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Abstract structure of a network. One of the standard approaches to the

We propose Link Propagation as a new semi-supervised learrlif¥f Prediction problem is to regard it as a binary classifica-
method for link prediction problems, where the task is to predin Problem of the elements of the adjacency matrix. In this
unknown parts of the network structure by using auxiliary infoR@pPer, we add another dimension to the adjacency matrix,
mation such as node similarities. Since the proposed method W4HCh indicates the extension of single-type link prediction
fill in missing parts of tensors, it is applicable to multi-relationd@ Multiple-type link prediction. The extension results in in-
domains, allowing us to handle multiple types of links simultang-0ducing a third-order tensor which represents an adjacancy
ously. We also give a novel efficient algorithm for Link Propagatiomatrix with link types. Consequently, we consider a comple-

based on an accelerated conjugate gradient method. tion problem of the tensor as a generalization of the standard
link prediction problem (Section 2). This is regarded as a
Keywords binary classification problem of the elements of the tensor.

Link Prediction, Supervised network inference, Semlhe tensor representation of the network structure allows us

supervised learning, Biological networks, Social networksto handle not only the existence of links but also the types of
links, including temporal links. Furthermore, the tensor rep-

1 Introduction resentation makes it possible to simultaneously predict mul-

Many phenomena in the world can be represented by d§i networks that have correlations with each other.
of entities, and sets of static and dynamic relationships The link prediction problem can fall into two categories
among the entities. Such relationships include friendshipsaccordance with the information used for prediction:
among people, actions such as someone clicking an on- -ﬁetop_olog|cal.—|nformat|or?-based .|Il’l_k prediction and (ii)
advertisement, and physical interactions among proteil@de-information-based link prediction. The former type
Collections of such relationships fometworks of link prediction uses only adjacency matrices. Based on
The problem of predicting the structure of networks RPserved parts of the adjacency matrices, the missing parts
called thelink prediction problemwhich is one of the im- @ré predicted by using, for example, matrix factorization
portant tasks of link mining [9] in the data mining commut€chniques [23, 28]. On the other hand, the latter type of link
nity. A typical setting of the link prediction problem is tgPrediction explpng n_ode information such as feature vectors
predict unknown parts of the structure of a network (or, tigé nodes or similarity values among nodes.. One C_’f the
future structure of the network) from the known parts of tigate-of-the-art approaches for this purpose is the pair-wise
network. Link prediction has various applications in mar§HPPOrt vector machine (pair-wise SVM), which combines
fields such as social network analysis, marketing, and biofiede-wise kernel matrices to construct a pair-wise kernel
formatics. For example, it can be used to predict relatigR@trix [2, 3, 26]. In this paper, we discuss the latter type,
ships among participants such as friendships in social ret: link prediction based on node information.
works, or to predict users’ future behaviors such as clicking !N this paper, we propose using one of the well-known
advertisements for marketing. In the field of bioinformatic8PProaches of semi-supervised learning called label propa-
predicting protein-protein interactions and regulatory reldtion [40, 41] for link prediction (Section 3.1). Label prop-
tionships can provide guidance for the design of experimeAggtion was originally intended for use in node classification,
for discovering new biological facts. but we apply the idea to pairs of nodes with multiple link
The link prediction problem can be seen as the proyPes (i-e. (node node type)-triplets) and predict the rela-

lem of completing an adjacency matrix which represents tff@nships among the nodes. Since we need a triplet-wise sim-
ilarity matrix to apply the label propagation idea to triplets,

we propose to use the Kronecker product and the Kronecker
*IBM Research, Tokyo Research Laboratory P fpth | t-wi imil 'tp tri Secti 3.2
fOchanomizu University, Center for Informational Biology sum o e element-wise similari y matrices ( ection 3. )
fMines ParisTech, Centre for Computational Biology To solve the resultant system of linear equations, we apply

§Tokyo Institute of Technology, Department of Computer Science ~ the conjugate gradient method (Section 4.1). Since naive
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application of the conjugate gradient method causes serious link strength fijk

scalability problems, we use an acceleration technique called

“vec-trick” [22, 36] and its generalized versions for tensors, O

which significantly reduces the computation time and space Auserz; € X

requirements (Section 4.2). Moreover, we show interesting An action 2, € Z O

special cases that can be implemented very easily by using [

the functions of MATLAB® (Section 5). Auserz; € X Anitemz; €Y Anitemz; € ¥
Finally, we discuss the relationships between our ap- O

proach and related approaches (Section 6), and demonstrate

the performance of the proposed method by using several | Anaction 2, € Z

real-world network data sets (Section 7). ——

In summary, this work makes three main contrlbutlon\‘%_;ﬁi{/Jure 1: An example of a link. The fact that a userc X

(i) We develop a new semi-supervised link prediction meth(?g es an action (e “ P : ;
. : . .g. “evaluation”) to an item € Y is
by applying the label propagation method [40, 41] to lin presented as a (single-type) link for a triplet, y;, ).

predlcnqn. Th_e new .meth_od IS thg first method for tens%e link strengthf;;, indicates confidence of the existence
completion using auxiliary information. It allows us to han-

dle not only strength of links among pairs of nodes, but alggthe link.

various types of links.

