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Abstract

The goal of pool-based active learning is to choose the best input points to gather
output values from a ‘pool’ of input samples. We develop two pool-based active
learning criteria for linear regression. The first criterion allows us to obtain a closed-
form solution so it is computationally very efficient. However, this solution is not
necessarily optimal in the single-trial generalization error analysis. The second
criterion can give a better solution, but it does not have a closed-form solution and
therefore some additional search strategy is needed. To cope with this problem,
we propose a practical procedure which enables us to efficiently search for a better
solution around the optimal solution of the first method. Simulations with toy
and benchmark datasets show that the proposed active learning method compares
favorably with other active learning methods as well as the baseline passive learning
scheme. Furthermore, the usefulness of the proposed active learning method is also
demonstrated in wafer alignment in semiconductor exposure apparatus.
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1 Introduction

Active learning1 (or experimental design) is a problem of optimally designing the loca-
tion of training input points in supervised learning scenarios (Fedorov, 1972). Choice of
training input location is particularly important when the sampling cost of output values
is very high, which is often the case in the analysis of, e.g., medical data (Coomans et al.,
1983), biological data (Baldi and Brunak, 1998), or chemical data (Warmuth et al., 2003).

1.1 Population-based vs. Pool-based Active Learning

Depending on the situations, active learning can be categorized into two types: population-
based and pool-based.

Population-based active learning indicates the situation where we know the distribu-
tion of test input points and we are allowed to locate training input points at any desired
positions (e.g., Wiens, 2000; Kanamori and Shimodaira, 2003; Sugiyama, 2006). The goal
of population-based active learning is to find the optimal training input density from
which we generate training input points.

On the other hand, in pool-based active learning, the test input distribution is un-
known but samples from the test input distribution are given (e.g., McCallum and Nigam,
1998; Bach, 2007; Kanamori, 2007). The goal of pool-based active learning is to choose
the best input samples from the pool of test input samples. If we have infinitely many
test input samples, the pool-based problem is reduced to the population-based problem.

In this paper, we address the problem of pool-based active learning in linear regression
scenarios and propose a new algorithm.

1.2 Active Learning with Misspecified Models and Covariate
Shift

In traditional active learning research (Fedorov, 1972; Cohn et al., 1996; Fukumizu, 2000),
it is often assumed that the model used for function learning is correctly specified, i.e., it
can exactly realize the learning target function. However, such an assumption may not be
satisfied in reality and the violation of this assumption can cause significant performance
degradation (Wiens, 2000; Kanamori and Shimodaira, 2003; Sugiyama, 2006). For this
reason, we do not assume from the beginning that our model is correct in this paper. This
highly enlarges the range of application of active learning techniques.

In the active learning scenarios, the distribution of training input points is gener-
ally different from that of test input points since the location of training input points
is designed by users. Such a situation is often referred to as covariate shift in statistics
(Shimodaira, 2000). Covariate shift does not matter when the model is correctly speci-
fied. However, when we deal with misspecified models, covariate shift has a significant

1In this paper, we use the term “active learning” for batch selection of training input location. How-
ever, these days, it tends to be used for a sequential choice of training input location in an interactive
manner.



Pool-based Active Learning in Approximate Linear Regression 3

influence—for example, ordinary least-squares (OLS) is no longer unbiased even asymp-
totically. Therefore, we need to explicitly take the bias caused by covariate shift into
account when we work with misspecified models. A standard approach to alleviating the
influence of covariate shift is to use an importance-weighting technique (Fishman, 1996),
where the term ‘importance’ refers to the ratio of test and training input densities. For
example, in parameter learning, OLS is biased, but Importance-Weighted Least-Squares
(IWLS) is asymptotically unbiased (Shimodaira, 2000).

1.3 Importance Estimation in Pool-based Active Learning

In population-based active learning, importance-weighting techniques can be employed for
bias reduction in a straightforward manner since the test input distribution is accessible
by assumption and the training input distribution is also known since it is designed by
ourselves (Wiens, 2000; Kanamori and Shimodaira, 2003; Sugiyama, 2006). However, in
pool-based active learning, the test and training input distributions may both be unknown
and therefore the importance weights cannot be directly computed. A naive approach to
coping with this problem is to estimate the training and test input distributions from
training and test input samples. However, density estimation is known to be a hard
problem particularly in high dimensional problems. Therefore, such a naive approach
may not be useful in practice. This difficulty could be eased by employing recently
developed methods of direct importance estimation (Huang et al., 2007; Bickel et al.,
2007; Sugiyama et al., 2008), which allow us to obtain the importance weight without
going through density estimation. However, these methods still contain some estimation
error.

A key observation in pool-based active learning is that we choose training input points
from the pool of test input points. This implies that our training input distribution
is defined over the test input distribution, i.e., the training input distribution can be
expressed as a product of the test input distribution and a resampling bias function.
This decomposition allows us to directly compute the importance weight based on the
resampling bias function, which is more accurate and computationally more efficient than
the naive density estimation approach and the direct importance estimation approaches.

1.4 Single-trial Analysis of Generalization Error

In practice, we are only given a single realization of training samples. Therefore, ideally, we
want to have an estimator of the generalization error that is accurate in each single trial.
However, we may not be able to avoid taking the expectation over the training output
noise since it is not generally possible to know the realized value of noise. On the other
hand, the location of the training input points is accessible by nature. Motivated by this
fact, we propose to estimate the generalization error without taking the expectation over
training input points. More specifically, we evaluate the unbiasedness of the generalization
error in terms of the conditional expectation of training output noise given training input
points (see also Sugiyama et al., 2009).
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(a) Generalization error for training input den-
sity pa

(b) Generalization error for training input den-
sity pb

Figure 1: Schematic illustrations of the conditional-expectation and full-expectation of
the generalization error.

To illustrate a possible advantage of this conditional expectation approach, let us
consider a simple population-based active learning scenario where only one training sample
(x, y) is gathered (see Figure 1). Suppose that the input x is drawn from a user-chosen
training input distribution and y is contaminated by additive noise ϵ. The solid curves
in Figure 1(a) depict Gpa(ϵ|x), the generalization error for a training input density pa

as a function of the training output noise ϵ given a training input point x. The three
solid curves correspond to the cases where the realizations of the training input point x
are a1, a2, and a3, respectively. The value of the generalization error for the training
input density pa in the full-expectation approach is depicted by the dash-dotted line,
where the generalization error is expected over both the training output noise ϵ and the
training input points x (i.e., the mean of the three solid curves). The values of the
generalization error in the conditional-expectation approach are depicted by the dotted
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lines, where the generalization errors are expected only over the training output noise
ϵ, given x = a1, a2, a3, respectively (i.e., the mean of each solid curve). The graph in
Figure 1(b) depicts the generalization errors for another training input density pb in the
same manner.

In the full-expectation framework, the density pa is judged to be better than pb regard-
less of the realization of the training input point since the dash-dotted line Figure 1(a)
is lower than that in Figure 1(b). However, as the solid curves show, pa is often worse
than pb in single trials. On the other hand, in the conditional-expectation framework, the
goodness of the density is adaptively judged depending on the realizations of the training
input point x. For example, pb is judged to be better than pa if a2 and b3 are realized,
or pa is judged to be better than pb if a3 and b1 are realized. That is, the conditional-
expectation framework may provide a finer choice of the training input density (and the
training input points) than the full-expectation framework.

