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Abstract

Change-point detection is the problem of discovering time

points at which properties of time-series data change. This

covers a broad range of real-world problems and has been

actively discussed in the community of statistics and data

mining. In this paper, we present a novel non-parametric

approach to detecting the change of probability distribu-

tions of sequence data. Our key idea is to estimate the ratio

of probability densities, not the probability densities them-

selves. This formulation allows us to avoid non-parametric

density estimation, which is known to be a difficult prob-

lem. We provide a change-point detection algorithm based

on direct density-ratio estimation that can be computed very

efficiently in an online manner. The usefulness of the pro-

posed method is demonstrated through experiments using

artificial and real datasets.
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1 Introduction.

The problem of discovering time points at which prop-
erties of time-series data change is attracting a lot of
attention in the data mining community [5, 2, 12, 18].
This problem is referred to as change-point detection
[34, 16, 22] or event detection [13], and covers a broad
range of real-world problems such as fraud detection in
cellular systems [24, 3], intrusion detection in computer
networks [35], irregular-motion detection in vision sys-
tems [20], signal segmentation in data stream [5], and
fault detection in engineering systems [10].

The problem of change-point detection has been ac-
tively studied over the last several decades in statis-
tics. A typical statistical formulation of change-point
detection is to consider probability distributions from
which data in the past and present intervals are gen-
erated, and regard the target time point as a change
point if two distributions are significantly different. Var-
ious approaches to change-point detection have been in-
vestigated within this statistical framework, including
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the CUSUM (cumulative sum) [5] and GLR (general-
ized likelihood ratio) [11, 12] approaches. In these ap-
proaches, the logarithm of the likelihood ratio between
two consecutive intervals in time-series data is moni-
tored for detecting change points. In recent years, the
above statistical framework has been extensively ex-
plored in the data mining community in connection with
real-world applications, for example, approaches based
on novelty detection [25, 26], maximum-likelihood esti-
mation [13], and online learning of autoregressive mod-
els [34, 33]. Another line of research is based on analy-
sis of subspaces in which time-series sequences are con-
strained [27, 16, 22]. This approach has a strong connec-
tion with a system identification method called subspace
identification, which has been thoroughly studied in the
area of control theory [28, 17].

A common limitation of the above-mentioned ap-
proaches is that they rely on pre-specified parametric
models such as probability density models, autoregres-
sive models, and state-space models. Thus, these meth-
ods tend to be less flexible in real-world change-point
detection scenarios. The primal purpose of this paper
is to present a more flexible non-parametric method
that does not rely on a strong model assumption. In
the community of statistics, some non-parametric ap-
proaches to change detection problems have been ex-
plored, in which non-parametric density estimation is
used for calculating the likelihood ratio [6, 2]. However,
since non-parametric density estimation is known to be
a hard problem [14, 15], this naive approach may not
be promising in practice.

Our key idea for alleviating this difficulty is to di-
rectly estimate the ratio of probability densities, not the
probability densities themselves. Namely, we estimate
the density ratio (which is also referred to as the impor-
tance in literature [8]) without going through density es-
timation. Recently, direct density-ratio estimation has
been actively explored in the machine learning commu-
nity, e.g., Kernel Mean Matching [15] and the Kullback-
Leibler Importance Estimation Procedure (KLIEP) [31].
However, these conventional methods are batch algo-
rithms and are not suitable for change-point detection
due to the sequential nature of time-series data analysis.
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Figure 1: Definition of the reference and test intervals.

To cope with this problem, we give an online version of
the KLIEP algorithm and develop a flexible and compu-
tationally efficient change-point detection method. An
advantage of our method over existing non-parametric
approaches such as the sequential one-class support vec-
tor machine [30, 7] is that our method is equipped with
a natural cross validation procedure. Thus, the value of
tuning parameters such as the kernel bandwidth can be
objectively determined in our method. This is a highly
useful property in unsupervised change detection sce-
narios.

The remainder of this paper is organized as follows.
In Section 2, we formulate the change-point detection
problem of time-series data as a density-ratio estimation
problem. In Section 3, we develop a new change-
point detection algorithm based on an online extension
of a direct density-estimation procedure. Finally, we
report experimental results on artificial and real-world
datasets in Section 4 and conclude by summarizing our
contribution and possible future work in Section 5.

2 Problem Formulation and Basic Approach.

In this section, we formulate a change-point detection
problem based on the density ratio in Section 2.1 and
describe our basic approach to this problem in Section
2.2.

2.1 Problem Formulation. Let y(t) (∈ Rd) be a d-
dimensional time series sample at time t. Our task is
to detect whether there exists a change point between
two consecutive time intervals, called the reference and
test intervals. The conventional algorithms [5, 12]
consider the likelihood ratio over samples from the two
intervals. However, time-series samples are generally
not independent over time and therefore directly dealing
with non-independent samples is cumbersome. To ease
this difficulty, in this paper, we consider sequences of
samples in each time intervals; let Y (t) (∈ Rdk) be the

forward subsequence of length k at time t:

Y (t) =
[
y(t)T , y(t + 1)T , . . . , y(t + k − 1)T

]T
,

where •T denotes the transpose of a vector or matrix.
This is a common practice in subspace identification
since it allows us to implicitly take time correlation
into consideration in some degree [28, 17]. Thus, our
algorithm stated in the remainder of this paper is based
on the logarithm of the likelihood ratio of the sequence
sample Y defined by

s(Y ) = ln
pte(Y )
prf(Y )

,

where pte(Y ) and prf(Y ) are the probability density
functions of the reference and test sequence samples,
respectively.