(i) We propose using the Kronecker sum similarity as a ) ) _

novel similarity measure among node pairs, which is shofnsidered as a (single-type) link for a triplet;, y;, zx),

to outperform the existing Kronecker product similarity ifultiple-type link prediction for node pairs is equivalent to
many cases. single-type link prediction for node triplets. Therefore, we
(iii) We propose an efficient learning algorithm based on ti€note a set of single-type relationships among triplets by an
conjugate gradient method. It mitigates the scalability prof{ x IV > 7" third-order tensor,

lem caused by naive application of the label propagation.
(Flijk = fijk-

) o The variablef;;;, indicates how likely a link exists for the
2 Link prediction problem triplet (x;,y;, 21.) € X x Y x Z, which we refer to atink
The link prediction problem is usually described as a taskstrength (Figure 1(right)). A large value of link strength
predict how likely a link exists between an arbitrgrgir of indicates high confidence of the existence of a link, and a
nodes. In this paper, we consider a more general problenspfall value indicates high confidence of the absence of a
predicting multipletypesof links among the pairs of nodes link.

Let us denote two sets of nodes byY := Now, we define anothel/ x N x T third-order tensor
{z1,22,...,2zp} andY := {y1,y2,...,yn}, and the types F* which represents the observed parts of the netwgrk.
of link by Z := {21, 29,...,2p}. Some or all ofX andY plays the role of the target values given in a training data set

may be identical in accordance with applications. Note thatsupervised learning. Léf be the set of indices for triplets
M :=|X|, N := |Y|andT := |Z|. Taking an on-line store whose link existence/absence is known (i.e. the set of indices
as an exampleX, Y, andZ are sets of users, items, and posf the labeled instances). Each elemenfdfis defined as

sible actions by a user to an item, respectively. The actions

include “click”, “buy”, and “evaluation”. So, a typer, link ] ) {f.*jk if (i,5,k) € E,
i,k =

,

between two nodes; andy; indicates that an user; takes 0 otherwise

an actior;, to an itemy; (Figure 1(left)). Let us consider an-
other example. If we want to predict the relationships amongnere /7, is set to some positive value if a link exists for
the members of a community, Bofki andY” are the mem- (x;, y;, 2), and to some negative value if no link exists for
bers, and” is a set of relationship types among the membe(s;,;, y;, zx). For (i,4,k) ¢ E, [F*]; is filled with zero
for example,Z := {friendship working relationship. Note for convenience, since we do not use them. Particularly, we
that we assum&’ = Y in this case. recommend to sef;, as

Since a typex, link for a node pair(x;,y;) can be

0k BB if no link exists for(x;, y;, zx),

o { |E|/|E*| ifalink exists for(z;, y;, z1),

IThe models and techniques used in this paper are easily extended
to handling links among more than triplets, but we will limit ourselves " _ . .
on triplets since we want to keep the description simple and triplets ddfere [E™| and |E~| are the numbers of triplets with

accommodate many important cases. links and those without links, respectively. Note that



(|[ET|+|E~| =|E| < MNT). This way of setting the tar-

get values corresponds to the Fisher discriminant if we usé."fld.?-fﬁ‘f. Jtiastoi Anodepar A node pair,
the squared loss function [4]. - O L S :

Since we consider node-information-based link predlc- [ e B T
tion, we are also given similarity matricééy, Wy, andW, | (O | i i | | )
among the elements of, Y, and Z, respectively. Those o Ntypes, link “Kiypes, lnk A typez, link

exists exists exists

matrices are non-negative and symmetric. In the previous
example of(useritem, action-link prediction, Wx repre-
sents similarities among the users, whergiit§)-th element
[Wx]; ¢ indicates the similarity between tlig¢h userz; and

(a) The link propagation principle for existence of a link

thef th Userxg Slml|al’|y, WY andWZ are fOF the I'[emS and Anodcpn_lr Anndcp:uf A node pair /\ node pair
h ions, r ivel ™ g | AT Vgt |
t e aCt (0} S eSpect e y O ; f:x:;i: ; Q E Propagation i O E zl:}]:lli;l: i O
In summary, the link prediction problem discussed |n 9 e ooz | :> i :
this paper is defined as follows. e O '
INPUT: i, No ez, ok Noypez, nk No ypez ik

exists exists exists

- Three symmetric and nonnegative matrigég, Wy,
andW for three entity setX, Y, andZ.

- A third-order tensotF* representing the known parts
of the network.

(b) The link propagation principle for absence of a link

Figure 2: The idea of the link propagation principle for (a)
OUTPUT: A third-order tensorF representing link existence of a link and (b) absence of a link. The figures
strength for all triplets. depict that if two triplets are similar to each other, their
existence/absence of links is likely to be identical.
3 Link Propagation: A new semi-supervised link
prediction method

In this section, we introduce our new approach to the “%lfrength” In accordance with thigifik propagation princi-

prediction problem. We refer to our semi-supervised Iqueu we define the objective function to minimize as
prediction method ad'ink Propagatiori, which has the ob-

jective function (3.2) and either of the triplet-wise similarity3.1)
matrices (3.4) and (3.6). o
(34) (36) J{ fije}) = 5 g Wik emn(fijk — Fomn)?

