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Abstract. Recently, the variational Bayesian approximation was applied to prob-
abilistic matrix factorization and shown to perform very well in experiments.
However, its good performance was not completely understood beyond its exper-
imental success. The purpose of this paper is to theoretically elucidate properties
of a variational Bayesian matrix factorization method. In particular, its mecha-
nism of avoiding overfitting is analyzed. Our analysis relies on the key fact that
the matrix factorization model induces non-identifiability, i.e., the mapping be-
tween factorized matrices and the original matrix is not one-to-one. The positive-
part James-Stein shrinkage operator and the Marcenko-Pastur law—the limiting
distribution of eigenvalues of the central Wishart distribution—play important
roles in our analysis.

1 Introduction

The problem of estimating a matrix that describes a linear relation between two vectors
has been extensively studied by the name of multivariate linear regression with multiple
responses, canonical correlation analysis, or reduced rank regression [1]. On the other
hand, a recent focus of matrix estimation includes imputation of missing entries of a
single matrix, e.g., in the context of microarray data analysis [2] and recommender
systems3 [3, 4]. In this paper, we consider the problem of interpolating missing entries
of a matrix.

The paper [5] proposed the weighted low-rank approximation (WLRA) method,
which based on the expectation-maximization (EM) algorithm: a matrix is fitted to the
data without a rank constraint in the E-step and it is projected back to the set of low-rank
matrices by the singular value decomposition (SVD) in the M-step. The web article [4]
proposed the regularized SVD method, which minimizes the loss function combined
with the Frobenius-norm penalty by gradient descent. If the trace-norm penalty is used
instead of the Frobenius-norm penalty, a low-rank solution can be obtained without
having an explicit low-rank constraint; when the trace-norm penalty is combined with
the hinge-loss, a semi-definite programming formulation is obtained [6] (see also [7]

3 A recommender system is aimed at predicting a preference score of users based on the prefer-
ence scores of other users. If we consider a matrix where each row corresponds to each user
and each column corresponds to each item, the task can be regarded as completing missing
entries. This formulation is often referred to as collaborative filtering.



for a gradient method with smooth approximation). When the trace-norm penalty and
the squared-loss are used, a computationally efficient algorithm is obtained [8].

The above methods, minimizing a loss function combined with a regularizer, could
be viewed as Bayesian MAP estimation. On the other hand, it is said that full-Bayesian
estimation (considering the entire posterior distribution) is often more accurate than
only taking into account the mode of the posterior distribution [9]. However, working
with the entire posterior distribution is often computationally intractable, and the varia-
tional approximation [10] is known to be a useful approach to coping with this problem.
Following this idea, the papers [11, 12] proposed variational Bayesian (VB) approaches
to matrix factorization and experimentally showed their superior performance.

In this paper, we try to give a theoretical insight into the experimental facts that the
VB approach often has better performance; more specifically, we investigate how the
VB method avoids overfitting and why a low-rank solution tends to be produced. We
first show that the VB solution can be regarded as a type of the positive-part James-Stein
shrinkage estimator [13], which is known to dominate the least-squares estimator under
some conditions. Our analysis strongly relies on the fact that the matrix factorization
model induces non-identifiability, i.e., the decomposition is redundant and therefore
the mapping between factorized matrices and the original matrix is not one-to-one [14,
15]. We then analyze the generalization performance of the VB solution based on the
Marcenko-Pastur law [16, 17], which elucidates the limiting distribution of eigenvalues
of the central Wishart distribution.

2 Probabilistic Approach to Matrix Factorization

In this section, we first give a probabilistic formulation of the matrix factorization prob-
lem and then review existing approaches.

2.1 Formulation

Let us consider the problem of estimating a target matrix X (∈ RL×M ) from its obser-
vation Y (∈ RL×M ). In the case of recommender systems, the entry Xl,m represents
the preference score (e.g., one to five stars) given by the l-th user for the m-th item.
Assume that the observed matrix Y is subject to the following additive-noise model:

Y = X + E , (1)

where E (∈ RL×M ) is a noise matrix. Assuming that each entry of E is independently
subject to the normal distribution with mean zero and variance σ2, we have the follow-
ing likelihood:

p(Y |X) ∝ exp
(
− 1

2σ2 ∥Y − X∥2
Fro

)
, (2)

where ∥ · ∥2
Fro denotes the Frobenius norm of a matrix.