1.5 Contributions of This Paper

We extend two population-based active learning methods proposed by Wiens (2000) and
Sugiyama (2006) to pool-based scenarios. The pool-based extension of the method by
Wiens (2000) allows us to obtain a closed-form solution of the best resampling bias func-
tion; thus it is computationally very efficient. However, this method is based on the
full-expectation analysis of the generalization error, so the obtained solution is not nec-
essarily optimal in terms of the single-trial generalization error. On the other hand, the
pool-based extension of the method by Sugiyama (2006) can give a better solution since
it is based on the conditional-expectation analysis of the generalization error. However,
it does not have a closed-form solution and therefore some additional search strategy is
needed.

To cope with this problem, we propose a practical procedure by combining the above
two pool-based active learning methods—we use the analytic optimal solution of the
full-expectation method for efficiently searching for a better solution in the conditional-
expectation method. Simulations with toy and benchmark datasets show that the pro-
posed active learning method compares favorably with other active learning methods as
well as the baseline passive learning scheme. Furthermore, the proposed active learning
method is shown to be also useful in wafer alignment in semiconductor exposure appara-
tus.

The rest of this paper is organized as follows. In Section 2, the complete algorithm of
the proposed active learning method is described. In Section 3, derivation and justification
of the proposed algorithm is given. In Section 4, the relation between the proposed and
existing active learning methods is discussed. In Section 5, numerical results using toy
and benchmark datasets are presented. In Section 6, the proposed method is applied to
a wafer alignment problem in semiconductor exposure apparatus. Finally, in Section 7,
concluding remarks and future prospects are given.
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Figure 2: Regression problem.

2 A New Pool-based Active Learning Method

In this section, we formulate the pool-based active learning problem in linear regression
scenarios and describe our new algorithm. Derivation of the proposed algorithm is given
in Section 3.

2.1 Formulation of Pool-based Active Learning in Regression

We address a regression problem of learning a real-valued function f(x) defined on D ⊂
Rd. We are given a ‘pool’ of test input points, {xte

j }nte
j=1, which are drawn independently

from an unknown test input distribution with density pte(x). We assume that pte(x) > 0
for all x ∈ D. From the pool, we are allowed to choose ntr (≪ nte) input points for
observing output values. Let {xtr

i }ntr
i=1 be input points selected from the pool and {ytr

i }ntr
i=1

be corresponding output values, which are called training samples :

{(xtr
i , ytr

i ) | ytr
i = f(xtr

i ) + ϵtr
i }ntr

i=1, (1)

where {ϵtr
i }ntr

i=1 are i.i.d. noise with mean zero and unknown variance σ2.
The goal of the regression task is to accurately predict the output values {f(xte

j )}nte
j=1

at all test input points2 {xte
j }nte

j=1. The squared loss is adopted as our error metric:

1

nte

nte∑
j=1

(
f̂(xte

j ) − f(xte
j )
)2

, (2)

where f̂(x) is a function learned from the training samples {(xtr
i , ytr

i )}ntr
i=1.

The above formulation is summarized in Figure 2.

2Under the assumption that ntr ≪ nte, the difference between the prediction error at all test input
points {xte

j }nte
j=1 and the remaining test input points {xte

j }nte
j=1\{xtr

i }
ntr
i=1 is negligibly small. More specif-

ically, if ntr = o(
√

nte), all the discussions in this paper is still valid even when the prediction error is
evaluated only at the remaining test input points.
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2.2 Weighted Least-squares for Linear Regression Models

The following linear regression model is used for learning:

f̂(x) =
t∑

ℓ=1

θℓφℓ(x), (3)

where {φℓ(x)}t
ℓ=1 are fixed linearly independent basis functions. θ = (θ1, θ2, . . . , θt)

⊤ are
parameters to be learned, where ⊤ denotes the transpose of a vector or a matrix.

The parameter θ of our regression model is learned by Weighted Least-Squares (WLS)
with a weight function w(x) (> 0 for all x ∈ D), i.e.,

θ̂W = argmin
θ

[
ntr∑
i=1

w(xtr
i )
(
f̂(xtr

i ) − ytr
i

)2
]

, (4)

where the subscript ‘W’ denotes ‘Weighted’. Our specific choice of the weight function
will be shown later. Note that the solution θ̂W is invariant under constant scaling of the
weight function w(x) (> 0). Let X be the ntr × t matrix with the (i, ℓ)-th element

Xi,ℓ = φℓ(x
tr
i ). (5)

Let W be the ntr × ntr diagonal matrix with the i-th diagonal element

Wi,i = w(xtr
i ). (6)

Then θ̂W is given in a closed-form as

θ̂W = LWytr, (7)

where

LW = (X⊤WX)−1X⊤W , (8)

ytr = (ytr
1 , ytr

2 , . . . , ytr
ntr

)⊤. (9)

2.3 Proposed Active Learning Algorithm: P-ALICE

The goal of pool-based active learning is, from the pool of test input points {xte
j }nte

j=1, to
choose the best input points {xtr

i }ntr
i=1 for gathering output values {ytr

i }ntr
i=1 that minimizes

the prediction error (2). Here, our pool-based active learning algorithm is summarized
without going into the technical details; the derivation as well as its justification will be
given in Section 3.

First, a candidate set of training input points {xtr
i }ntr

i=1 is prepared, which is a subset of
{xte

j }nte
j=1. More specifically, a resampling bias function b(x) (> 0 for all x ∈ D) is prepared

and ntr training input points are chosen from the pool of test input points {xte
j }nte

j=1 with
probability proportional to

{b(xte
j )}nte

j=1. (10)
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Later, we explain how a family of useful resampling bias functions is prepared. Then the
‘quality’ of the candidate training input points {xtr

i }ntr
i=1 is evaluated by

P-ALICE = tr(ÛLWL⊤
W), (11)

where the weight function w(x) included in LW via W is defined as3

w(xte
j ) =

1

b(xte
j )

. (12)

Û is the t × t matrix with the (ℓ, ℓ′)-th element

Ûℓ,ℓ′ =
1

nte

nte∑
j=1

φℓ(x
te
j )φℓ′(x

te
j ). (13)

We call the above criterion pool-based ALICE (PALICE), which is a pool-based exten-
sion of a population-based active learning criterion ALICE (Active Learning using the
Importance-weighted least-squares learning based on Conditional Expectation of the gen-
eralization error) (Sugiyama, 2006); P-ALICE is an estimator of the prediction error
defined by (2), which will be detailed in Section 3.

Then the above evaluation is repeated for each resampling bias function in our candi-
date set and the best one with the smallest P-ALICE score is chosen. Once the resampling
bias function and the training input points are chosen, training output values {ytr

i }ntr
i=1 are

gathered at the chosen location and a linear regression model (3) is trained using WLS
with the chosen weight function.