Let trf and tte (trf < tte) be respectively the starting
time points of the reference and test intervals. Suppose
we have nrf and nte sequence samples in the reference
and test intervals, respectively. Then,

tte = trf + nrf .

The above formulation is summarized in Figure 1.
For brevity, we use the following shorthand notation

in the sequel:

Y rf(i) = Y (trf + i− 1),
Y te(i) = Y (tte + i− 1).

Thus, the i-th reference and test samples are denoted by
Y rf(i) and Y te(i), respectively. Now, let us introduce
the following hypotheses about the observations1:

H0 : p(Y (i)) = prf(Y (i)) for trf ≤ i < t.

H1 : p(Y (i)) = prf(Y (i)) for trf ≤ i < tte,

p(Y (i)) = pte(Y (i)) for tte ≤ i < t.

1This formulation is slightly different from the original one
used in the CUSUM or GLR algorithms, where the tested time
point is not fixed at time tte.



Then the likelihood ratio between the hypotheses H0

and H1 is

Λ =
∏nrf

i=1 prf(Y rf(i))
∏nte

i=1 pte(Y te(i))∏nrf
i=1 prf(Y rf(i))

∏nte
i=1 prf(Y te(i))

=
∏nrf

i=1 pte(Y te(i))∏nrf
i=1 prf(Y te(i))

.

Thus, we can decide whether there is a change point
between the reference and test intervals by monitoring
the logarithm of the likelihood ratio:

(2.1) S =
nte∑

i=1

ln
pte(Y te(i))
prf(Y te(i))

.

Based on the logarithm of the likelihood ratio S, we
conclude

(2.2)

{
S ≤ µ −→ no change occurs,

otherwise −→ a change occurs,

where µ (> 0) is a predetermined threshold for the
decision of a change point.

The remaining question of this procedure is how to
calculate the density ratio,

w(Y ) :=
pte(Y )
prf(Y )

,

because, in practice, the above ratio is unknown and
therefore we need to estimate it from samples. A naive
approach to this would be to first estimate the reference
and test densities separately from the reference and test
sequence samples, and then estimate the density ratio
by taking the ratio of the estimated densities. However,
since non-parametric density estimation is known to be
a hard problem [14, 15], this naive approach to change-
point detection via non-parametric density estimation
may not be effective—directly estimating the density
ratio without estimating the densities would be more
promising.

2.2 Direct Density-Ratio Estimation. As de-
scribed above, we need to estimate the density ratio
for solving the change-point detection problem. Here,
we show how the density ratio could be directly esti-
mated without going through density estimation based
on the Kullback-Leibler Importance Estimation Proce-
dure (KLIEP) [31].

Let us model the density ratio w(Y ) by a non-
parametric Gaussian kernel model:

(2.3) ŵ(Y ) =
nte∑

l=1

αlKσ(Y , Y te(l)),

where {αl}nte
l=1 are parameters to be learned from data

samples and Kσ(Y , Y ′) is the Gaussian kernel function
with mean Y ′ and standard deviation σ:

(2.4) Kσ(Y , Y ′) = exp
(
−‖Y − Y ′‖2

2σ2

)
.

The parameters {αl}nte
l=1 in the model (2.3) are de-

termined so that the empirical Kullback-Leibler diver-
gence from pte(Y ) to p̂te(Y ) (= prf(Y )ŵ(Y )) is mini-
mized. The solution of this problem can be obtained by
solving the following convex optimization problem:

(2.5)





max
{αl}nte

l=1

nte∑

i=1

log

(
nte∑

l=1

αlKσ(Y te(i),Y te(l))

)
,

s.t.
1

nrf

nrf∑

i=1

nte∑

l=1

αlKσ(Y rf(i),Y te(l)) = 1,

and α1, . . . , αnte ≥ 1.

The equality constraint in the above optimization prob-
lem comes from the requirement that ŵ(Y ) should be
properly normalized since prf(Y )ŵ(Y ) (= p̂te(Y )) is a
probability density function. The non-negativity con-
straint comes from the non-negativity of the density ra-
tio function.

A pseudo code of the KLIEP is described in Algo-
rithm 1, which will be used for initialization purposes
in the online setup discussed in the next section. In
the Gaussian kernel model (2.3), we set the Gaussian
centers at the test subsequences {Y te(i)}nte

i=1, not the
reference sequences. The reason for this choice is as
follows. The density-ratio w(Y ) tends to take large
values if the reference sequence density prf(Y ) is small
and the test sequence density pte(Y ) is large by defi-
nition. When a non-negative function is approximated
by a Gaussian kernel model in general, many kernels
may be needed in the region where the output of the
target function is large. Thus, it would be effective to
allocate many kernels at high reference density regions,
which can be achieved by setting the centers at the test
sequence points {Y te(i)}nte

i=1.
In Algorithm 1, the kernel width σ is an open tuning

parameter and needs to be chosen appropriately for
better estimation. As shown in the paper [31], the kernel
width σ can be determined from data samples using
likelihood cross validation. A pseudo code of likelihood
cross validation is described in Algorithm 2.