3.1 Formulation. Since the link prediction problem de- ) Bk
scribed in the previous section is a semi-supervised learn- 4= Z (Fise = fin)? Z 2
ing problem (more precisely, a transductive learning prob- (i.5.F)EE (1,J7k)€E

lem since we have the test data set in the training phase), we

uselabel propagatior[40, 41], which is one of the state-of-Wherew;x ¢m, is the symmetric triplet-wise similarity be-

the-art semi-supervised learning methods. The label prop4een two triplet(z;, y;, zx) and (z¢, Ym, z,) (which will

gation method was originally used for predicting the labepg defined later). The first term of Eq. (3.1) indicates that

of unlabeled nodes by using tkabel propagation principle the two link strength valuef ;. and f;,..,, for the two triplets

that is, “Two nodes that are similar to each other are likejpould be close to each other if the similarity; . ¢, be-

to have the same label”. The idea of label propagation dé¢gen the two triplets is large. The second term is the loss

be generalized to link prediction, since the link predictidiinction that fits the predictions to their target values for the

problem can be regarded as a task of predicting labels #dplets in £. The last term is a regularization term to pre-

(node node type)-triplets. Applying the label propagationvent the predictions from being too far from zero, and also

method to triplets, we can predict link strength as the lab& numerical stability.c > 0 andu > 0 are regularization

for the triplets. parameters which balance the three terms in Eq. (3.1).
Modifying the label propagation principle, we can state Now, we rewrite Eq. (3.1) using tensors. For that, we

the triplet version of the inference principle as “Two similsfefine an\/ x N x T'tensorg as

(node node type)-triplets are likely to have the same link o

Gli s v {1 if (i,5,k) € E,
" ZEven if they are not given, there is a possibility of constructing them N Vi otherwise,

from the observed links, for example, by similarities among the fibers of . ]
F*. However, we do not discuss this further in this paper. and letL be anM NT x MNT matrix calledLaplacian



matrix defined as Thus, the Kronecker product similarity between two triplets
L:=D-W, is designed as the product of the similarities in each set.
ol his is an extension of the pair-wise similarity used in
kernel methods [2, 3, 26] to triplets. The Kronecker product
[D)ii == Z[W]m similarity corresponds to the inner product in the product
P space of the three feature spacesWfy, Wy, and Wy
are kernel matrices defined as the inner products in the
"Teature spaces & x, Wy, andWz, respectively. Using the
Kronecker product similarity, we can express the Laplacian

whereD is a diagonal matrix whose diagonal elements ar

andW is a triplet-wise similarity matrix whose elements a
defined as

[W]J\IN(k—l)+M(j—1)+i,MN(n—1)+M(m—1)+Z = Wijk tmn- matrix in Eq. (3.3) as

Usingg andL, Eqg. (3.1) is rewritten as (3.5) L=Dz®Dy®Dx —Wz Wy @ Wx,
3.2) J(F) = %vec(]-‘)T Lvec(F) whereD x is a diagonal matrix whose diagonal elements are
1 defined a§Dx];; := > ;[Wx]i,;; Dy andD are defined
+5 | vec(F * G) — vec(F*) |2, similarly.

. ) ) Since the product space of the Kronecker product simi-
where « is the Hadamard product (i.e. the element-wisgrity sometimes becomes too complex and is of overly high
product of two tensors), angc(.A) is the vector constructedgimensions, we also consider another similarity with a more
by stacking the mode-1 fibers (i.e. column) of the tenspistricted feature space (if it is a kernel function), which we
A, defined as,ec('A)(lc—l)NT_—&-(j—lf_N-i-i = [Alijr- NOte cajl theKronecker sum similarityThe Kronecker sum simi-
that, whenX =Y and there is no link direction, the frontalyrity is based on the idea that two triplets are similar to each
slices of 7* are symmetric, then the solutigh* becomes qther if two of the three cross-triplet pairs of nodes are iden-

symmetric. tical, and the other cross-triplet pair is similar to each other

To obtainF that minimizes Eq. (3.2), we differentiatgrig. 3(b)). We define the Kronecker sum similarity as
Eqg. (3.2) with respect taec(F), which results in

dJ(F) BEW = WzaWy oWy
vec(F) oLvec(F) + vec(F * G) — vec(F*). = Wz ®ly @)+ (17 @ Wy @ 1y)

. . - . . . I I w
Setting this td) for obtaining the stationary point, we obtain Hr®ly ®Wx),

the following linear equation, where @ indicates the Kronecker sum defined Wy, @

(3.3) (oL + diag (vec(G))) vec(F) = vec(F*), Wy =Wz Rly + I_T ®W_y, andl,, is an ident_ity matrix of
size M x M. This is equivalently expressed in an element-

where the operatadiag produces a diagonal matrix whos&vise manner as

diagonal elements are given by its argument vector.