In the above procedure, the choice of the candidates of the resampling bias function
b(x) is arbitrary. As a heuristic, we propose using the following family of resampling bias
functions parameterized by a scalar λ:

bλ(x) =

(
t∑

ℓ,ℓ′=1

[Û
−1

]ℓ,ℓ′φℓ(x)φℓ′(x)

)λ

. (14)

The parameter λ controls the ‘shape’ of the training input distribution—when λ = 0,
the weight is uniform over all test input samples. Thus the above choice includes passive

3The expectation over a probability density q(x) can be transformed into the expectation over another
probability density p(x) by setting the weight function w(x) as the ratio of two input densities, w(x) =
p(x)/q(x): ∫

A(x)q(x)dx =
∫

A(x)w(x)p(x)dx,

which is known as the importance sampling technique (Fishman, 1996). The situation where training
and test input distributions are different is called covariate shift (Shimodaira, 2000). Active learning
naturally induces covariate shift and the bias caused by covariate shift can be compensated by the use
of importance-weighted LS (see Section 4.1 for detail). In Section 3.2, we will show that the importance
weight in the pool-based setting is given by the reciprocal of the resampling bias function. Note that this
importance-weighting idea is a general result and its application is not limited to active learning.
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Input: Test input points {xte
j }nte

j=1 and basis functions {φℓ(x)}t
ℓ=1

Output: Learned parameter θ̂W

Compute the t × t matrix Û with Ûℓ,ℓ′ = 1
nte

∑nte

j=1 φℓ(x
te
j )φℓ′(x

te
j );

For several different values of λ (possibly around λ = 1/2)

Compute {bλ(x
te
j )}nte

j=1 with bλ(x) =
(∑t

ℓ,ℓ′=1[Û
−1

]ℓ,ℓ′φℓ(x)φℓ′(x)
)λ

;

Choose X tr
λ = {xtr

i }ntr
i=1 from {xte

j }nte
j=1 with probability proportional to {bλ(x

te
j )}nte

j=1;
Compute the ntr × t matrix Xλ with [Xλ]i,ℓ = φℓ(x

tr
i );

Compute the ntr × ntr diagonal matrix W λ with [Wλ]i,i = (bλ(x
tr
i ))

−1
;

Compute Lλ = (X⊤
λ W λXλ)

−1X⊤
λ W λ;

Compute P-ALICE(λ) = tr(ÛLλL
⊤
λ );

End

Compute λ̂ = argminλ P-ALICE(λ);
Gather training output values ytr = (ytr

1 , ytr
2 , . . . , ytr

ntr
)⊤ at X tr

λ̂
;

Compute θ̂W = Lλ̂y
tr;

Figure 3: Pseudo code of proposed pool-based active learning algorithm.

learning (the training and test distributions are equivalent) as a special case. The best
value of λ may be searched for by simple multi-point search, i.e., the value of P-ALICE is
computed for several different values of λ and the minimizer is chosen. In practice, solution
search may be intensively carried out around λ = 1/2 (the reason will be explained in
Section 3.6; an example of intensive search around λ = 1/2 is given in Section 5.1).

A pseudo code of the proposed pool-based active learning algorithm is described in
Figure 3.

3 Justification of Proposed Active Learning Algo-

rithm

In this section, we explain how we came up with the active learning algorithm described
in Section 2.3.

3.1 Overview of This Section

The proposed P-ALICE criterion (11) is an extention of a population-based active learn-
ing criterion called ALICE (Active Learning using the Importance-weighted least-squares
learning based on Conditional Expectation of the generalization error)4 (Sugiyama, 2006)
to pool-based scenarios. Our choice of candidates of the resampling bias function (14) is

4ALICE corresponds to Conditional-expectation Variance-only active learning for WLS (CVW), if we
express the name consistent with other methods.
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motivated by a pool-based extension of another population-based active learning method
which we call Full-expectation Variance-only active learning for WLS (FVW) (Wiens,
2000).

We review ALICE in Section 3.2 and extend it to the pool-based scenarios in Sec-
tion 3.3. Then we review FVW in Section 3.4 and extend it to the pool-based scenarios in
Section 3.5. Finally, in Section 3.6, P-ALICE and P-FVW are combined and the proposed
active learning algorithm is obtained.

3.2 Population-based Active Learning Criterion: ALICE

Here we review a population-based active learning criterion ALICE.
In the population-based framework, the test input density pte(x) is given (e.g., Fuku-

mizu, 2000; Wiens, 2000; Kanamori and Shimodaira, 2003; Sugiyama, 2006). The goal
is to determine the best training input density ptr(x) from which training input points
{xtr

i }ntr
i=1 are drawn.

The aim of the regression task in the population-based framework is to accurately
predict the output values for all test input samples drawn from pte(x). Thus the error
metric (often called the generalization error) is

G′ =

∫ (
f̂(xte) − f(xte)

)2

pte(x
te)dxte. (15)

Suppose the regression model (3) approximately5 includes the learning target function
f(x), i.e., for a scalar δ such that |δ| is small, f(x) is expressed as

f(x) = g(x) + δr(x), (16)

where g(x) is the optimal approximation to f(x) by the model (3):

g(x) =
t∑

ℓ=1

θ∗ℓφℓ(x). (17)

θ∗ = (θ∗1, θ
∗
2, . . . , θ

∗
t )

⊤ is the unknown optimal parameter defined by

θ∗ = argmin
θ

G′. (18)

5In traditional active learning literature (Fedorov, 1972; Cohn et al., 1996; Fukumizu, 2000), the model
is often assumed to be correctly specified, i.e., the target function f(x) can be realized by the model (3).
However, this may not be satisfied in practice and these methods are shown to perform poorly when
model correctness is not fulfilled (e.g., Wiens, 2000; Kanamori and Shimodaira, 2003; Sugiyama, 2006).
On the other hand, some domain-specific knowledge is often available and it may be possible to construct
a ‘good’ model, which is not exactly correct, but approximately correct. This is the situation we are
addressing here. When the model is heavily misspecified, it is necessary to perform model selection,
which is discussed in Sugiyama and Rubens (2008); see also Section 7.
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Figure 4: Orthogonal decomposition of f(xtr).

δr(x) in Eq.(16) is the residual function, which is orthogonal to {φℓ(x)}t
ℓ=1 under pte(x)

(see Figure 4): ∫
r(xte)φℓ(x

te)pte(x
te)dxte = 0 for ℓ = 1, 2, . . . , t. (19)

The function r(x) governs the nature of the model error, while δ is the possible magnitude
of this error. In order to separate these two factors, the following normalization condition
on r(x) is further imposed: ∫ (

r(xte)
)2

pte(x
te)dxte = 1. (20)

Let E{ϵi}
ntr
i=1

be the expectation over the noise {ϵtr
i }ntr

i=1. Then, the generalization error

expected over the training output noise can be decomposed into6 the (squared) bias term
B, the variance term V , and the model error δ2:

E
{ϵi}

ntr
i=1

G′ = B + V + δ2, (21)

where

B =

∫ (
E

{ϵi}
ntr
i=1

f̂(xte) − g(xte)

)2

pte(x
te)dxte, (22)

V =

∫
E

{ϵi}
ntr
i=1

(
f̂(xte) − E

{ϵi}
ntr
i=1

f̂(xte)

)2

pte(x
te)dxte. (23)

Since δ is constant which depends neither on ptr(x) nor {xtr
i }ntr

i=1, δ2 is subtracted from
G′ and define it by G.

G = G′ − δ2. (24)

For parameter learning, importance-weighted least-squares (IWLS) is used (Shi-
modaira, 2000), i.e., Eq.(4) with the weight function w(x) being the ratio of densities
called the importance ratio:

w(x) =
pte(x)

ptr(x)
. (25)

6Sometimes B + δ2 is referred to as the bias, but they are treated separately here since B is reducible
while δ2 is constant for a fixed model.
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The solution θ̂W is given by Eq.(7).
Let GW, BW, and VW be G, B, and V for the learned function obtained by IWLS,

respectively. Let U be the t × t matrix with the (ℓ, ℓ′)-th element

Uℓ,ℓ′ =

∫
φℓ(x

te)φℓ′(x
te)pte(x

te)dxte. (26)

Then, for IWLS with an approximately correct model, B and V are expressed as follows
(Sugiyama, 2006):

BW = Op(δ
2n−1

tr ), (27)

VW = σ2tr(ULWL⊤
W) = Op(n

−1
tr ). (28)

Note that the asymptotic order in the above equations is in probability since random
variables {xtr

i }ntr
i=1 are included. The above equations imply that if7 δ = op(1),

E
{ϵi}

ntr
i=1

GW = σ2tr(ULWL⊤
W) + op(n

−1
tr ). (29)

The active learning criterion ALICE is motivated by this asymptotic form, i.e., ALICE
chooses the training input density ptr(x) from the set P of all strictly positive probability
densities8 as

pALICE
tr = argmin

ptr∈P
ALICE, (30)

where
ALICE = tr(ULWL⊤

W). (31)

Practically, P may be replaced by a finite set P̂ of strictly positive probability densities
and choose the one that minimizes ALICE from the set P̂ .