3 Online Algorithm.

The above framework would be a suitable method
for flexible change-point detection since it enables us
to directly compute a non-parametric estimate of the
density-ratio w(Y ) without going through density es-
timation. However, it is a batch algorithm (i.e., all



input: Reference samples Yrf = {Y rf(i)}nrf
i=1,

test samples Yte = {Y te(i)}nte
i=1, and the

Gaussian width σ.
Ki,l = Kσ(Y te(i),Y te(l)) (l = 1, . . . , nrf).1

bl = 1
nrf

∑nrf
i=1 Kσ(Y rf(i), Y te(l)) (l = 1, . . . , nrf).2

Initialize α (> 0) and ε (0 < ε ¿ 1).3

Repeat4

Perform gradient ascent:5

α ← α + εKT (1./Kα).

Perform feasibility satisfaction:6

α ← α + (1− bT α)b/(bT b),
α ← max(0, α),

α ← α/(bT α).

Until convergence;7

Output ŵ(Y ) ← ∑nte
l=1 αlKσ(Y , Y te(l)).8

Algorithm 1: The KLIEP algorithm in pseudo
code. ‘./′ in Line 5 indicates the element-wise
division. An inequality for a vector in Line 3
and the max operation for a vector in Line 6 are
applied in the element-wise manner.

input: Reference samples Yrf = {Y rf(i)}nrf
i=1,

test samples Yte = {Y te(i)}nte
i=1, and the

Gaussian width candidates {σi}s
i=1.

Split Yte into R disjoint subsets {Yr}R
r=1.1

For each Gaussian width σi2

For each split r = 1, . . . , R3

Call KLIEP with model σi and split r:4

ŵr(Y ) ← KLIEP(Yrf , {Yj}j 6=r, σi).

Compute out-of-sample log-likelihood:5

Ĵr(i) ← 1
|Yr|

∑

Y ∈Yr

log ŵr(Y ).

Compute average out-of-sample6

log-likelihood:

Ĵ(i) ← 1
R

R∑
r=1

Ĵr(i).

Choose the optimal Gaussian width:7

î ← arg max
i

Ĵ(i)

Output ŵ(Y ) ← KLIEP(Yrf ,Yte, σbi).8

Algorithm 2: Pseudo code of kernel width selec-
tion in KLIEP by likelihood cross validation.

samples are used for estimation) and therefore is not
computationally efficient in the current setup since so-
lutions need to be computed sequentially over time in
change-point detection. To reduce the computational
cost, we develop an online version of the above algo-
rithm that recursively builds a new solution upon the
previous solution (Section 3.1). We then describe the
overall procedure of our proposed algorithm for change-
point detection in Section 3.2.

3.1 Online Density-Ratio Estimation. Let ŵ(Y )
be an estimate of the density ratio by the offline algo-
rithm (Algorithm 1) from {Y rf(i)}nrf

i=1 and {Y te(i)}nte
i=1

and let {α̂l}nte
l=1 be the learned parameters:

ŵ(Y ) =
nte∑

l=1

α̂lKσ(Y ,Y te(l)).

Let us consider the case where a new sample point
y(tte + k + nte) is observed—in the sequence represen-
tation, Y (tte + k + nte) is additionally obtained (see
Figure 2). Let ŵ′(Y ) be an estimate of the density ra-
tio by Algorithm 1 after the new sample is given. Here
we give an online method that computes the new solu-
tion ŵ′(Y ) efficiently from the previous solution ŵ(Y )
and the new sample Y (tte + k + nte).

Our idea basically relies on stochastic gradient de-
scent [1], which allows us to learn the parameters ef-
ficiently in an online manner. However, since the al-
gorithm described in the previous section is a non-
parametric kernel method and the basis functions vary
over time, it is not straightforward to employ the tech-
niques of stochastic gradient descent in the current
setup. Recently, an online learning technique for ker-
nel methods has been addressed [21]. Here, we apply
this technique to the problem (2.5) and give an online
version of the algorithm.

Let Et(w) be the empirical error for Y te(t):

Ei(w) = − log w(Y te(i)).

Note that the solution ŵ is given as the minimizer of∑nte
i=1 Ei(w) under the normalization and non-negativity

constraints (cf. Eq.(2.5)). Let us assume that w is
searched within a reproducing kernel Hilbert space H.
Then the following reproducing property holds:

〈
w(·), K(·, Y ′)

〉
H = w(Y ′),

where K(·, ·) is the reproducing kernel of H and 〈·, ·〉H
denotes the inner product in H. Let us consider the
following regularized empirical error:

E′
i(w) = − log w(Y te(i)) +

λ

2
‖w‖2H ,
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Figure 2: Online setup of change detection.

where λ(> 0) is the regularization parameter and ‖ · ‖H
denotes the norm in H.