If there are missing entries in the observation Y , the likelihood is expressed as

p(Y |X) ∝ exp
(
− 1

2σ2 ∥W • (Y − X)∥2
Fro

)
, (3)



where • denotes the Hadamard product (or the element-wise product) and W is the
L × M matrix with Wl,m = 0 if Yl,m is a missing entry; otherwise Wl,m = 1.

Let4 H = min(L,M), and let us decompose the matrix X into the product of A ∈
RM×H and B ∈ RL×H : X = BA⊤, where ⊤ denotes the transpose of a matrix/vector.
Then, the likelihood (3) is written as

p(Y |A,B) ∝ exp
(
− 1

2σ2 ∥W • (Y − BA⊤)∥2
Fro

)
. (4)

2.2 Maximum A Posteriori (MAP) Estimation

An estimate of X can be obtained by a procedure similar to the expectation-
maximization (EM) algorithm in latent variable models5. Let Z (∈ RL×M ) be a (la-
tent) complete observation matrix, and let φ(X) be the prior distribution of X . Then
the maximum a posteriori (MAP) solution can be obtained by the following EM algo-
rithm:

E-step: Z(t) = W • Y + (1 − W ) • X(t),
M-step: X(t+1) = argmaxX p(Z(t)|X)φ(X),

where t = 0, 1, . . . is the iteration number. The M-step corresponds to MAP estimation
given a fully observed matrix Z(t), while the E-step updates the latent variable Z(t).

Weighted Low-rank Approximation (WLRA): To avoid overfitting, the paper [5]
proposed the WLRA method, which approximates the matrix X with a given rank H ′

(≤ H). This can be regarded as the ℓ0-norm constraint on the singular values. The
WLRA method can be obtained from the following prior distribution on X: φ(X) ∝
exp

(
− 1

c2

∑H
h=1 θ(γ̂h > 0)

)
, where θ(·) denotes the indicator function, γ̂h is the h-th

largest singular value of X , and c2 is a constant determined by H ′. Then the M-step
yields

M-step: X(t+1) =
∑H′

h=1 γhωbh
ω⊤

ah
,

where γh is the h-th largest singular value of Z, and ωah
and ωbh

are the corresponding
right and the left singular vectors, respectively. Thus the WLRA algorithm sharply cuts
off irrelevant singular values for avoiding overfitting.

Matrix Estimation with Trace-norm Regularization (METR): Another possibil-
ity of avoiding overfitting would be regularization—the METR method employs the
trace-norm regularization, which imposes the ℓ1-norm constraint on the singular val-
ues [8]. METR can be obtained from the following prior distribution on X: φ(X) ∝
exp

(
− 1

c2

∑H
h=1 γ̂h

)
, where c2 is a hyperparameter. The M-step yields

4 Although we can analyze the case that H < min(L, M) in a similar way, we assume H =
min(L, M) for the sake of simplicity.

5 Note that there are other computationally efficient approaches to obtaining a MAP solution.
However, the purpose of the review here is not to discuss computational issues, but to compare
regularization schemes. For this reason, we focus on the EM algorithm.



M-step: X(t+1) =
∑H

h=1 max
(
0, γh − σ2

c2

)
ωbh

ω⊤
ah

.

Note that the METR method can also be obtained as MAP estimation when Gaus-
sian priors are assumed on A and B as Eq.(10) [6].

Matrix Estimation with Frobenius Regularization (MEFR): Another regularization
approach is to use the Frobenius regularization. The MEFR method imposes the ℓ2-
norm constraint on the singular values. MEFR is obtained from the following prior
distribution on X: φ(X) ∝ exp

(
− 1

2c2

∑H
h=1 γ̂2

h

)
. The M-step yields

M-step: X(t+1) =
∑H

h=1

(
1 − σ2

σ2+c2

)
γhωbh

ω⊤
ah

.