3.3 Extension of ALICE to Pool-based Scenarios: P-ALICE

Our basic idea of P-ALICE is to extend the population-based ALICE method to the
pool-based scenario, where pte(x) is unknown, but a pool of test input samples {xte

i }nte
i=1

drawn independently from pte(x) is given. Under the pool-based setting, the following
two quantities included in ALICE are inaccessible:

(A) The expectation over pte(x) contained in U ,

(B) The importance ratio pte(x)/ptr(x) at training input points {xtr
i }ntr

i=1 contained in
LW through W .

7Since δ is the model error which is a constant, the expression δ = op(1) is not achievable in reality.
However, such an assumption seems common in the analysis of approximately correct models and this
roughly means δ is small.

8More precisely, ALICE depends not only on the training input density ptr(x), but also the realized
values {xtr

i }
ntr
i=1 of the input points. See Section 7 for some additional discussions on this issue.
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Regarding (A), the expectation over pte(x) may be approximated by the expectation over
test input samples {xte

i }nte
i=1, which is known to be consistent. However, approximating

(B) is not straightforward (as explained in Section 1.3).
In pool-based active learning, training input points are chosen from the pool of test

input points following a resampling bias function b(x). This implies that our training input
distribution is defined over the test input distribution, i.e., the training input distribution
is expressed as a product of the test input distribution and a resampling bias function
b(x) (cf. Kanamori, 2007):

ptr(x
te
j ) ∝ pte(x

te
j )b(xte

j ). (32)

This immediately shows that the importance weight w(xte
j ) is given by

w(xte
j ) ∝ 1

b(xte
j )

. (33)

Note that the scaling factor of w(x) is irrelevant in IWLS (cf. Eq.(4)). Eq.(33) is more
accurate and computationally more efficient than the naive density estimation approach
and the direct importance estimation approaches. Consequently, we obtain the P-ALICE
criterion (11).

3.4 Population-based Active Learning Criterion: FVW

Next, we show how we came up with the candidate set of resampling bias functions given
in Eq.(14). Our choice is based on a population-based active learning method proposed
by Wiens (2000). First, we consider the population-based setting and briefly review this
method.

For IWLS, Kanamori and Shimodaira (2003) proved that the generalization error
expected over training input points {xtr

i }ntr
i=1 and training output noise {ϵtr

i }ntr
i=1 is asymp-

totically expressed as

E
{xi}

ntr
i=1

E
{ϵi}

ntr
i=1

GW =
1

ntr

tr(U−1S) +
σ2

ntr

tr(U−1T ) + O(ntr
− 3

2 ), (34)

where E{xi}
ntr
i=1

is the expectation over training input points {xtr
i }ntr

i=1. S and T are the
t × t matrices with the (ℓ, ℓ′)-th elements

Sℓ,ℓ′ = δ2

∫
φℓ(x

te)φℓ′(x
te)
(
r(xte)

)2
w(xte)pte(x

te)dxte, (35)

Tℓ,ℓ′ =

∫
φℓ(x

te)φℓ′(x
te)w(xte)pte(x

te)dxte, (36)

where w(x) above is the importance ratio (25). Note that 1
ntr

tr(U−1S) corresponds to

the squared bias while σ2

ntr
tr(U−1T ) corresponds to the variance.

It can be shown (Kanamori and Shimodaira, 2003; Sugiyama, 2006) that if δ = o(1),

E
{xi}

ntr
i=1

E
{ϵi}

ntr
i=1

GW =
σ2

ntr

tr(U−1T ) + o(ntr
−1). (37)
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Based on this asymptotic form, a population-based active learning criterion, which we
refer to as Full-expectation Variance-only active learning for WLS (FVW), is given as
follows (Wiens, 2000):

pFVW
tr = argmin

ptr∈P
FVW, (38)

where

FVW =
1

ntr

tr(U−1T ). (39)

A notable feature of FVW is that the optimal training input density pFVW
tr (x) can be

obtained in a closed-form (Wiens, 2000; Kanamori, 2007):

pFVW
tr (x) ∝ pte(x)bFVW

(x), (40)

where

bFVW
(x) =

(
t∑

ℓ,ℓ′=1

[U−1]ℓ,ℓ′φℓ(x)φℓ′(x)

) 1
2

. (41)

Note that Eq.(40) implies that the importance ratio for the optimal training input density
pFVW

tr (x) is given by

wFVW
(x) ∝ 1

bFVW
(x)

. (42)

3.5 Extension of FVW to Pool-based Scenarios: P-FVW

If the values of the function bFVW
(x) at the test input points {xte

j }nte
j=1 are available,

they can be used as a resampling bias function in pool-based active learning. However,
since U is unknown in the pool-based scenario, it is not possible to directly compute
the values of bFVW

(x) at the test input points {xte
j }nte

j=1. To cope with this problem, we

propose replacing U with an empirical estimate Û . Then, the resampling bias function
{bP-FVW

(xte
j )}nte

j=1 is given by

bP-FVW
(xte

j ) =

(
t∑

ℓ,ℓ′=1

[Û
−1

]ℓ,ℓ′φℓ(x
te
j )φℓ′(x

te
j )

) 1
2

. (43)

The importance weight is given as

wP-FVW
(xte

j ) ∝ 1

bP-FVW
(xte

j )
. (44)

3.6 Combining P-ALICE and P-FVW

It was shown that P-FVW has a closed-form solution of the optimal resampling bias
function. This directly suggests to use bP-FVW

(xte
j ) for active learning. Nevertheless, we

argue that it is possible to further improve the solution.
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The point of our argument is the way the generalization error is analyzed—the op-
timality of FVW is in terms of the expectation over both training input points {xtr

i }ntr
i=1

and training output noise {ϵtr
i }ntr

i=1 (see Eq.(34)), while ALICE is optimal in terms of the
conditional expectation over training output noise {ϵtr

i }ntr
i=1 given {xtr

i }ntr
i=1. The former

is called the full-expectation (or data-independent) analysis while the latter is called the
conditional-expectation (or input-dependent) analysis (Sugiyama et al., 2009).

What we really want to evaluate in reality is the single-trial generalization error, i.e.,
the generalization error where both {xtr

i }ntr
i=1 and {ϵtr

i }ntr
i=1 are given and fixed. However,

the single-trial generalization error cannot be directly evaluated since the noise {ϵtr
i }ntr

i=1 is
not accessible in practice. On the other hand, the training input points {xtr

i }ntr
i=1 are known

and accessible in the current setting. The idea of the conditional-expectation approach
is to make use of the information provided by the realized input points {xtr

i }ntr
i=1. It was

shown that the conditional-expectation approach is provably more accurate in the single-
trial analysis than the full-expectation approach (Sugiyama, 2006), which is explained
below.

ALICE and FVW are both variance estimators; the difference is that ALICE is an
estimator of conditional variance expected over {ϵtr

i }ntr
i=1 given {xtr

i }ntr
i=1, while FVW is an

estimator of full variance expected over both {ϵtr
i }ntr

i=1 and {xtr
i }ntr

i=1. ALICE (31) and FVW

(39) are related to each other by

ALICE = FVW + Op(n
− 3

2
tr ), (45)

implying that they are actually equivalent asymptotically. However, they are different in

the order of n−1
tr ; indeed, if δ = op(n

− 1
4

tr ) and terms of op(n
−3
tr ) are ignored, the following

inequality holds (see Sugiyama, 2006, for its proof):

E
{ϵi}

ntr
i=1

(σ2FVW − GW)2 ≥ E
{ϵi}

ntr
i=1

(σ2ALICE − GW)2. (46)

This implies that σ2ALICE is asymptotically a more accurate estimator of the single-trial
generalization error GW than σ2FVW.

