1.5) 13.2 (1.5) 16.5 (1.6)
0.5 Bests 10/295 125/295 230/295 43/295

r — 3.3 4.1 5.5

Error 21.7 (3.4) 13.5 (2.9) 11.8 (3.2) 15.4 (3.5)
0.9 Bests 15/295 149/295 253/295 98/295

r — 3.9 4.1 6.1

sample configuration, the experiments are repeated 100 times by changing the random
choice of training samples.

The experimental results are summarized in Table 2. The table shows that all the
dimensionality reduction methods tend to perform better than ‘Plain’ except LFDA for
n′ = 0.1n due to strong overfitting. So dimensionality reduction overall contributes to
improving the accuracy of document classification. The performance of LFDA is im-
proved as the number of labeled samples increases, while the accuracy of ‘Plain’ does
not improve. The performance of PCA also improves as the number of labeled samples
increases; this is counter-intuitive at a glance since PCA is unsupervised. However, the
labeled samples are used for choosing the reduced dimensionality r by cross-validation, so
the performance tends to be improved if a large number of labeled samples are available.
But the performance improvement of LFDA as the number of labeled samples is increased
is more prominent than PCA, thanks to the supervised formulation.

SELF consistently outperforms LFDA and PCA for all cases, showing that SELF can
effectively use information brought by unlabeled samples and improve the classification
accuracy. We also tested SELF with β chosen by cross-validation; the results were almost
the same as SELF with β = 0.5 (so we omit the detail), but it required more computation
time.

Overall, combining LFDA and PCA by SELF is shown to be a useful dimensionality
reduction method in practical document classification tasks; SELF was made applicable
to such high-dimensional problems by the computational tricks introduced in this paper.
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5 Conclusions

Accurately classifying high-dimensional patterns is an important challenge in pattern
recognition. A semi-supervised dimensionality reduction method called SELF was demon-
strated to work excellently, but its naive implementation does not allow us to apply SELF
to high-dimensional problems due to high computational costs and large memory require-
ment. In this paper, we introduced computational tricks for making SELF applicable
to high-dimensional problems. We demonstrated the usefulness of the proposed method
through high-dimensional document classification simulations.
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