However, the MEFR method is not useful in missing entry completion as it is since it
only proportionally shrinks the original matrix and therefore missing values are always
zero. Thus the MEFR method should be combined with a low-rank constraint [4].

Maximum-margin Matrix Factorization (MMMF): The paper [6] proposed a ma-
trix factorization method called MMMF, which involves the trace-norm regularization
similar to the METR method, but employs the hinge-loss inspired by the large-margin
principle of support vector machines. For the binary observation Y (∈ {±1}L×M ), the
MMMF optimization problem is expressed as

minX

[∑H
h=1 γ̂h + λ

∑
l,m max(0, 1 − Yl,mXl,m)

]
,

where λ is a regularization parameter and
∑

l,m goes over all non-missing entries of Y .
The MMMF method could also be regarded as MAP estimation with the same prior

as METR; but the noise model is different from Eq.(2).

2.3 Variational Bayes (VB) Estimation

The papers [11, 12] proposed matrix factorization algorithms based on the VB approach
[10] to approximating the posterior p(A,B|Y ).

Let φ(A) and φ(B) be priors on the factors A and B. Then the posterior distribution
of A and B is written as follows:

p(A,B|Y ) = φ(A)φ(B)p(Y |A,B)
R

φ(A)φ(B)p(Y |A,B)dAdB
. (5)

This is the minimizer of the following functional, called the free energy, with respect to
r(A,B):

F (r|Y ) =
∫

r(A,B) log r(A,B)
p(Y |A,B)φ(A)φ(B)dAdB. (6)

The VB approach approximates the posterior p(A,B|Y ) within a function class where
A and B are independent of each other:

r(A,B) = r(A)r(B). (7)



Then, using the variational method to minimize Eq.(6), we obtain the following condi-
tions: r(A) ∝ φ(A) exp

(
〈log p(Y |A,B)〉r(B)

)
, (8)

r(B) ∝ φ(B) exp
(
〈log p(Y |A,B)〉r(A)

)
, (9)

where 〈·〉p is the expectation over a distribution p. Since p(Y |A,B) is bilinear with
respect to A and B (see Eq.(4)), the expectations in Eqs.(8) and (9) can be calculated
simply by using the Gaussian integration.

Let us assume the Gaussian priors on the factors A and B:

φ(A) ∝ exp
(
− 1

2c2
a
∥A∥2

Fro

)
and φ(B) ∝ exp

(
− 1

2c2
b
∥B∥2

Fro

)
, (10)

where c2
a and c2

b are hyperparameters corresponding to the prior variance of the ele-
ments of A and B, respectively. Then the conditions (8) and (9) show that the posterior
is also Gaussian. Based on this property, the papers [11, 12] proposed algorithms that
iteratively update the mean and the covariance of A and B by Eqs.(8) and (9), respec-
tively. Then the posterior mean of BA⊤, i.e., 〈BA⊤〉r(A,B), is outputted6 as an estimate
of X .

3 Analysis of the VB Approach

VB estimation in general is shown to be a useful alternative to MAP estimation [10, 9],
and its good performance has been theoretically investigated in the light of model non-
identifiability—a statistical model is said to be non-identifiable if the mapping between
a parameter value and a probability distribution is not one-to-one [14, 15].

The VB-based matrix factorization methods reviewed in Section 2.3 are shown to
work well in experiments [11, 12]. However, their good performance was not com-
pletely understood beyond their experimental success. In this section, we theoretically
investigate properties of a VB-based matrix factorization method. Note that the factor-
ized matrix model (4) is also non-identifiable since the mapping between (A,B) and X
is not one-to-one.

In order to make the analysis feasible, let us consider a variant of VB-based matrix
factorization which consists of the following VBEM iterations:

VBE-step: Z(t) = W • Y + (1 − W ) • X(t),
VBM-step: X(t+1) = 〈BA⊤〉r(A,B|Z(t))

3.1 Regularization Properties of VBEM

Here, we investigate the regularization properties of the above VBEM algorithm. Unlike
other MAP estimation methods, the VBM-step is not explicitly given. We first show an
analytic form of the VBM-step, and then elucidate the regularization mechanism of
VBEM.