This analysis suggests that using P-ALICE is more suitable than P-FVW. However, a
drawback of P-ALICE is that a closed-form solution is not available—thus, candidates of
training input samples need to be prepared and the best solution should be searched for
from the candidates. To ease this problem, our heuristic is to use the closed-form solution
of P-FVW as a ‘base’ candidate and search for a better solution around the vicinity of
the P-FVW solution. More specifically, a family of resampling bias functions (14) is
considered, which is parameterized by λ. This family consists of the optimal solution
of P-FVW (λ = 1/2) and its variants (λ ̸= 1/2); passive learning is also included as a
special case (λ = 0) in this family. We note that the way the resampling bias function
is parameterized in Eq.(14) is just a heuristic; alternative strategies may be used for
parameterizing resampling bias functions. Using a richer function family will improve
the search performance, but this increases the computation time in turn. The current
heuristic is very simple and contain only one parameter λ, but we experimentally show in
Section 5 that this simple heuristic works well.
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The extensive experimental results in Section 5 show that an additional search using
P-ALICE tends to improve the active learning performance over P-FVW.

4 Relation to Existing Methods

In this section, the proposed active learning method is qualitatively compared with exist-
ing methods.

4.1 Conditional-expectation Variance-only Active Learning for
OLS: CVO

Let us begin with population-based scenarios. A traditional way to learn the parameters
in the regression model (3) is Ordinary Last-Squares (OLS), i.e., the parameter vector θ
is determined as follows.

θ̂O = argmin
θ

[
ntr∑
i=1

(
f̂(xtr

i ) − ytr
i

)2
]

, (47)

where the subscript ‘O’ denotes ’Ordinary’. θ̂O is analytically given by

θ̂O = LOytr, (48)

where
LO = (X⊤X)−1X⊤. (49)

Let GO, BO, and VO be G, B, and V for the learned function obtained by OLS,
respectively. For an approximately correct model, BO and VO are expressed as follows
(e.g., Sugiyama, 2006):

BO = O(δ2), (50)

VO = σ2tr(ULOL⊤
O) = Op(n

−1
tr ). (51)

Motivated by these asymptotic forms, a population-based active learning method, which
we refer to as CVO (Conditional-expectation Variance-only active learning for OLS), op-
timizes the training input density by the following criterion (Fedorov, 1972; Cohn et al.,
1996; Fukumizu, 2000).

pCVO
tr = argmin

ptr∈P
CVO, (52)

where
CVO = tr(ULOL⊤

O). (53)

As shown in Sugiyama (2006), if δ = op(n
− 1

2
tr ),

E
{ϵi}

ntr
i=1

GO = σ2VO + op(n
−1
tr ). (54)
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Thus, CVO requires δ = op(n
− 1

2
tr ) for its valid use. On the other hand, ALICE requires

δ = op(1), which is weaker than CVO. Therefore, ALICE has a wider range of applications
than CVO. This difference comes from the fact that in active learning, the training input
points and test input points are generally drawn from different distributions, which is often
referred to as covariate shift (Shimodaira, 2000). Under covariate shift, if the model is
misspecified, OLS is not unbiased even asymptotically; instead, IWLS is asymptotically
unbiased. Asymptotic unbiasedness of IWLS would be intuitively understood by the
following identity (Fishman, 1996):∫ (

f̂(xte) − f(xte)
)2

pte(x
te)dxte =

∫ (
f̂(xtr) − f(xtr)

)2

w(xtr)ptr(x
tr)dxtr, (55)

where w(x) above is the importance ratio (25).
CVO can be immediately extended to a pool-based method just by replacing U with

Û , i.e.,
P-CVO = tr(ÛLOL⊤

O). (56)

Note that CVO is often referred to as the Q-optimal design (Fedorov, 1972). The A-
optimal design and D-optimal design are related active learning criteria which minimize
the trace and determinant of the covariance matrix LOL⊤

O, respectively. Although A-
optimality and D-optimality are different from Q-optimality, they all share the common
drawback for misspecified models, i.e., the bias B can be large.

4.2 Full-expectation Bias-and-variance Active Learning for OLS
and WLS: FBVOW

Let us again begin with population-based scenarios. Let H be the t × t matrix defined
by

H = S + σ2T , (57)

where S and T are defined in Eqs.(35) and (36), respectively. Then Eq.(34) is expressed
as

E
{xi}

ntr
i=1

E
{ϵi}

ntr
i=1

GW =
1

ntr

tr(U−1H) + O(n
− 3

2
tr ). (58)

Kanamori and Shimodaira (2003) developed a method to approximate H by a two-stage
sampling scheme: the training samples gathered in the first stage are used for estimating
H and the distribution of the remaining training input points is optimized based on the
estimated H in the second stage. A more detailed description is given below.

First, ñtr (≤ ntr) initial training input points {x̃tr
i }ñtr

i=1 are created independently
following the test input distribution with density pte(x), and corresponding output values

{ỹtr
i }ñtr

i=1 are observed. Let D̃ and Q̃ be the ñtr × ñtr diagonal matrices with the i-th
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diagonal elements

D̃i,i =
pte(x̃

tr
i )

ptr(x̃
tr
i )

, (59)

Q̃i,i = [ỹtr − X̃(X̃
⊤
X̃)−1X̃

⊤
ỹtr]i, (60)

where X̃ is the ñtr × t matrix with the (i, ℓ)-th element

X̃i,ℓ = φℓ(x̃
tr
i ), (61)

and
ỹtr = (ỹtr

1 , ỹtr
2 , . . . , ỹtr

ñtr
)⊤. (62)

Then an approximation H̃ of the unknown matrix H in Eq.(58) is given by

H̃ =
1

ñtr

X̃
⊤
D̃Q̃

2
X̃. (63)

Based on this approximation, a population-based active learning criterion, which we
refer to as Full-expectation Bias-and-Variance active learning for OLS and WLS method
(FBVOW), is given as

pFBVOW
tr = argmin

ptr∈P
FBVOW, (64)

where

FBVOW =
1

ntr

tr(Ũ
−1

H̃), (65)

Ũ =
1

ñtr

X̃
⊤
X̃. (66)

Note that in Eq.(65), U is replaced by its consistent estimator Ũ . However, this re-
placement may not be necessary when the test input density pte(x) is known (Sugiyama,
2006).