Wijkemn = [Wxlied(j=m)o(k=n)
3.2 Designing the triplet-wise similarity matrix. Since +6(i = £) [Wy]jm 6(k =n)
it is not realistic to give all of theM/2N2T? elements of 486 = 0) 5(j = m) Wals

the triplet-wise similarity matrixVV, we consider systematic

construction otV using the element-wise similarity matricegyheres is a function which returns if the argument is true,
Wx, Wy, andWz. For addressing the scalability issuegndo otherwise. Using the Kronecker sum similarity, we can
discussed in the next section, we restrict the clas&/0dnd express the Laplacian matrix in Eq. (3.3) as
consider two ways for constructing'.
The first one is th&ronecker product similaritywhich (3.7) L=LzdLy &Ly,
is based on the idea that two triplets are similar to each other
if each of the three cross-triplet pairs of nodes are simiMhereLx is the Laplacian matrix defined asc := Dx —
to each other (Fig. 3(a)). The Kronecker product similari{fx- Ly andL are defined similarly.

matrix is defined as As is clear from the definitions, the Kronecker product
can give an arbitrary pair of triplets a similarity score greater
(3.4 W:=Wz @ Wy @ Wy, than zero, while the Kronecker sum can give a positive score

where® indicates the Kronecker product. This is equivé)—_nly to the pairs which share at least two elements of the

lently expressed in an element-wise manner as tnplets._ . . T
At first sight, since the Kronecker sum similarity has a

Wijk,emn = Wxlie Wy ljm Wzlen- fewer number of pairs with positive similarity values than



scalability problem. In the next section, we overcome this
problem by the conjugate gradient method using the “vec-

Each of 3 cross-triplet pairs is similar . "
@) % Yy | pep tricks”.

"""" itnilar Sithilar Sipfilar i ' imi . . .
ol S‘$ ar S@ff‘i\‘ @ Two triplets are similar 4 A fast algorithm for Link Propagation method
: @ Zn @ In this section, we propose a conjugate gradient method
-5 accelerated by using the technique called “vec-tricks”. The
resultant algorithm need3(M2N2T2%(M + N +T)) time
(a) Kronecker product similarity andO(M? + N2 +T? + MNT) space.

4.1 Conjugate gradient method for Link Propagation.

Eac}‘;ﬁif;‘g’:i:f;fgf;gi‘i ‘:irﬁf:r“cal The conjugate gradient method is a standard approach to
k ; solving a system of linear equations [11]. The algorithm

(- AN A ; ) . . .

Identical Tdehtfical Simnilar Two triplets are similar of thg conjugate gradl'ent'method faf = " is showq in

"""""" i e Algorithm 1. We modify it to solve our system of linear
@ Zn @ equations (3.3) for Link Propagation.

First, we replacéh, f, andf* by using the correspon-
dencesA = ol + diag (vec(G)), f = vec(F), andf* =
(b) Kronecker sum similarity vec(F*). We also replace the other vectd(s), p(¢), q(¢),
andr (¢t) by tensorsF(t), P(t), Q(t), andR(t), respectively.
ahen, we obtain the conjugate gradient algorithm for our sys-
tem of linear equations (3.3) as detailed in Algorithm 2. Note
that the algorithm is described using tensor notation in con-
trast to the standard conjugate gradient algorithm (Algorithm
1) being described in terms of vectors.

the Kronecker product similarity, it seemingly can not fully ~ Most of the steps in Algorithm 2 are easily obtained
exploit node similarity information. But as we will see ilil)y simple substitutions, but Line 2 and Line 4 need some
the experiments (Section 7), the Kronecker sum similarityd§rivation. Here, we derive only Line 2. Line 4 can be
compatible with the Link Propagation method, since paingnved in a similar manner. First, we define the following
with zero similarity values can utilize link information offtWO OperatorsC™°®andL*** for the Kronecker product and
each other through the other pairs with positive similarit§t the Kronecker sum, respectively, as
values using the label propagation mechanism. PROD o
Another intuition behind the Kronecker sum similarit 48) L™AB) = (Dz®Dy®Dx
is that similar nodes tend to form triangle link structure, ~Wz @ Wy ® Wx)vec(B),
which is one of the generative processes of small wof#9) L*"(B) := (Lz® Ly ®Lx)vec(B),
networks .[10]' . It IS knqwn that a variety Of.real'worldwhereB isan M x N x T tensor. Bearing the above
networks including biological networks and social networks A i . .
correspondences in mind (0) := f* — Af(0) is rewritten
are small world networks.
The two definitions of the triplet-wise similarity can bé&>
seen as constructing a product graph over the triplets ifu&e(R(0)) := vec(F*) — (oL + diag (vec(G))) vec(F(0))
consider the element-wise similarity matrices as weighted _ _UE{PRodSUM}VeC(F(O))
graphs. The Kronecker product and the Kronecker sum ’
correspond to the tensor product graph and the Cartesidrere we usedr* = F(0) = diag (vec(G)) vec(F(0)),
product graph of the weighted graphs [14], respectively. and Eqgs. (3.5) and (3.7). In Algorithm 2, the operator
Finally, we mention the scalability problem occurred {**°s"} s replaced withC™*°° when we use the Kronecker
in using the Kronecker product/sum similarity matrix. Aproduct similarity, or withZ3"™ when we use the Kronecker
mentioned earlier, even if the element-wise similarity maroduct similarity.
trices are small, their Kronecker product becomes huge However, evaluation of Egs. (4.8) and (4.9) is still a
(MNT x MNT), so it is not reasonable to store them excomputational bottleneck of Algorithm 2, since the triplet-
plicitly in the memory. The matrix is rather sparse for theise similarity matrix is huge.
Kronecker sum similarity, but still needs much space. Since
the kernel methods use the same similarity matrix we useda® The “vec-tricks”. We here show that computation of
kernel matrices [2, 3, 26]. they also suffer from the sevelgs. (4.8) and (4.9) can be made significantly efficient

Figure 3: Intuitive examples of (a) the Kronecker produ
similarity and (b) the Kronecker sum similarity.