Note that our analysis below can be regarded as an extension of the paper [15],
which analyzes properties of reduced rank regression in asymptotic settings. In the cur-
rent setting of matrix factorization, on the other hand, we need non-asymptotic analysis
since only one observation matrix is available.

6 A method to estimate the hyperparameters c2
a and c2

b has also been proposed.



Analytic Solution of VBM-step: Let

A = (a1, a2, . . . , aH) and B = (b1, b2, . . . , bH).

Below, we assume as in [12] that {ah}H
h=1 and {bh}H

h=1 are independent of each other,
i.e., we restrict our function class used for approximating the posterior p(A,B|Z) to

r(A,B) =
∏H

h=1 r(ah)r(bh). (11)

Then, we have a simpler update rule than Eqs.(8) and (9) as follows:

r(ah) ∝ φ(ah) exp
(
〈log p(Z|A,B)〉r(A,B)/r(ah)

)
, (12)

r(bh) ∝ φ(bh) exp
(
〈log p(Z|A,B)〉r(A,B)/r(bh)

)
. (13)

Substituting Eqs.(2) (with Y = Z and X = BA⊤) and (10) into Eqs.(12) and (13), we
can express the VB posterior as

r(A,B) =
∏H

h=1 NM (ah; µah
, Σah

) · NL(bh; µbh
, Σbh

), (14)

where Nd(·; µ,Σ) denotes the density of the d-dimensional normal distribution with
mean µ and covariance matrix Σ. Note that µah

, µbh
, Σah

, and Σbh
satisfy

µah
= σ−2Σah

Zµbh
, µbh

= σ−2Σbh
Zµah

, (15)

Σah
= σ2

[
(∥µbh

∥2 + tr(Σbh
)) + σ2c−2

a

]−1
IM , (16)

Σbh
= σ2

[
(∥µah

∥2 + tr(Σah
)) + σ2c−2

b

]−1
IL, (17)

where Id denotes the d-dimensional identity matrix. Solving the system of equations
(15)–(17), we have the following theorem (its proof is omitted due to lack of space):

Theorem 1. Let X̂ be the VB posterior mean of X , i.e., X̂ = 〈BA⊤〉r(A,B). Let

K = max(L, M).

Let γh be the h-th largest singular value of Z and let ωah
and ωbh

be the corresponding
right and the left singular vectors. Then X̂ is analytically given by

X̂ =
∑H

h=1 γ̂hωbh
ω⊤

ah
, where γ̂h = max

{
0,

(
1 − Kσ2

γ2
h

)
γh − ∆h

}
. (18)

∆h (≥ 0) in the above is bounded as follows:

∆h = σ2

cacb
(L = M), (19)

0 ≤ ∆h ≤ σ2

cacb

(√
K
H + K

cacb(K−H)H γh

)
(L ̸= M). (20)

Furthermore, when L = M , the VB posterior is explicitly given by Eq.(14) with

µah
=

√
ca

cb
γ̂hωah

, µbh
=

√
cb

ca
γ̂hωbh

, (21)

Σah
= ca

2cbK

{√(
γ̂h + σ2

cacb

)2

+ 4σ2K −
(
γ̂h + σ2

cacb

)}
IK , (22)

Σbh
= cb

2caK

{√(
γ̂h + σ2

cacb

)2

+ 4σ2K −
(
γ̂h + σ2

cacb

)}
IK . (23)



Regularization Mechanism of VBEM: From Theorem 1, we have the following in-
terpretation.

If cacb → ∞, ∆h vanishes and the VB estimator is expressed as

X̂ =
∑H

h=1 max
{

0,
(
1 − Kσ2

γ2
h

)
γh

}
ωbh

ω⊤
ah

. (24)

Thus, the positive-part James-Stein (PJS) shrinkage operator [13] is applied to singular
values in a component-wise manner. The PJS estimator has a regularization effect that
the estimation variance is reduced by shrinking the estimator (but the bias is increased
in turn). It has been proved that the PJS estimator dominates the least-squares estimator
under some conditions.