After determining the optimal density pFBVOW
tr (x), the remaining (ntr−ñtr) training in-

put points {xtr
i }ntr−ñtr

i=1 are generated independently following pFBVOW
tr (x) and correspond-

ing training output values {ytr
i }ntr−ñtr

i=1 are observed. Finally, the parameter θ is learned
using {(x̃tr

i , ỹtr
i )}ñtr

i=1 and {(xtr
i , ytr

i )}ntr−ñtr
i=1 as

θ̂OW = argmin
θ

[
ñtr∑
i=1

(
f̂(x̃tr

i ) − ỹtr
i

)2

+
ntr−ñtr∑

i=1

wFBVOW
(xtr

i )
(
f̂(xtr

i ) − ytr
i

)2
]

, (67)

where

wFBVOW
(x) =

pte(x)

pFBVOW
tr (x)

. (68)

The subscript ‘OW’ denotes ‘Ordinary and Weighted’. Note that FBVOW depends on the
realization of {x̃tr

i }ñtr
i=1, but is independent of the realization of {xtr

i }ntr−ñtr
i=1 .
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Kanamori and Shimodaira (2003) proved that for ñtr = o(ntr), limntr→∞ ñtr = ∞, and
δ = O(1),

E
{xi}

ntr
i=1

E
{ϵi}

ntr
i=1

GW = FBVOW + o(ntr
−1), (69)

by which the use of FBVOW is justified. The order of δ required above is weaker than
that required in ALICE or FVW. Therefore, FBVOW has a wider range of applications
than ALICE or FVW. However, this property may not be practically so valuable since
learning with totally misspecified models (i.e., δ = O(1)) may not work well due to large
model error (e.g., when a highly non-linear function is approximated by a straight line).
Furthermore, the fact that ñtr training input points should be gathered following pte(x)
in the first stage implies that we are only allowed to optimize the location of ntr − ñtr

remaining training input points. This is highly restrictive when the total number ntr is
not so large, which would be a usual case in active learning (e.g., Coomans et al., 1983;
Baldi and Brunak, 1998; Warmuth et al., 2003).

It was shown that the optimal training input density pFBVOW
tr (x) can be expressed in

a closed-form as follows (Kanamori and Shimodaira, 2003; Kanamori, 2007):

pFBVOW
tr (x) ∝ pte(x)bFBVOW

(x), (70)

where

bFBVOW
(x) =

(
t∑

ℓ,ℓ′=1

[U−1]ℓ,ℓ′φℓ(x)φℓ′(x)(δ2r2(x) + σ2)

) 1
2

. (71)

However, since (δ2r2(x) + σ2) is inaccessible, the above closed-form cannot be directly
used for active learning. To cope with this problem, Kanamori (2007) proposed using a
regression method. It can be shown that a consistent estimate of the value of (bFBVOW

(x))2

at x̃tr
i (i = 1, 2, . . . , ñtr) is given by [Q̃

2
X̃Ũ

−1
X̃

⊤
]i,i. Based on the input-output sam-

ples {(x̃tr
i , [Q̃

2
X̃Ũ

−1
X̃

⊤
]i,i)}ñtr

i=1, a regression method is used for learning the function

(bFBVOW
(x))2. Let us denote the learned function by b̂FBVOW

(x). Then the optimal train-
ing input density and the importance weight are approximated as

p̂FBVOW
tr (x) ∝ pte(x)̂bFBVOW

(x), (72)

ŵFBVOW
(x) ∝ 1

b̂FBVOW
(x)

. (73)

Since the value of b̂FBVOW
(x) is available at any input location x, {b̂FBVOW

(xte
j )}nte

j=1

can be computed and used as a resampling bias function in pool-based active learning.
However, this method still suffers from the limitations caused by the two-stage approach
pointed out above. Furthermore, obtaining a good approximation b̂P-FBVOW

(x) by regres-
sion is generally difficult; thus P-FBVOW may not be so reliable in practice.
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5 Simulations

In this section, the proposed and existing active learning methods are quantitatively
compared through numerical experiments.

5.1 Toy Dataset

We first illustrate how the proposed and existing methods behave under a controlled
setting.

Let the input dimension be d = 1 and let the learning target function be

f(x) = 1 − x + x2 + δr(x), (74)

where

r(x) =
z3 − 3z√

6
with z =

x − 0.2

0.4
. (75)

Note that the above r(x) is the Hermite polynomial, which ensures the orthonormality
of r(x) to the 2nd order polynomial model under a Gaussian test input distribution (see
below for detail). Let us consider the following three cases.

δ = 0, 0.03, 0.06. (76)

See the top graph of Figure 5 for the profiles of f(x) with different δ.
Let the number of training samples to gather be ntr = 100 and let {ϵtr

i }ntr
i=1 be

i.i.d. Gaussian noise with mean zero and standard deviation σ = 0.3, where σ is treated
as unknown here. Let the test input density pte(x) be the Gaussian density with mean
0.2 and standard deviation 0.4; pte(x) is also treated as unknown here. See the bottom
graph of Figure 5 for the profile of pte(x). Let us draw nte = 1000 test input points
independently from the test input distribution.

A polynomial model of order 2 is used for learning:

f̂(x) = θ1 + θ2x + θ3x
2. (77)

Note that for these basis functions, the residual function r(x) in Eq.(75) fulfills the or-
thogonality condition (19) and normalization condition (20).

In this experiment, we compare the performance of the following sampling strategies:

P-ALICE: Training input points are drawn following Eq.(14) for

λ ∈ Λcoarse ∪ Λfine, (78)

where

Λcoarse = {0, 0.1, 0.2 . . . , 1}, (79)

Λfine = {0.4, 0.41, 0.42, . . . , 0.6}. (80)

Then the best value of λ is chosen from the above candidates based on Eq.(11).
IWLS is used for parameter learning.
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Figure 5: Learning target function and test input density function.

P-FVW: Training input points are drawn following Eq.(44) (or equivalently Eq.(14) with
λ = 0.5). IWLS is used for parameter learning.

P-CVO: Training input points are drawn following Eq.(14) for Eq.(78) and the best value
of λ is chosen based on Eq.(56). OLS is used for parameter learning.

P-FBVOW: Initially, 50 training input-output samples are gathered based on the test
input distribution and they are used for learning the resampling bias function
bFBVOW

(x); the resampling bias function is learned by kernel ridge regression with
Gaussian kernels, where the Gaussian width and ridge parameter are optimized
based on 5-fold cross-validation by exhaustive grid search. Then the remaining 50
training input points are chosen based on Eq.(72). OLS+IWLS is used for parameter
learning (see Eq.(67)).

Passive: Training input points are drawn uniformly from the pool of test input samples
(or equivalently Eq.(14) with λ = 0). OLS is used for parameter learning.

For references, the profile of pFVW
tr (x) (the optimal training input density by FVW; see

Eq.(40)) is also depicted in the bottom graph of Figure 5.
In Table 1, the mean squared test error (2) obtained by each method is described.

The numbers in the table are means and standard deviations over 100 trials. For better
comparison, the model error δ2 is subtracted from the obtained error and all values are
multiplied by 103. In each row of the table, the best method and comparable ones by the



Pool-based Active Learning in Approximate Linear Regression 22

Table 1: The mean squared test error for the toy dataset (means and standard deviations
over 100 trials). For better comparison, the model error δ2 is subtracted from the error and
all values are multiplied by 103. In each row of the table, the best method and comparable
ones by the Wilcoxon signed rank test at the significance level 5% are indicated with ‘◦’.

P-ALICE P-FVW P-CVO P-FBVOW Passive
δ = 0 ◦2.03±1.81 2.59±1.83 ◦1.82±1.69 6.43±6.61 3.10±3.09
δ = 0.03 ◦2.17±2.04 2.81±2.01 2.62±2.05 6.66±6.54 3.40±3.55
δ = 0.06 ◦2.42±2.65 3.19±2.59 4.85±3.37 7.65±7.21 4.12±4.71
Average ◦2.21±2.19 2.86±2.18 3.10±2.78 6.91±6.79 3.54±3.85

Wilcoxon signed rank test (e.g., Henkel, 1979) at the significance level 5% are indicated
with ‘◦’.

When δ = 0, P-CVO works the best and is followed by P-ALICE. These two meth-
ods have no statistically significant difference and are significantly better than the other
methods. When δ is increased from 0 to 0.03, the performance of P-ALICE and P-FVW

is almost unchanged, while the performance of P-CVO is considerably degraded. Conse-
quently, P-ALICE gives the best performance among all. When δ is further increased to
0.06, the performance of P-ALICE and P-FVW are still almost unchanged. On the other
hand, P-CVO performs very poorly and is outperformed even by the baseline Passive
method. P-FBVOW does not seem to work well for all three cases.