Algorithm 1 Conjugate GradientA, f*, ¢).

1: f(0) :=f*
2: 1(0) :=f* — Af(0), andp(0) := r(0)
3 fort=0,1,2,...do
4 q(t) = #zp(t) >
r(t),p(t)
5 el = )
6:  f(t+1):=1()+ alt)pt)
7 rit+1):=r(t) —at)qt)

. (e
8 B) = o

. i Ire+DI3 _ 2
o: if oz <€ ,return f (¢ 4 1)

100 p(t+1):=r(t+1)+ B(t)p(t)
11: end for

Algorithm 2 Link Propagation7*,G, Wx, Wy , Wz, 0, ¢€);
LiProdsv} s replaced withC™° (Eq. (4.16)) for the Kro-
necker product similarity, or witlLs*™ ( Eq. (4.17)) for the

Kronecker sum similarity.

1. F(0) :=F*

2: R(0) := —gLProdtswl(7(0)), andP(0) := R(0)

3 fort=0,1,2,...do

4 Q(t) = Zfﬁ{PRODS“;”} (P(t)) + G = P(t)
_ A{R@),P1)

5 alh)= (P).0)

6 F(t+1):=F(t) +a(t)P(t)

7: R(t+1) :=R(t) — a(t)Q(t)

. IR
& B) = R

. if IR+
o: it SR, <€ retun F(t+1)

10: Pit+1):=R(Et+1)+ B)P(¢)
11: end for

by using the “vec-tricks” [22, 36], which accelerates the
multiplication of matrix Kronecker products and a vectorize\ﬂ/hen Ay

matrix/tensor.

LetAx, Ay, andAz beM x M, N x N, andT x T
symmetric matrices, respectively. Lebe an)M x N matrix,
andB be anM x N x T tensor. The basic idea of the “vec;

tricks” lies in the following equation [22]:

(4.10) (Ay ® Ax)vec(B) = vec(AxBAy).

The left-hand side of Eq. (4.10) nee@§M2N?) compu-

tation time and space, while the right-hand side needs o
O(MN(M + N)) time andO(M N) space. Vishwanathan
et al. [36] used this formula for accelerating the computatior

of the graph kernels.

Now, we generalize Eq. (4.10) to obtain its ten
version. Bearing in mind that matrices are second-or
tensors, we rewrite Eq. (4.10) using modenultiplication

of tensors [20] as

(4.11) (Ay ® Ax)vec(B) =vec(B x; Ax x2 Ay),

where moder multiplication is an operation that multiplies
the moden fibers of a tensor by a matrix. For third-order
tensors, these are defined as

M
(B x1 Axlijk = Z[B]e,j,k[AX]i,e,

~
Il
—_

M=

B x2Aylijr =Y [BlierlAvlie,

~
Il
Ja

[M]=

B xsAzlijk =Y [BlijAzlke,

o~
Il
—

and each of them returns @d x N x T tensor. For more
on general tensor calculation, see [20], for example. The
form of Eq. (4.11) is naturally extendable to third-order (or
higher-order) tensors, and we obtain the following equation.
(4.12)

(Az ® Ay @ Ax)vec(B) =vec(B x1 Ax X2 Ay x3Az%).

While the naive computation in the left-hand side needs
O(M?N?*T?) computation time and space, we can reduce it
toO(MNT(M+ N+T)) computation time an@®(MNT)
space in the right-hand side.

Next, we consider the case with the Kronecker sum.
Similar to the case of the Kronecker product, we have

(4.13) (Ay @ Ax)vec(B) = vec(BAy + AxB)
(414) :VeC(B x1Ax + B %o Ay)

Again, Eg. (4.14) is generalized to tensors as

(4.15)
(AZ Ay ® Ax)VeC(B)
:VeC(B Xle+BX2Ay+BX3Az).
= Ay, the number of multiplications can be
reduced, sincd8 x; Ax andB x, Ay are essentially the
ame

By using Egs. (4.11) and (4.15), the computation of Egs.
(4.8) and (4.9) can be significantly simplified as

(416) EPROD(B) =B X1 DX X9 Dy X3 DZ
— B x1 Wx xa Wy x3 Wz,
Fﬁyﬂ) LMB)=Bx1Lx +BxsLly + Bxslyz.

4n3 Discussion on efficiencyA great advantage of our
(I)_lnk Propagation algorithm is in its memory efficiency.

5& requires onlyO(MNT + M? + N? + T?) memory

e?nks to the “vec-tricks”. In terms of the computational
complexity, it requiresO(M2N?2T?(M + N + T)) time
theoretically, because each iteration of the conjugate gradient
algorithm can be executed (M NT(M + N +1T)) time,