If L = M and γh is large enough, the VB estimator is expressed as

X̂ ≈
∑H

h=1

(
γh − σ2

cacb

)
ωbh

ω⊤
ah

. (25)

Thus, the singular value γh is decreased by a constant σ2/(cacb). This may be regarded
as a similar effect to the trace-norm regularization (i.e., the ℓ1-norm regularization of
singular values; see Section 2.2).

If γh is large enough and ∆h ≈ cγh (0 ≤ c ≤ 1), the VB estimator is expressed as

X̂ ≈
∑H

h=1(1 − c)γhωbh
ω⊤

ah
. (26)

Thus, the singular value γh is shrunk proportionally. This may be regarded as a similar
effect to the Frobenius-norm regularization (i.e., the ℓ2-norm regularization of singular
values; see Section 2.2).

Thus, VBEM regularizes the solution based on the combination of PJS shrinkage,
trace-norm regularization, and (possibly) Frobenius-norm regularization.

Posterior Mode, Posterior Mean, and Model Non-identifiability: When the uniform
prior (i.e., c2

a, c2
b → ∞) is used and the rank of X̂ is not reduced, one may intuitively

think that no reguralization mechanism is involved. This intuition is true when MAP
estimation is used—MAP estimation merely results in maximum likelihood (ML) es-
timation which has no regularization effect. However, in VBEM, the solution involves
the PJS-type regularization (see Eq.(24)) and therefore overfitting can be avoided even
when the uniform prior is used without rank constraints. This argument is in good agree-
ment with the exprerimental results reported in the paper [12].

Based on Theorem 1, we explain the reason for the significant difference between
MAP and VB. For illustration purposes, let us start from the simplest case where L =
M = 1 (i.e., X is a scalar) and the noise variance is σ2 = 1. The top graphs in
Fig.1 shows the contours of the Bayes posterior with the uniform prior on A and B
when Z = 0, 1, 2 is observed (the horizontal and vertical axes correspond to A and
B, respectively); the MAP estimators are indicated by the dashed curves (all points on
the curves are the MAP estimators, which give the same solution X̂). In the bottom
graphs of Fig.1, the VB posteriors—which are independent Gaussians—are plotted for
Z = 0, 1, 2. The asterisks indicate their expectations, i.e., the VB estimators. When
Z = 0, the MAP and the VB estimators both give the same value X̂ = B̂Â = 0. When
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Fig. 1. MAP and VB solutions when L = M = 1 (the matrices X , A, and B are scalars).

Z = 1, the MAP estimator gives X̂ = 1, while the VB estimator is still X̂ = 0. When
Z = 2, the VB estimator is off the origin (X̂ = 1), but is still closer to the origin (i.e.,
strongly regularized) than the MAP solution X̂ = 2. More generally, as the observed
value Z is increased, the VB estimator approaches to the MAP estimator. However, the
VB solution is always closer to the origin than the MAP solution. Note that (−1,−1) is
another VB solution when Z = 2, although only one VB solution at (1, 1) is depicted
in the figure for clear visibility.

The above analysis shows that even with the same uniform prior on A and B, MAP
and VB give different solutions—the VB solution tends to be more strongly regularized
than the MAP solution. We focused on L = M = 1 and c2

a, c2
b → ∞ in the above

analysis for illustration purposes. But from Eqs.(18)–(20) we see that the amplitude of
each component of the VB estimator is no larger than that of the PJS estimator (24) for
any L, M , and c2

a, c2
b ≥ 0. This means that the VB solution always tends to be more

strongly regularized than the MAP solution.

3.2 Generalization Properties of VBEM

Here, we investigate the generalization properties of the VBEM algorithm. First the
generalization error of an estimated matrix is defined and it is decomposed into the
‘necessary’ part and the ‘redundant’ part. We then elucidate properties of the redundant
part, in particular, sparseness of the solution and the generalization performance.