Overall, P-ALICE and P-FVW are shown to be highly robust against model mis-
specification, while P-CVO is very sensitive to the violation of the model correctness
assumption. P-ALICE significantly outperforms P-FVW, which would be caused by the
fact that ALICE is a more accurate estimator of the single-trial generalization error than
FVW (see Section 3.6).

5.2 Benchmark Datasets

The Bank, Kin, and Pumadyn regression benchmark data families provided by DELVE
(Rasmussen et al., 1996) are used here. Each data family consists of 8 different datasets:

Input dimension d: Input dimension is either d = 8 or 32.

Target function type: The target function is either ‘fairly linear’ or ‘non-linear’ (‘f’ or
‘n’).

Unpredictability/noise level: The unpredictability/noise level is either ‘medium’ or
‘high’ (‘m’ or ‘h’).

Thus 24 datasets are used in total. Each dataset includes 8192 samples, consisting of
d-dimensional input and 1-dimensional output data. For convenience, every attribute is
normalized into [0, 1].

All 8192 input samples are used as the pool of test input points (i.e., nte = 8192) and
ntr = 100 training input points are chosen from the pool when d = 8; ntr = 300 training
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input points are chosen when d = 32. The following linear regression model is used for
learning:

f̂(x) =
50∑

ℓ=1

θℓ exp

(
−∥x − cℓ∥2

2

)
, (81)

where {cℓ}50
ℓ=1 are template points randomly chosen from the pool of test input points.

Other settings are the same as the toy experiments in Section 5.1.
In addition to the pool-based methods P-ALICE, P-FVW, and P-CVO, the population-

based method ALICE is also tested here. In this experiment, the test input density pte(x)
is unknown. So it is estimated using the uncorrelated multi-dimensional Gaussian density:

pte(x) =
1

(2πγ̂2
MLE)

d
2

exp

(
−∥x − µ̂MLE∥2

2γ̂2
MLE

)
, (82)

where µ̂MLE and γ̂MLE are the maximum likelihood estimates of the mean and standard
deviation obtained from all 8192 unlabeled samples. The training input density ptr(x)
from the set of uncorrelated multi-dimensional Gaussian densities with mean µ̂MLE and
standard deviation cγ̂MLE, where

c = 0.7, 0.8, 0.9, . . . , 2.4. (83)

Based on the training input density determined by a population-based method, input
points are chosen from the pool of unlabeled samples as follows. First, provisional input
points are created following the chosen training input density. Then the input points in
the pool of unlabeled samples that are closest to the provisional input points are chosen
without overlap.

Tables 2 and 3 summarize the mean squared test error (2) for d = 8 and 32, respec-
tively. The numbers are the means and standard deviations over 1000 trials. For better
comparison, all the values are normalized by the mean error of the Passive method. The
best method and comparable ones by the Wilcoxon signed rank test at the significance
level 5% are indicated with ‘◦’.

When d = 8, all 3 pool-based active learning methods outperform the Passive method.
Among them, P-ALICE tends to significantly outperform P-FVW and P-CVO. The
population-based method ALICE works rather well, but it is not as good as the pool-
based counterpart P-ALICE. This would be the fruit of directly defining the training
distribution over unlabeled samples.

When d = 32, P-CVO outperforms P-ALICE and P-FVW for many datasets. However,
the performance of P-CVO is unstable and it works very poorly for the kin32-fm, kin32-
fh, and pumadyn32-fm datasets. Consequently, the average error of P-CVO over all 12
datasets is worse than the baseline Passive sampling scheme. On the other hand, P-ALICE
and P-FVW are still stable and consistently outperform the Passive method. Among these
two methods, P-ALICE tends to outperform P-FVW. The population-based method
ALICE tends to be outperformed by the pool-based counterpart P-ALICE.

P-ALICE and P-FVW are shown to be more reliable than P-CVO, and P-ALICE tends
to outperform P-FVW. When the input dimension is high, the variance tends to dominate
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Table 2: The mean squared test error (2) for 8-dimensional benchmark datasets (means
and standard deviations over 1000 trials). For better comparison, all the values are
normalized by the mean error of the Passive method. The best method and comparable
ones by the Wilcoxon signed rank test at the significance level 5% are indicated with ‘◦’.

P-ALICE P-FVW P-CVO ALICE Passive
bank-8fm ◦0.89±0.14 0.95±0.16 0.91±0.14 1.16±0.26 1.00±0.19
bank-8fh 0.86±0.14 0.94±0.17 ◦0.85±0.14 0.97±0.20 1.00±0.20
bank-8nm ◦0.89±0.16 0.95±0.20 0.91±0.18 1.18±0.28 1.00±0.21
bank-8nh 0.88±0.16 0.95±0.20 ◦0.87±0.16 1.02±0.28 1.00±0.21
kin-8fm 0.78±0.22 0.87±0.24 0.87±0.22 ◦0.39±0.20 1.00±0.25
kin-8fh 0.80±0.17 0.88±0.21 0.85±0.17 ◦0.54±0.16 1.00±0.23
kin-8nm ◦0.91±0.14 0.97±0.16 0.92±0.14 0.97±0.18 1.00±0.17
kin-8nh ◦0.90±0.13 0.96±0.16 0.90±0.13 0.95±0.17 1.00±0.17

pumadyn-8fm ◦0.89±0.13 0.95±0.16 ◦0.89±0.12 0.93±0.16 1.00±0.18
pumadyn-8fh 0.89±0.13 0.98±0.16 ◦0.88±0.12 0.93±0.15 1.00±0.17
pumadyn-8nm ◦0.91±0.13 0.98±0.17 0.92±0.13 1.03±0.18 1.00±0.18
pumadyn-8nh ◦0.91±0.13 0.97±0.14 0.91±0.13 0.98±0.16 1.00±0.17

Average ◦0.87±0.16 0.95±0.18 0.89±0.15 0.92±0.30 1.00±0.20

Table 3: The mean squared test error (2) for 32-dimensional benchmark datasets (means
and standard deviations over 1000 trials).

P-ALICE P-FVW P-CVO ALICE Passive
bank-32fm 0.97±0.05 0.99±0.05 ◦0.96±0.04 1.04±0.06 1.00±0.06
bank-32fh 0.98±0.05 0.99±0.05 ◦0.96±0.04 1.01±0.05 1.00±0.05
bank-32nm 0.98±0.06 0.99±0.07 ◦0.96±0.06 1.03±0.07 1.00±0.07
bank-32nh 0.97±0.05 0.99±0.06 ◦0.96±0.05 0.99±0.05 1.00±0.06
kin-32fm ◦0.79±0.07 0.93±0.09 1.53±0.14 0.98±0.09 1.00±0.11
kin-32fh ◦0.79±0.07 0.92±0.08 1.40±0.12 0.98±0.09 1.00±0.10
kin-32nm 0.95±0.04 0.97±0.04 ◦0.93±0.04 1.03±0.05 1.00±0.05
kin-32nh 0.95±0.04 0.97±0.04 ◦0.92±0.03 1.02±0.04 1.00±0.05

pumadyn-32fm 0.98±0.12 0.99±0.13 1.15±0.15 ◦0.96±0.12 1.00±0.13
pumadyn-32fh 0.96±0.04 0.98±0.05 ◦0.95±0.04 0.97±0.04 1.00±0.05
pumadyn-32nm 0.96±0.04 0.98±0.04 ◦0.93±0.03 0.96±0.03 1.00±0.05
pumadyn-32nh 0.96±0.03 0.98±0.04 ◦0.92±0.03 0.97±0.04 1.00±0.04

Average ◦0.94±0.09 0.97±0.07 1.05±0.21 1.00±0.07 1.00±0.07
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the bias due to sparsity of data points. Then the bias caused by model misspecification
is no longer critical and therefore P-CVO tends to be better. However, P-CVO has catas-
trophic cases—which would be the situation where the bias is not negligibly small even
in high-dimensional cases. This is consistent with the illustrative experiments shown in
Section 5.1.