The basic idea of online learning for kernel methods
is to update the solution as

ŵ′ ← ŵ − η∂wE′
i+1(ŵ),

where ∂w denotes the partial derivative with respect to
w and η(> 0) is the learning rate that controls the
adaptation sensitivity to the new sample. Given the
Gaussian kernel model (2.3), the above update rule is
explicitly expressed as

ŵ′ ← ŵ − η

(
−Kσ(·, Y te(nte + 1)

ŵ(Y te(nte + 1)
+ λŵ

)
.

This implies that the parameters are updated as




α̂′l ← (1− ηλ)α̂l+1 if l = 1, . . . , nte − 1

α̂′l ←
η

ŵ(Y te(nte + 1)
if l = nte

Note that ηλ, which should be chosen between zero
and one, works as a forgetting factor for older samples.
When the target time series is highly non-stationary,
it is often useful to deemphasize the influence of older
samples via the forgetting factor. If such weighting is
not necessary, we merely set λ = 0.

In addition to reducing the empirical error, the
constraints in the optimization problem (2.5) need to
be fulfilled. This could be achieved in the same manner
as the batch algorithm (Algorithm 1), but normalization
is carried out over {Y rf(t+1)}nrf

t=1 with Gaussian centers
{Y te(l + 1)}nte

t=1:

(3.6)
1

nrf

nrf∑
t=1

nte∑

l=1

αlKσ(Y rf(t + 1), Y te(l + 1)) = 1.

Altogether, the pseudo code of the online update pro-
cedure is summarized in Algorithm 3.

3.2 Change-Point Detection Algorithm. The
entire procedure for change-point detection based on
direct density-ratio estimation is summarized in Algo-
rithm 4. At the beginning, the batch algorithm with
model selection (Algorithms 1 and 2) is called and the
kernel width σ and initial estimate of parameters α are
calculated. Then, when a new sample y(t) (or, equiv-
alently, a new sequence Y te(nte + 1)) is given, the ref-
erence and test intervals are shifted one step to the fu-
ture (see Figure 2) and the estimate of parameters α
is updated using Algorithm 3. With the estimated pa-
rameters, the logarithm of the likelihood ratio (2.1) is
evaluated as the change-detection score. If this score is
beyond the given threshold µ (see Eq. (2.2)), the time
point is reported as a change point and the current time
t is updated as t ← t + (nrf + nte). This procedure is
repeated until the end of data.

4 Experiments.

In this section, we experimentally investigate the per-
formance of the proposed algorithm using artificial and
real-world datasets. First, the proposed non-parametric
direct density-ratio approach is compared with existing
model-based likelihood-ratio approaches in Section 4.1.
Then, the performance of the proposed algorithm is
compared with several popular change-point detection
algorithms using real-world datasets in Section 4.2.

4.1 Artificial Datasets. Here, we use the following
three artificial datasets for illustration purposes.

Dataset 1 (see Figure 3(a)): The following au-
toregressive model (borrowed from the paper [34]) is
used for generating 10000 time-series samples (i.e., t =
1, . . . , 10000):

yt = 0.6yt−1 − 0.5yt−2 + εt,



input: New sample y(t), the previous estimate
of parameters α and forgetting factors η
and λ.

Create the new sequence sample Y te(nte + 1).1

Update the parameters α:2

α ←




(1− ηλ)α2

(1− ηλ)α3

...
(1− ηλ)αnte

η/c




,

where c =
∑nte

l=1 αlKσ(Y te(nte + 1),Y te(l)).
Perform feasibility satisfaction:3

α ← α + (1− bT α)b/(bT b),
α ← max(0, α),

α ← α/(bT α),

where bl = 1
nrf

∑nrf
i=1 Kσ(Y rf(i),Y te(l)) for

l = 1, . . . , nrf .
Update as Y rf(nrf + 1) ← Y te(1).4

Algorithm 3: Online update of parameters α in
the Gaussian kernel model (2.3) in pseudo code.

input: Window size k, interval lengths nrf and
nte, Gaussian width candidates {σi}s

i=1,
change-point detection threshold µ, and,
forgetting factors η and λ.

Set trf = 1 (t = nrf + nte + k), Yrf and Yte.1

Run the batch KLIEP (Algorithm 1) with Yrf ,2

Yte and σ (in case of the first call, run the batch
KLIEP with model selection (Algorithm 2)).
while not at the end of data do3

t ← t + 1.4

Update the estimate of parameters αt by5

Algorithm 3 with a new sample y(t) and the
previous estimate αt−1.
Compute the change-detection score S6

(Eq.(2.1)).
if S > µ then7

Report change at time t.8

t ← t + nrf + nte .9

GOTO step 2.10

Algorithm 4: Pseudo code for the change-point
detection algorithm based on the online density-
ratio estimation.

where εt is Gaussian noise with mean µ and standard
deviation 1. The initial values are set as y1 = 0 and
y2 = 0. We artificially create change points at every
1000 points: starting from µ = 0, the noise mean is
increased as µ ← µ + i at time t = 1, 000 × i for
i = 1, . . . , 9.