Generalization Error of VBEM: Our analysis is based on the assumption that the
fully observed matrix Z is subject to the true distribution p(Z|X∗), which is of the



form (2) with the true matrix X∗ and Z substituted for Y . Let H∗ be the rank of X∗

and assume
H∗ ≪ H.

This would be acceptable in, e.g., collaborative filtering since H is typically very large.
Let us measure the generalization error of the VB solution X̂ by the average

Kullback-Leibler divergence from the true distribution to the estimated distribution:

G =
〈
log p(Z|X∗)

p(Z| bX)

〉
p(Z|X∗)

= 1
2σ2

〈
∥X̂ − X∗∥2

Fro

〉
p(Z|X∗)

. (27)

Let Wd(m,Σ,Λ) be the d-dimensional Wishart distribution with m degrees of free-
dom, scale matrix Σ, and non-centrality matrix Λ. Then, it is easy to show that ZZ⊤

follows the non-central Wishart distribution:

ZZ⊤ ∼ WH(K,σ2IH , X∗X∗⊤) if L ≤ M.

If L > M , we may simply re-define X⊤ as X so that L ≤ M holds.
By assumption, X∗ consists of only H∗ singular components. Let us decompose X̂

into the component projected onto the space spanned by X∗ (the ‘necessary’ part) and
its complement (the ‘redundant’ part):

X̂ = X̂nec + X̂red.

Then, Eq.(27) implies that the generalization error can be decomposed as

G = Gnec + Gred,

where Gnec =
〈
∥X̂nec − X∗∥2

Fro

〉
p(Z|X∗)

and Gred =
〈
∥X̂red∥2

Fro

〉
p(Z|X∗)

.

Since H∗ ≪ H by assumption, the contribution of the necessary components would
be negligibly small compared with the contribution of the redundant components. Based
on this reasoning, we focus on Gred in the following analysis.

Analysis of Eigenvalue Distribution of Redundant Components: Since the Gaussian
noise is invariant under rotation, Gred can be expressed without loss of generality as

Gred =
〈
∥X̂(R)∥2

Fro

〉
N (R)

, (28)

where X̂(R) denotes the VB estimator given observation R, which is a (H − H∗) ×
(K −H∗) random matrix with entries independently subject to the normal distribution
(denoted by N (R)) with mean zero and variance σ2. RR⊤ follows the central Wishart
distribution:

RR⊤ ∼ WH−H∗(K − H∗, σ2IH−H∗).

Let u1, u2, . . . , uH−H∗ be the eigenvalues of 1
σ2(K−H∗)RR⊤, and define the empirical

distribution of the eigenvalues by

p(u) = δ(u1)+δ(u2)+···+δ(uH−H∗ )

H−H∗ ,



Fig. 2. Normalized eigenvalue (squared singu-
lar value of R) distribution of a large-scale
Wishart matrix. Singular values smaller than
the threshold are eliminated by the PJS oper-
ator in VBEM. We can show that the median
of γ2 is less than σ2(K − H∗) for any α. On
the other hand, the VB threshold is no less than
σ2K, which is always larger than the median.
Thus, at least 50% of singular values are zero
in VBEM (see Theorem 2 and Fig.3 for detail).
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where δ(u) denotes the Dirac measure at u. Let α be the ‘squareness’ index of the target
matrix X defined by

α = H−H∗

K−H∗ ,

which satisfies 0 < α ≤ 1. Then, the following proposition is known regarding the
distribution of eigenvalues of the central Wishart distribution.

Proposition 1 (Marcenko-Pastur law). [16, 17] In the large-scale limit where K, H ,
and H∗ go to infinity in the same order, the probability measure of the empirical distri-
bution of the eigenvalue u of 1

σ2(K−H∗)RR⊤ converges almost surely to

p(u)du =
√

(u−u)(u−u)

2παu θ(u < u < u)du, (29)

where u = (
√

α − 1)2, u = (
√

α + 1)2, and θ(·) denotes the indicator function.

Fig.2 depicts the eigenvalue distribution of a large-scale Wishart matrix for α =
0.01, 0.1, 1, where the eigenvalues (or the squared singular values of R) are normalized
by σ2(K − H∗) in the graph for better comparison.