and O(M NT) iterations are required to solve the linear



equations completely. In practice, the number of iteratiomich is substituted into Eq. (5.19) to obtain
required for convergence is much smaller tf@W/ NT),
and we observed that the predictive performance did nél(o_l_y + 1|N) o (ULX 4 1|M)> vec(F) = vec(F*).
change after only several iterations in our experiments. 2 2
The improvement by using the “vec-tricks” is signifi- _ _ _
cant, because it is not clear so far how to apply the “veldY USINg Ed. (4.13), this can be rewritten as
tricks” to kernel methods. If we imagine the triplet-wise 1 1
extension of the pair-wise SVM using the same similar- F (JLY + 2IN> + (ULX + 2IM) F=F"
ity matrix without the “vec-tricks”, the space complexity is
O(M?N?T?) and the time complexity i©(M>N®T?). The  This equation is called the Sylvester equation [22], and can
time complexity comes from the fact that the quadratic prga solved by using thiyap function in MATLAB®. Un-
gramming problem needs cubic time complexity with respagle the case with the Kronecker product, no approximation

to the number of parameters (in the case of kernel mathadsnyolved, and therefore we can obtain the exact solution.
it is the same as the number of training examples). As many

fast optimization methods have been developed for SVM, §s Related work
_prgcu_cgl speed is not too slow in genera!. _Nevertheless,.[%se link prediction problem has been studied in the context
it is difficult to keep the whole kernel matrix in the memory,

. redicting biological networks such as protein-protein
we cannot always use the fastest software packages in o . :
problems. interaction networks and gene regulatory networks in the

bioinformatics area, and also in the context of link mining [9]
in the data mining community.
) _ i S In bioinformatics, several node-information-based ap-
In this section, we show special cases of pair-wise liffoaches were proposed, such as an EM-based approach [19]
prediction (i.e. wherl” = 1) with u := 1, where we can ang metric-learning-based approaches [35, 38]. The pair-
easily implement the proposed method by using the buiffise kernel which we will compare our method with in our
in functions of existing numerical computing environmenigyperiments (Section 7) was proposed for predicting protein-
such as MAT'—AB@- o protein interactions [3]. Interestingly, the same kernel was
Since setting. := 1 implies [G];; = 1 for all (i,j), also proposed for entity resolution [26], and collaborative fil-
it holds thatdiag (vec(G)) = Inn. Therefore, Eq. (3.3) tering [2], independently.
becomes In the data mining community, the link prediction prob-
lem is studied as one of the fundamental tasks of link min-

5 Easily implementable special cases

(518) (oL + ) vee(F) = vec(F). ing. There are several methods that utilize only structural in-
Note thatF = F, F* = F*, andG = G whenT = 1. formation such as link metrics (e.g. [24]). Matrix factoriza-

WhenW is the Kronecker product similarity, Eq. (5.18§ion approaches [23, 28] are also grouped into topological-
becomes information-based methods.

There are also supervised learning methods using node
(cDy @ Dx — oWy @ Wx + lpn) vec(F) = vec(F*).  information as well as topological information, for example,
[13, 25]. There have also been several works (e.g. [27, 31]
) that apply the framework of statistical relational learning
oDxFDy — oWy FWy + F = F*. tp link prediction. A simi_lar quel is called the exponen-
tial random graph model in social network analysis [1]. Re-
This equation is called the generalized Sylvester eq@gntly, sophisticated generative models of networks from
tion [22]. Vishwanathan et al. [36] proposed usifigand Bayesian perspective have been proposed [5, 39].

By using Eq. (4.10), we obtain

T that satisfyDy @ Dx + Wy ® Wx ~ S ® T for approx- Recently, there have been proposed several approaches
imating the equation a$FS + F = F*, and solving it by to extending the existing network analysis methods to mod-
using thedlyap function in MATLAB®. eling the temporal dynamics of network structure. For ex-
WhenW is the Kronecker sum similarity, Eq. (5.18pmple, Fu et al. [7] extended the exponential random graph
becomes model [1, 31] to temporal modeling. Some attempts (e.g.
[29, 30]) use tensor analysis techniques [20] for temporal re-
(5.19) (oLy ® Lx + Iy n) vec(F) = vec(F"). lation data as generalization of matrix analysis for pair-wise

relations. Note that they do not exploit node information
such as the node similarity matrices used in this paper.

1 1 The basic idea of label propagation was proposed by
oly ®Lx +lun = <ULY + 2|N) @ <0LX + 2|M> ' Zhou et al. [40] and Zhu et al. [41]. The scalability problems

We can derive the relation



are often discussed [8, 42], but the technique we usedré@asonable to apply standard SVM implementations such
this paper is totally different from theirs. To the best of owrs SVM9"t [16]. Therefore, we used an on-line learning
knowledge, we are the first to use auxiliary information ialgorithm which processes one training example at each
semi-supervised link prediction. training step, so it is computationally and spatially efficient.
The matrix “vec-trick” (Eq. (4.10)) was used by Vishin our experiments, we employed the passive-aggressive
wanathan et al. [36] for accelerating the computation of th&orithm [6], which is an efficient on-line large-margin

graph kernels. learning algorithm. We used thenorm version (PA-1) of the
algorithm withC' = 1. All of the kernels were normalized as
7 Experiments R0, 3), (6,m) [N/ KR((0, ), (0, §))RPR((E m), (6,m).