Dataset 2 (see Figure 3(b)): The following autore-
gressive model (borrowed from the papers [27, 22]) is
used for generating 1500 time-series samples:

yt = et +





0.97yt−1 + yt−2 − 0.5yt−3 + 0.97yt−4

if t < 1000,
0.97yt−1 + yt−2 − 0.7yt−3 + 0.97yt−4

if t ≥ 1000,

where et is Gaussian noise with mean 0 and standard
deviation 0.2. The initial values are set as y1 = 0,
y2 = 8, y3 = 6 and y4 = 4. The change point exists
at t = 1000.

Dataset 3 (see Figure 3(c)): The following state-
space model (borrowed from the paper [22]) is used for
generating 1500 time-series samples:

xt = Axt−1 + ut,

yt = Cxt−1 + vt,

where x is a two-dimensional state vector, u is two-
dimensional system noise following the uncorrelated
Gaussian distribution with mean zero and variance
(0.5, 0.1), and v is scalar-valued observation noise fol-
lowing the Gaussian distribution with mean zero and
variance 0.02. The parameters A and C are set as

A =
[

0.95 c
0.1 1.0

]
and C =

[
0 1

]
,

where

c =
{−0.3 if t < 1000,

0.05 if t ≥ 1000.

The change point exists at t = 1000.

For the proposed algorithm, the parameters are set
as k = 80, nrf = 100, nrf = 50, η = 1.0 and λ = 0.01
for all three datasets. The kernel width σ in KLIEP
is chosen by cross validation described in Algorithm 2.
The threshold µ (see Eq.(2.2)) is set as

µ =





0.4 for the dataset 1,
0.2 for the dataset 2,
0.5 for the dataset 3.

Figure 3 depicts time-series (upper graphs) sam-
ples as well as the change-detection score used in the
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Figure 3: Illustrative time-series samples (upper graphs)
and the change-detection score obtained by the pro-
posed method. The vertical black solid lines in the up-
per graphs denote the true change points. The vertical
black dotted lines in the lower graphs denote the change
points detected by the proposed method. The horizon-
tal green solid lines denote the threshold for detecting
change points.

proposed algorithm (i.e., the logarithm of the likeli-
hood ratio S; see Eq.(2.1)) computed by the proposed
method (lower graphs). The vertical black dotted lines
in the graphs denote the detected change points (i.e.,
the change-detection score S goes beyond the threshold
µ; which is denoted by the horizontal green solid lines
in the graphs). The results show that after changes oc-
cur, the change-detection score of the proposed method
increases rapidly and therefore the change points are
detected accurately. Note that there is small delay in
the detected changes—this is due to the data buffering
process for constructing sequence samples. However,
the amount of delay is systematic (in the current setup,
k + nte = 130) and therefore the delay can be easily
adjusted in practice.

As shown above, the proposed method, in which
the likelihood-ratio is estimated directly without going
through density estimation in a non-parametric fashion,
seems to work reasonably well in the controlled setup.
Next, we compare the performance of the proposed
method with existing methods which are also based on
the likelihood ratio but density estimation is explicitly
involved in a parametric or non-parametric way.

Autoregressive (AR) model [34]: Time-series data
is modeled by the following AR model:

y(t) =
b∑

i=1

Aiy(t− i) + v(t),

where {Ai}b
i=1 are fixed parameters and v(t) is the

Gaussian noise model with mean zero and variance
parameter σ2. The order b of the AR model is
determined by cross validation. Here, two AR
models are trained for modeling time-series in the
reference and test intervals, and the logarithm of
the ratio of the predictive densities of the last
sample in the reference and test intervals is used
as the change-detection score.

Kernel density estimation (KDE) [14]: KDE is a
non-parametric technique to estimate a probability
density p(Y ) from its i.i.d. samples {Y (i)}n

i=1. For
the Gaussian kernel (2.4), the KDE solution is
given as

p̂(Y ) =
1

n(2πσ2)dk/2

n∑

i=1

Kσ(Y , Y (i)),

where dk is the dimensionality of Y and Kσ(Y , Y ′)
is a kernel function. At each time step t, proba-
bility densities corresponding to reference and test
intervals are estimated using KDE and then its log-
arithm of the likelihood ratio is used as the change-
detection score.



Figure 4 depicts the false-alarm rate versus accu-
racy (true positive) rate curves for several different val-
ues of the detection threshold µ and for different window
size k using randomly generated 10 time-series data with
the above models. More specifically, the horizontal axis
of the graph corresponds to the false-alarm rate nf/nal

(nf denotes the number of times non-change points are
detected by mistake and nal denotes the number of all
detection alarms), and the vertical axis corresponds to
the accuracy rate ncr/ncp (ncr denotes the number of
times change points are correctly detected and ncp de-
notes the number of all change points). Thus, a curve
which is close to the left-upper corner means that the
corresponding algorithm has good performance. Table 1
summarizes the best accuracy rate over the threshold µ
for different window size k. More specifically, the table
contains the maximum value of ncr/ncp over µ and and
its according accuracy degree (ncr − nf)/ncp.