Remember that the VB estimator X̂(R) eliminates the singular values (of R)
smaller than a certain positive value, which we call the VB threshold. When cacb → ∞,
γ2 = Kσ2 is the VB threshold (see Eq.(24)). Since H∗ ≥ 0, we have

σ2K ≥ σ2(K − H∗),

which corresponds to a lower bound of the VB threshold for any H∗, c2
a, c2

b ≥ 0 (see
Eq.(18)). In Fig.2, eigenvalues smaller than this threshold (which is normalized to one
in the figure) are discarded.

Analysis of Sparseness of Redundant Components: We can evaluate the proportion
of the singular values larger than the VB threshold as follows. Let

Jk(u0) = 2πα
∫ u

u0
ukp(u)du. (30)

Note that (2πα)−1Jk(u) corresponds to the k-th moment of the Marcenko-Pastur dis-
tribution. Jk(u0) for k = −1, 0, 1 has analytic forms as follows:
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Fig. 3. The proportion Θ of non-zero singular
values. Θ is always below 0.5 and it converges
to 0.5 as α → 0, cacb → ∞ and H∗ = 0.
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Fig. 4. The behaviors of Gred for MAP estima-
tion and VB estimation, when cacb → ∞ and
H∗ = 0 (the values for VB becomes smaller
when H∗ > 0).

Proposition 2. [15] Jk(u0) has the following analytic forms for k = −1, 0, 1.

J−1(u0) =

2
√

α
√

1−s2

2
√

αs+1+α
− cos−1 s + 1+α

1−α cos−1
√

α(1+α)s+2α
2αs+

√
α(1+α)

(0 < α < 1),

2
√

1−s
1+s − cos−1 s (α = 1),

J0(u0) = −2
√

α
√

1 − s2 + (1 + α) cos−1 s − (1 − α) cos−1
√

α(1+α)s+2α
2αs+

√
α(1+α)

,

J1(u0) = 2α(−s
√

1 − s2 + cos−1 s), where s = u0−(1+α)
2
√

α
.

This proposition enables us to calculate the proportion of nonzero redundant com-
ponents as shown in the following theorem:

Theorem 2. Let Θ be the proportion of nonzero redundant components in the large
scale limit. Then, its upper bound is given by

Θ ≤ (2πα)−1J0(κ), where κ = K
K−H∗ . (31)

The equality holds when cacb → ∞.

This theorem implies that VBEM gives a low-rank solution without explicit rank
restriction. The curve in Fig.3 shows the value of (2πα)−1J0(1), which is the upper
bound of Θ for any H∗, c2

a, c2
b . This value is always below 0.5, which means that at

least 50% of singular values always become zero in VBEM; in practice the solution
would be even more sparser.

Analysis of Redundant-component Generalization Error: Next, we obtain the fol-
lowing theorem which enables us to evaluate the value of Gred:

Theorem 3. The upper bound of the contribution of the redundant components to the
generalization error in the large-scale limit is given by

Gred ≤ C{J1(κ)−2κJ0(κ)+κ2J−1(κ)}
4πα , where C = (K − H∗)(H − H∗). (32)

The equality holds when cacb → ∞.



Based on the above theorem and Proposition 2, we can compute the value of Gred

analytically. In Fig.4, Gred/C for VBEM estimation and MAP estimation (which is
equivalent to ML estimation due to the flat prior) are depicted. Gred/C for MAP is
independent of α and is equal to 0.5. On the other hand, Gred/C for VBEM is increas-
ing with respect to α, but is always much smaller than that of MAP. This implies that
VBEM is highly robust against large observation noise.

4 Conclusions

In this paper, we have analyzed a variational Bayesian expectation-maximization
(VBEM) method of matrix factorization. In particular, we elucidated the mechanism
of inducing a low-rank solution and avoiding overfitting, where the principle of the
positive-part James-Stein shrinkage operator and the Marcenko-Pastur law played im-
portant roles in the analysis.

Future work is to explicitly treat the missing values in the VBEM procedure, and to
directly analyze the generalization error including the ‘necessary’ part (see Section 3.2).
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