In this section, we show some experimental results #Off Of the training data was processed three times in the
single-type link prediction (matrix completion) and multipletraining phase for better convergence and prediction.

type link prediction (third-order tensor completion) based We used three data sets for pair-wise link prediction.
on node information. Section 7.1 describes the results ¢te first data set [38] contains the metabolic pathways of the
single-type link prediction problems. We demonstrate thg@astS. Cerevisiagn the KEGG/PATHWAY database [17].

our semi-supervised link prediction performs better than th&oteins are represented as nodes, and a link indicates that
pair-wise kernel method, where both approaches are badiedtwo proteins are enzymes that catalyze successive reac-
on combined node information. Section 7.2 describes the §8ns. The number of nodes in the network is 618, and the
sults of multiple-type link prediction problems, where oupumber of links is 2,782. In this data set, three kernel matri-
task is simultaneous prediction of multiple networks r&€s based on gene expressions, localization sites, and phylo-
lated to each other. We demonstrate that predicting multiginetic profiles are given. We used them as the kernel matri-
networks simultaneously achieves better predictive perf6fS or the similarity matricés

mance than predicting each network separately. The second data set is a protein-protein interaction

Throughout all of the experiments, we get= 0.001 network data set constructed by von Mering et al. [?_,7].
andy = 1 for Link Propagation. Note that for pair-wise link/Vé followed Tsuda and Noble [32], and used the medium

prediction, we takel’ = |Z| = 1, andF and F* are the c_:onfidencr—_: network, containing,.61.7 r)odes gndll,_855
second-order tensors (i.e. matricEsindF*, respectively.  links. In this data set, each protein is giventadimensional
binary vector, each of whose dimensions indicates whether
7.1 Pair-wise link prediction (7 = 1). We compared our OF not the protein is related to a particular function. We used
method with the pair-wise kernel method [2, 3, 26], which {§€ inner product values between the vectors as the kernel

one of the state-of-the-art link prediction methods using noftrix or the similarity matrix. _
information. In the pair-wise kernel method, link strength ~ The third data set is a social network representing the

between a node paiz;, ;) is modeled by co-authorships in the NIPS conferences, contairdirgss
nodes andl, 733 links. Authors correspond to nodes, and a
fli,g) = Z armkR((4,9), (€, m)). link between two nodes means that there is at least one co-
(¢,m) authored paper by the corresponding authors. In this data

The ek (), ) rpresents sty benweerE%, S267 2011 1 ghen 2 feature vecon each of whose
two node pairs(z;,y,;) and (z¢, y»), and theas are the ' ' P u particuiar w

model parameters. In its original definition [2, 3, 26], th the author's papers. We used t.he. inner proFiuct of the
vectors as the kernel matrix or the similarity matrix

gzw—mse kernel is defined by using the node-wise kernel We randomly selected10% of all the pairs
(|E|/(MNT) =~ 0.10) as training data, and evaluated
(7.20) AUC on the remaining pairs; this procedure was repeafied
RR((0 ), (6m)) = K0, OR(Gm) + k(m)R( 0, e apars. s p P

which corresponds to the Kronecker product similarity. Note Figure 4 shows the averaged AUCs and their standard

that the above kernel is symmetrized. deviations for the metabolic network data. “Pair-wise Kernel
Alternatively, we can use another pair-wise kernel cofprod)” and “Pair-wise Kernel (sum)” denote the pair-wise

responding to the Kronecker sum similarity as follows.  kernel method using the passive-aggressive algorithm with

(7.21) the Kronecker product kernel (7.20) and the Kronecker sum

PR/ o . . .
R0 ), (6,m)) = 6(i = O)r(5,m) + K(i, £)6(] = m) 3Available at http://web.kuicr.kyoto-u.ac.jp/supplyoshiismbO5/.  Al-
+6(t =m)k(4,£) + k(i,m)d(j = £). though a kernel matrix based on chemical information is also given in this

. . L. . data set, we did not use it since it includes negative entries.
Since the size of the pair-wise kernel matrices were 4pyajlable at http:/noble.gs.washington.edu/proj/maxent/.

too huge to construct explicitly in the memory, it was not S>Available at http://ai.stanford.edu/"gal/data.html.
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Figure 4: Summary of results for the KEGG metabolic . . ) ] ]
network. the algorithms were implemented in R for Micros®fwin-