The results show that the AR model based method
works well for the dataset 1 since the pre-specified AR
model is correct. The AR model is still correct for
the dataset 2, but the performance tends to be rather
poor since the true data generation model is rather
complex; thus it is difficult to choose the right order
of the AR model using cross validation with a limited
number of samples. The performance of the AR model
based method also tends to be rather poor for the
dataset 3 since the model is under-specified—the true
data generation model is a state-space model which is
substantially more complex than AR models.

The false-alarm rate versus accuracy rate curves of
the KDE based and KLIEP based method are stably
well for all the three datasets, thanks to the flexibility
of non-parametric estimation. However, since non-
parametric density estimation is a hard task and tends
to be rather inaccurate when only a limited number
of samples is available, the performance of the KDE
based method can be degraded. On the other hand,
the KLIEP based method can avoid this difficulty
by directly estimating the density ratio without going
through density estimation. Thus it tends to perform
better. Indeed, the ROC curves of the KLIEP based
method tends to be better than those of the KDE based
method for the datasets 1 and 2; they are comparable
for the dataset 3.

Another important finding from the experimental
results is that the performance of all the methods
tend to be degraded when the window size k is too
small. This is because time-correlation of the series-
samples is still strong for a small k and therefore it is
not appropriate to regard them as independent. Thus
our strategy of using subsequence samples for change
detection would be a reasonable choice.

4.2 Real-World Dataset. As shown above, the pro-
posed method works reasonably well for the illustrative
change-detection problems. Next, we apply the propose
method to real-world datasets and investigate whether
the good performance is still obtained in realistic cir-
cumstances.

In this experiment, we compare the performance of
the proposed method the following four algorithms:

Singular-spectrum analysis (SSA) [27]: SSA eval-
uates the degree of changes between two consecu-
tive sequences using the distance defined based on
singular spectrums.

Change finder (CF) [33, 34]: CF first sequentially
fits an AR model to time-series data and auxiliary
time-series data is generated from the AR model.
Then another AR model is fitted to the auxiliary
time-series and its log-likelihood is used as the
change-detection score.

Subspace identification (SI) [22]: SI identifies a
subspace in which time-series sequences are con-
strained and evaluates the distance of target se-
quences form the subspace. A recursive subspace
identification algorithm based on an instrumental
variable method is used for estimating the sub-
space.

One-class support vector machine (ONE) [7]:
This algorithm iteratively compares the support
of probability densities estimated by one-class
support vector machine from samples in the
reference and test intervals.

4.2.1 Respiration Dataset The first real-world
dataset we use here is the respiration dataset in the
UCR Time Series Data Mining Archive2. This dataset
contains 15 time-series data—each of which records pa-
tients’ respiration measured by thorax extension and
every time period is manually annotated by a medical
expert as ‘awake’, ‘sleep’ etc. [19]. Two examples of
the original time-series as well as the annotation results
are depicted in the top graphs of Figure 5. The task is
to detect the time points at which the state of patients
changes from awake to sleep or from sleep to awake.

Figure 5 illustrates the original time-series (upper)
as well as the change-detection score (see Eq.(2.1)) of
the proposed method (bottom). The change points
detected for

µ =
{

1.0 for the nprs11 dataset,
0.5 for the nprm43 dataset,

2Available from ‘http://www.cs.ucr.edu/∼eamonn/discords/’.



(a) Dataset 1, k = 40 (b) Dataset 1, k = 60 (c) Dataset 1, k = 80

(d) Dataset 2, k = 40 (e) Dataset 2, k = 60 (f) Dataset 2, k = 80

(g) Dataset 3, k = 40 (h) Dataset 3, k = 60 (i) Dataset 3, k = 80

Figure 4: False-alarm rate versus accuracy rate curves for the artificial datasets for different window size k.

Table 1: The best accuracy rate and its accuracy degree for the artificial datasets. The results of the best methods
are described in bold face.

(a) Accuracy rate
Dataset Window size AR KDE KLIEP

k = 40 98.4 96.7 98.0
1 k = 60 98.2 96.4 97.8

k = 80 98.7 96.7 98.2
Average 98.4 96.6 98.3
k = 40 88.0 90.0 98.2

2 k = 60 74.0 100.0 100.0
k = 80 62.0 100.0 100.0
Average 74.7 96.7 99.4
k = 40 70.0 100.0 100.0

3 k = 60 88.0 100.0 100.0
k = 80 94.0 100.0 100.0
Average 84.0 100.0 100.0

(b) Accuracy degree
Dataset Window size AR KDE KLIEP

k = 40 77.0 72.7 87.6
1 k = 60 80.1 63.5 88.3

k = 80 81.8 71.7 74.4
Average 79.6 69.3 83.4
k = 40 26.9 59.2 74.4

2 k = 60 25.4 100.0 100.0
k = 80 37.6 100.0 100.0
Average 30.0 86.4 91.5
k = 40 -13.2 15.9 21.3

3 k = 60 6.3 20.1 32.1
k = 80 14.4 18.7 38.2
Average 7.5 18.2 30.5
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Figure 5: The raw time-series data of the respiration
datasets (top) and the change-detection score (2.1) of
the proposed method (bottom).