Overall, the proposed method P-ALICE is shown to be robust against such catas-
trophic cases even in high-dimensional cases and therefore would be more reliable in
practice.

6 Real-World Applications

Finally, we apply the proposed active learning method to a wafer alignment problem in
semiconductor exposure apparatus (see Figure 6).

Recent semiconductors have the layered circuit structure, which are built by exposing
circuit patterns multiple times. In this process, it is extremely important to align the
wafer at the same position with very high accuracy. To this end, the location of markers
are measured to adjust the shift and rotation of wafers. However, measuring the location
of markers is time-consuming and therefore there is a strong need to reduce the number
of markers to measure for speeding up the semiconductor production process.

Figure 7 illustrates a wafer, where markers are printed uniformly over the wafer. Our
goal here is to choose the most ‘informative’ markers to measure for better alignment of
the wafer. A conventional choice is to measure markers far from the center in a symmetric
way, which would provide robust estimation of the rotation angle (see Figure 7). However,
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Table 4: The mean squared test error for the wafer alignment problem (means and stan-
dard deviations over 220 wafers). ‘Conv.’ indicates the conventional heuristic of choosing
the outer markers.

Order P-ALICE P-FVW P-CVO Passive Conv.
1 ◦2.27±1.08 2.29±1.08 2.37±1.15 2.32±1.11 2.36±1.15
2 ◦1.93±0.89 2.09±0.98 1.96±0.91 2.32±1.15 2.13±1.08

this naive approach is not necessarily the best since misalignment is not only caused
by affine transformation, but also by several other non-linear factors such as a warp, a
biased characteristic of measurement apparatus, and different temperature conditions. In
practice, it is not easy to model such non-linear factors accurately, so the linear affine
model or the second-order model is often used in wafer alignment. However, this causes
model misspecification and therefore our proposed active learning method would be useful
in this application.

Let us consider the functions whose input x = (u, v)⊤ is the location on the wafer
and whose output is the horizontal discrepancy ∆u or the vertical discrepancy ∆v. These
functions are learned using the following second-order model.

∆u or ∆v = θ0 + θ1u + θ2v + θ3uv + θ4u
2 + θ5v

2. (84)

We totally have 220 wafer samples and our experiment is carried out as follows. For
each wafer, ntr = 20 points are chosen from nte = 38 markers and the horizontal and the
vertical discrepancies are observed. Then the above model is trained and its prediction
performance is tested using all 38 markers in the 220 wafers. This process is repeated for
all 220 wafers. Since the choice of the sampling location by active learning methods is
stochastic, the above experiment is repeated for 100 times with different random seeds.

The mean and standard deviation of the squared test error over 220 wafers are sum-
marized in Table 4. This shows that the proposed P-ALICE method works significantly
better than the other sampling strategies and it provides about 10-percent reduction in
the squared error from the conventional heuristic of choosing the outer markers. Similar
experiments have also been conducted using the first-order model and confirmed that
P-ALICE still works the best.

7 Conclusions and Outlook

We extended a population-based active learning method (FVW) to a pool-based scenario
(P-FVW) and derived a closed-form ‘optimal’ resampling bias function. This closed-form
solution is optimal within the full-expectation framework, but is not necessarily optimal
in the single-trial analysis. To further improve the performance, we extended another
population-based method (ALICE) to a pool-based scenario (P-ALICE). Since ALICE
is derived within the conditional-expectation framework and therefore input-dependent,
it is provably more accurate than FVW in the single-trial analysis. However, P-ALICE
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does not allow us to obtain a closed-form solution due to its input-dependence. To cope
with this problem, we proposed a practical heuristic procedure which efficiently searches
for a better solution around the P-FVW optimal solution. Numerical experiments with
toy and benchmark datasets showed that the proposed method consistently outperforms
the baseline passive learning scheme and compares favorably with other active learning
methods. Furthermore, the usefulness of the proposed active learning method was also
demonstrated in wafer alignment in semiconductor exposure apparatus.

In P-ALICE, a reasonable candidate set of resampling bias functions needs to be
prepared. In this paper, Eq.(14) was chosen as a heuristic and was shown to be reasonable
through experiments. Even so, there is still room for further improvement and it is
important to find alternative strategies for preparing better candidates.

We focused on regression scenarios in this paper. A natural desire is to extend the
same idea to classification scenarios. We expect that the conceptual issues we addressed
in this paper—the usefulness of the conditional-expectation approach and the practical
importance of dealing with approximate correct models (Section 3)—are still valid in clas-
sification scenarios. In the future, we will explore active learning problems in classification
scenarios based on these conceptual ideas.

The P-ALICE criterion is a random variable which depends not only on training input
distributions, but also on realizations of training input points. This is why the minimizer
of P-ALICE cannot be obtained analytically; we resorted to a greedy search around the
solution of P-FVW. On the other hand, this fact implies that the P-ALICE criterion allows
us to evaluate the goodness of not only training input distributions but also realizations
of training input points. We conducted preliminary experiments in which training input
points are drawn several times from the same training input distribution and experienced
that the experimental performance is sometimes further improved by multiple draws.
Thus it would be interesting to investigate this phenomenon more systematically. This
issue seems to be related to the sequential design of experiments and therefore further
study along this line would be fruitful.

Our active learning method is valid for approximately correct models, which is an
advantage over traditional OLS-based active learning methods. However, when the model
is totally misspecified, it is necessary to perform model selection (e.g., Shimodaira, 2000;
Sugiyama and Müller, 2005; Sugiyama et al., 2007) since large model error will dominate
the bias and variance, and therefore learning with such a totally misspecified model is not
useful in practice. However, performing model selection and active learning at the same
time, which is called active learning with model selection, is not straightforward due to
the active learning/model selection dilemma (Sugiyama and Ogawa, 2003).

• In order to select training input points by an existing active learning method, a
model must have been fixed (i.e., model selection must have been performed).

• In order to select the model by a standard model selection method, the training
input points must have been fixed (i.e., active learning must have been performed).

To cope with this dilemma, a novel approach has been explored recently (Sugiyama and
Rubens, 2008). However, the existing study focuses on population-based scenarios and
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active learning with model selection under pool-based settings seems to still be an open
research issue. We expect that the result given in this paper could be a basis for further
investigating this challenging topic.

The proposed method has been shown to be robust against the existence of bias.
However, if the input dimensionality is very high, the variance tends to dominate the bias
due to sparsity of data samples and therefore the advantage of the proposed method tends
to be lost. Moreover critically, regression from data samples is highly unreliable in such
high-dimensional problems due to extremely large variance. To address this issue, it would
be important to first reduce the dimensionality of the data, which is another challenge in
active learning research. For classification active learning in high dimensional problems,
see Melville and Mooney (2004) and Schein and Ungar (2007).

We have focused on linear models. However, the importance weighting technique used
for compensating for the bias caused by model misspecification is valid for any empirical-
error based methods (Sugiyama et al., 2007). Thus another important direction to be
pursued would be to extend the current active learning idea to more complex models such
as support vector machines (Vapnik, 1998) and neural networks (Bishop, 1995).
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