dows XF® on an IBM® IntelliStatior® ZPro 6221 with an
Intel® Xeorf® 3.06-GHz CPU andl.5-GB RAM.
The results show the efficiency of Link Propagation. We
can see that Link Propagation is much faster than the pair-
I wise kernel method, and the improvement is significant when
I we use the Kronecker product similarity. Also, the Kro-
r necker sum is consistently faster than the Kronecker product.
oo 065 | This is because the number of pairs with positive Kronecker
- T . 060 | ﬁ ﬂ sum similarity is smaller than that for the Kronecker product
‘ ‘ ‘ similarity in the case of the pair-wise kernel method, and be-
T ion o Miwee ik mws Lk cause the number of iterations needed for convergence by the
b e o o0 e wm o Kronecker sum similarity is smaller than that the Kronecker
product similarity in the case of Link Propagation.
Figure 5: Summary of results for the protein-protein interac-
tion network (left) and the social network (right). 7.2 Triplet-wise link prediction (7" > 1). Using the
proposed method for triplet-wise link prediction, we can
predict two networks simultaneously. Alternatively, we can
predict the two networks separately by using the proposed
kernel (7.21), respectively. “Link Propagation (prod)” anchethod for pair-wise link prediction. We compared the
“Link Propagation (sum)” denote the proposed method witwo approaches in order to investigate whether or not the
the Kronecker product similarity and the Kronecker susimultaneous network prediction improves the predictive
similarity, respectively. Three results are shown for each pérformance.
the information sources, gene expression (expression), phy- We used two biological network data sets for triplet-
logenetic profile (phylogenetic), and localization sites (localise link prediction. Each data set contains two related
ization). Figure 5 shows the results for the protein-protemetworks. Therefore, tensors with = 2 arise, when we
interaction network data (left) and the social network datansider two networks simultaneously. The first data set
(right), respectively. In most of the cases, Link Propagatii two protein-protein interaction networks from different
outperforms the pair-wise kernel method. Interestingly, dabs [15, 34]. In this data set, we collected two sets of
spite its restricted feature space, the Kronecker sum perfopnatein-protein interactions detected from the yeast-two-
better than the Kronecker product in many cases. hybrid system in two different labs, one of which forms a
Next, we compare the computation time by eactetwork (Ito) with1,422 nodes and’44 links, and the other
method. Figure 6 shows the average computation time in l@detz) forms a network with the same nodes as those of the
scale spent on each data set in the training and test phasesietwork and88 links. They shard 23 links in common.
Note that the passive-aggressive learner with the pair-wise The second data set is a pair of a physical protein-protein
kernels was trained with only one scan of the training ddtderaction network and a genetic protein-protein network
(which degrades the predictive performance though). All sfored in the MIPS database [12]. In the physical network,
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two proteins have a link if the interaction between the twsults improve as the number of networks used in simultane-
proteins is experimentally confirmed. In the genetic networtws prediction increases.

two proteins have a link if the simultaneous mutations in the

two corresponding genes cause a cell death. The phys&alConcluding remarks

network consists of, 225 nodes and, 474 links, while the \ye proposed a new semi-supervised link prediction method
genetic network consists of the same nodes as those OfBD%ppIying the label propagation technique to link predic-
physical network and, 333 links. The two networks sharetion This allows us to handle not only strength of the links
198 links in common. among pairs of nodes, but also the type of links. We used
In both of the two data sets, the kernel matrices and iy Kronecker sum similarity as the similarity matrices as
similarity matrices are constructed using gene expressiqgy| as the Kronecker product similarity. Moreover, we pro-
phylogenetic profiles, and localization sites by following ”}ﬁ'osed an efficient learning algorithm based on the conjugate
same procedure as Yamanishi et al. [38]. Also, we set jdient method. Use of the tensor “vec-tricks” mitigated
similarity between the two networks to one. the scalability problem caused by naive application of label
We randomly selected50% of all the triplets nhropagation. The experimental results showed that the pro-
(|E|/(MNT) =~ 0.50) as training data, and evaluated AUG,nged approach is quite promising.
for the remaining pairs; this procedure was repeated  Finally, we conclude this paper by mentioning some fu-
times. We used a higher proportion of the data as trainigfe work. First, we will considezompressed representation
data than those we used for pair-wise link prediction, singgthe solution Even if the similarity matrices an@* are
we need the two networks to overlap to some degree.  gpgrse, the solutioff is usually dense, so it is hard even to
Figure 7 shows the averaged AUCs and their standagdre r in the main memory for large-scale problems. One
deviations for the two protein-protein interaction networlﬁ)ssime approach might be to use compact tensor represen-
with the Kronecker product similarity and the Kroneckektions [20] for storingF. Use of topological informatiois
sum similarity. “Ito (each)” and “Ito (simultaneous)” indi-5|so promising. It is possible to construct similarity matrices
cate the results for the Ito network by network-by-netwolom visible parts ofF*. It would be interesting to compare
prediction and simultaneous prediction, respectively. Sigr method using those similarity matrices with the other
ilarly, “Uetz (each)” and “Uetz (simultaneous)” are for thenethods using only topological information such as matrix
Uetz network. Three results are shown for each of the inf@getorization [23, 28] and tensor decomposition [2Bifor-
mation sources. We find that predicting the two networks $iation integrationis crucial, since we often have multiple
multaneously improved the predictive performances in magynilarity matrices obtained from various data sources. We
cases. will consider incorporating methods that adjust the weight
Figure 8 shows the results for the genetic network agfleach similarity matrix automatically [18, 21, 33]. Our fu-
the physical network with the Kronecker product similagyre work might also includeut of sample predictionsing

ity and the Kronecker sum similarity. “genetic (each)” anghproximated inference without solving entire systems, and
“genetic (simultaneous)” indicate the results for the genefigadiction with only positive links

network by network-by-network prediction and simultane-

ous prediction, respectively. Similarly, “physical (each)” anﬁeferences

“physical (sum)” are for the physical network. Three results

are shown for each of the information sources. Although

the improvement is not so significant as the experiment witi] C. J. Anderson, S. Wasserman, and B. Crouctp" Arimer:

the two protein networks, simultaneous prediction improves 0git models for social networksSocial Networks21:37-66,

the performance especially when using the Kronecker sum 1999. . . )
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ber of links is small, the variance of the AUC values tend€6] K- Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and

. . _ Y. Singer. Online passive-aggressive algorithrdsurnal of
to be high. Even so, we can still see the trend that the re Machine Learning Research:551_585, 2006,



Figure 7: Summary of results for the two protein-protein interaction networks with the Kronecker product similarity (left)
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Figure 8: Summary of results for the genetic network and the physical network with the Kronecker product similarity (left)
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