Table 2: Accuracy rate (top) and degree (bottom) of
change detection for the respiration dataset. The results
of the best methods are described in bold face.

(a) Accuracy rate
CF SSA SI ONE KLIEP

k = 30 22.1 46.5 47.5 49.7 49.8
k = 50 25.2 46.5 47.9 49.6 50.0
Average 23.7 46.5 47.7 49.7 49.9

(b) Accuracy degree
CF SSA SI ONE KLIEP

k = 30 -59.0 -40.0 -42.3 -44.3 -38.4
k = 50 -54.5 -38.2 -39.4 -44.2 -35.3
Average -56.8 -39.1 -40.9 -44.2 -36.9
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Figure 6: The raw time-series data of the speech
dataset (top) and the change-detection score (2.1) of
the proposed method (bottom).

are indicated by the vertical dotted lines. We set k = 80,
nrf = 100, and nte = 100, and the kernel width σ is
chosen by likelihood cross validation using Algorithm
2. The graphs show that, although the increase of
the change-detection score is not so clear as that in
the illustrative examples in Figure 3, the proposed
algorithm still works reasonably well for the real-world
respiration datasets. Note that in the nprs11 dataset,
the time point around 9250 is detected incorrectly.

The comparison results are summarizedin Table 2
(the best accuracy rate and its corresponding accuracy
degree). All the results are averaged over the 15
datasets. The table shows that the best performance of
the proposed method is better than the other methods.

4.2.2 Speech Dataset The second real-world
dataset is the speech dataset CENSREC-1-C in the
Speech Resource Consortium (SRC) corpora provided
by National Institute of Informatics (NII) 3. This
dataset contains dozens of time-series data – each of
which records speech signals measured with micro-
phones in several noise environments and the begining
and ending of every speech are manually annotated.
One example of the original time-series data as well as
the annotation results are depicted in the top graph of
Figure 6. The task here is to detect the time points at
which a speech begins or ends. Note that data is used
after averaged per ten samples in this experiment.

Figure 6 illustrates a part of the original time-
series data (upper) as well as change-detection score (see
Eq.(2.1)) of the proposed method (bottom). The change
points detected for µ = 1.3 are indicated by the vertical

3Available from ‘http://research.nii.ac.jp/src/eng/index.html’.



Table 3: Accuracy rate (top) and degree (bottom) of
change detection for the speech dataset. The results of
the best methods are described in bold face.

(a) Accuracy rate
CF SSA SI ONE KLIEP

k = 50 34.0 43.5 39.0 43.5 42.5
k = 100 39.0 45.0 40.5 53.0 45.0
Average 36.5 44.3 39.8 47.8 43.8

(b) Accuracy degree
CF SSA SI ONE KLIEP

k = 50 -54.3 -34.6 -35.0 -48.4 -34.7
k = 100 -47.6 -24.4 -25.8 -35.8 -28.1
Average -51.0 -29.5 -30.4 -37.1 -31.4

dotted lines. We set k = 100, nrf = 200, nte = 100,
and the kernel width σ is chosen by likelihood cross
validation using Algorithm 2. As we can see, the graphs
show that the proposed algorithm still works reasonably
well also for the real-world speech dataset. Note that
the time points around 22200 and 28400 are detected
incorrectly, and the change point around 28400 is not
detected by the proposed method in this case.

The comparison results are summarizedin Table 3
(the best accuracy rate and its corresponding accu-
racy degree). All results are averaged over the first 10
datasets (in the STREET SNR HIGH dataset). The
table shows that the best performance of the proposed
method is also competitive with the best existing algo-
rithms.

Overall, we experimentally confirmed that the pro-
posed method could be a useful alternative to the exist-
ing methods in practical change detection applications.

5 Conclusions and Future Prospects.

We formulated the problem of change-point detection
in time-series data as the problem of comparing proba-
bility distributions over two consecutive time intervals
that generate the time-series data. Within this frame-
work, we proposed a novel non-parametric algorithm for
change-point detection. The key idea of the proposed
method is that the ratio of two probability densities
is directly estimated without going through density es-
timation. Thus, the proposed method can avoid non-
parametric density estimation, which is known to be a
hard problem in practice. We also derived an online
algorithm that can update the density ratio estimator
efficiently based on the previous estimation result. We
experimentally showed the usefulness of the proposed

algorithm using artificial and real-world datasets.
In our framework, the dimensionality of data sam-

ples tends to be high because not observations at each
time point but sequences of observations are treated
as samples for estimation. This can potentially cause
performance degradation in density-ratio estimation. A
possible measure for this would be to incorporate some
dimensionality reduction scheme [9, 4, 29, 32] into the
density-ratio estimation framework. We will pursue this
direction in the future work.

Another important issue to be further investigated
is model selection—the performance of change-point de-
tection depends on the selection of the kernel width σ.
In the current implementation of the proposed method,
the width is chosen by cross validation in the beginning
and the same fixed width is used over the entire online
learning process. Although the current implementation
showed a superior performance in experiments, its per-
formance could be further improved if the kernel width
is optimized through the online learning process. An-
other challenging future work along this line would be
to develop a computationally efficient online density-
ratio estimation method that can perform model selec-
tion also in an online manner.
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[14] Härdle, W., Müller, M., Sperlich, S. and Werwatz, A.,
Nonparametric and Semiparametric Models, Springer
Series in Statistics, Springer, Berlin, 2004.

[15] Huang, J., Smola, A., Gretton, A., Borgwardt, K. M.
and Schölkopf, B., Correcting Sample Selection Bias
by Unlabeled Data, in Advances in Neural Information
Processing Systems, Vol.19, MIT Press, Cambridge,
MA, 2007.

[16] Ide, T. and Kashima, H., Eigenspace-Based Anomaly
Detection in Computer Systems, in Proc. of the 10th
ACM SIGKDD Int’l Conf. on Knowledge Discovery
and Data Mining (2004), pp.440-449.

[17] Katayama, T., Subspace Methods for System Identifi-
cation: A Realization Approach, Communications and
Control Engineering. Springer Verlag, 2005.

[18] Kifer, D., Ben-David, S and Gehrke, J., Detecting
Change in Data Streams, in Proc. of the 30th Int’l
Conf. on Very Large Data Bases (2004), pp.180-191.

[19] Keogh, E., Lin, J. and Fu, A., HOT SAX: Efficiently
Finding the Most Unusual Time Series Subsequences,
in Proc. of the 5th IEEE Int’l Conf. on Data Mining
(2005), pp.226-233.

[20] Ke, Y., Sukthankar, R. and Hebert, M., Event Detec-
tion in Crowded Videos, in Proc. of the 11th IEEE Int’l
Conf. on Computer Vision (2007), pp.1-8.

[21] Kivinen, J., Smola, A. J. and Williamson, R. C.,
Online Learning with Kernels, IEEE Trans. on Signal
Processing, 52(8): 2165-2176, 2004.

[22] Kawahara, Y., Yairi, T. and Machida, K., Change-
Point Detection in Time-Series Data Based on Sub-
space Identification, in Proc. of the 7th IEEE Int’l
Conf. on Data Mining (2007), pp.559-564.

[23] Mercère, G. and Lovera, M., Convergence Analysis of

Instrumental Variable Recursive Subspace Identifica-
tion Algorithms, Automatica, 43(8): 1377-1386, 2007.

[24] Murad, U. and Pinkas, G., Unsupervised Profiling for
Identifying Superimposed Fraud, in Proc. of the 3rd
European Conf. Principles and Practice of Knowledge
Discovery in Databases (1999), pp.251-261.

[25] Markou, M. and Singh, S., Novelty Detection: A Re-
view – Part 1: Statistical Approaches, Signal Process-
ing, 83(12): 2481-2497, 2003.

[26] , Novelty Detection: A Review – Part 2: Neural
Network Based Approaches, Signal Processing, 83(12):
2499-2521, 2003.

[27] Moskvina, V. and Zhigljavsky, A. A., An Algorithm
Based on Singular-Spectrum Analysis for Change-
Point Detection, Communication in Statistics: Simu-
lation & Computation, 32(2): 319-352, 2003.

[28] Overschee, P. V. and De Moor, B., Subspace Identifica-
tion for Linear Systems: Theory, Implementation and
Application, Kluwer Academic Publishers, Dordrecht,
1996.

[29] Sugiyama, M., Dimensionality Reduction of Multi-
modal Labeled Data by Local Fisher Discriminant
Analysis, Journal of Machine Learning Research, 8:
1027–1061, 2007.

[30] Schölkopf, B., Platt, J. C., Shawe-Taylor, J.,
Smola, A. J. and Williamson, R. C., Estimating the
Support of a High-Dimensional Distribution, Neural
Computation 13(7): 1443-1471, 2001.

[31] Sugiyama, M, Suzuki, T., Nakajima, S., Kashima, H.,
von Bünau, P. and Kawanabe, M., Direct Importance
Estimation for Covariance Shift Adaptation, Annals of
the Institute of Statistical Mathematics, 60(4), 2008.

[32] Suzuki, T., Sugiyama, M., Sese, J. and Kanamori, T.,
Approximating Mutual Information by Maximum
Likelihood Density Ratio Estimation, in New Chal-
lenges for Feature Selection in Data Mining and
Knowledge Discovery, JMLR Workshop and Confer-
ence Proceedings, 4: 5-20, 2008.

[33] Takeuchi, J. and Yamanishi, K., A Unifying Framework
for Detecting Outliers and Change Points from Non-
Stationary Time-Sereis Data, IEEE Trans. on Knowl-
edge and Data Engineering, 18(4): 482-489, 2006.

[34] Yamanishi, K. and Takeuchi, J., A Unifying Framework
for Detecting Outliers and Change Points from Non-
Stationary Time-Series Data, in Proc. of the 8th ACM
SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining (2002), pp.676-681.

[35] Yamanishi, K., Takeuchi, J., Williams, G. and
Milne, P., On-line Unsupervised Outlier Detection Us-
ing Finite Mixtures with Discounting Learning Algo-
rithms, Data Mining and Knowledge Discovery, 8(3):
275-300, 2004.


