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2Supervised Learning
Learn a target function          from   
input-output samples                    .
This allows us to predict outputs of 
unseen inputs: “generalization”
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3Active Learning (AL)
Choice of input location affects the 
generalization performance.
Goal: choose the best input location!

Learning target
Learned function

Good location Bad location



4Motivation of AL

AL is effective when sampling cost is high.
Ex.) Predicting the length of a patient’s life

Input     : features of patients
Output     : the length of life
In order to observe the outputs, the patients 
need to be nursed for years

It is highly valuable to optimize the choice of 
input locations!



5Organization of My Talk

1. Formulation.
2. AL for correctly specified models.
3. AL for misspecified models.
4. Choosing inputs from unlabeled samples.
5. AL with model selection.



6Problem Formulation

Training samples:
Input:

Output:

Noise:
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7Problem Formulation
Use a linear model for learning:

Generalization error:

:Test input density (assumed known)
Goal of AL: Choose                so that         
the generalization error is minimized.

：parameter
：basis function



8Difficulty of AL

Gen err is unknown.
In AL, gen error needs to be estimated 
before observing output samples            .
Thus standard gen err estimators such as 
cross-validation or Akaike’s information 
criterion cannot be used in AL.



9Bias-Variance Decomposition

Gen err：

Bias：

Variance：

Bias
Variance

Gen err

:Expectation over noise



10Bias and Variance
Bias: depends on the unknown target 
function       , so it is not possible to estimate 
it before observing output samples            .

Variance: for linear estimator              ,



11Basic Strategy for AL

For an unbiased linear estimator, we have

Thus, gen error can be minimized before 
observing output samples             !



12Organization of My Talk

1. Formulation.
2. AL for correctly specified models.
3. AL for misspecified models.
4. Choosing inputs from unlabeled samples.
5. AL with model selection.



13Correctly Specified Models
Assume that the target function is 
included in the model:

Learn the parameters by ordinary 
least-squares (OLS):



14Properties of LS
OLS estimator is linear:

Variance is

OLS estimator is unbiased:

Bias is



15AL for Correctly Specified Models

When OLS is used,

Thus

Fedorov, Theory of Optimal Experiments,
Academic Press, 1972.



16Illustrative Examples
Learning target:
Model:
Test input density:
Training input density:



17

5.75±3.093.13±2.613.10±2.61Passive
113±63.72.56±2.241.45±1.82OLS-AL

Obtained Generalization Error

When model is correctly specified, OLS-AL 
works well. 
Even when model is slightly misspecified, 
the performance degrades significantly.
When model is highly misspecified, the 
performance is very poor.

Mean±Std (1000 trials)



18OLS-based AL: Summary

Pros:
Gen err estimation is exact.
Easy to implement.

Cons:
Correctly specified models are not 
available in practice.
Performance degradation for model 
misspecification is significant.



19Organization of My Talk

1. Formulation.
2. AL for correctly specified models.
3. AL for misspecified models.
4. Choosing inputs from unlabeled samples.
5. AL with model selection.



20Misspecified Models
Consider general cases where the target 
function is not included in the model:

However, if the model is completely 
misspecified, learning itself is meaningless 
(need model selection, discussed later)
Here we assume that the model is 
approximately correct.



21Orthogonal Decomposition

Approximately correct model:

(          and         are orthogonal)



22

Bias:

Out-model bias:

In-model bias:

Further Decomposition of Bias



23Difficulty of AL
for Misspecified Models

Out-model bias remains, so bias cannot be zero.
Out-model bias is constant, so it can be ignored.
However, OLS does not reduce in-model bias 
to zero.

“Covariate shift” is the cause!



24Covariate Shift
Training and test inputs follow different 
distributions:

In AL, covariate shift always occurs!
Difference of input distributions causes 
OLS not to reduce in-model bias to zero.

Covariate = Input

Shimodaira, Improving predictive inference under covariate 
shift by weighting the log-likelihood function, Journal of 
Statistical Planning and Inference, vol. 90, pp. 227-244, 2000.



25Example of Covariate Shift

Training samples

Test samples

Input densities



26Bias of OLS under Covariate Shift

OLS:
Unbiased for correctly 
specified models.
For misspecified models, 
in-model bias remains 
even asymptotically.



27The Law of Large Numbers
Sample average converges to the 
population mean:

We want to estimate the expectation 
over test distribution using training 
samples (following training distribution).



28Importance-Weighted Average
Importance: the ratio of input densities

Importance-weighted average:

(cf. importance sampling)



29Importance-Weighted LS (WLS)

WLS:
Even for misspecified
models, in-model bias 
vanishes asymptotically.

For approximately correct 
models, in-model bias is 
very small.



30Importance-Weighted LS (WLS)
WLS is linear:

Thus variance is given by



31AL for Approximately Correct
Models using WLS

Use WLS for learning:

Thus

Constant

Sugiyama, Active learning in approximately linear regression 
based on conditional expectation of generalization error,    
Journal of Machine Learning Research, vol.7, pp.141-166, 2006. 



32

5.75±3.093.13±2.613.10±2.61Passive
113±63.72.56±2.241.45±1.82OLS-AL
4.28±2.022.09±1.902.07±1.90WLS-AL

Obtained Generalization Error

When model is exactly correct,    
OLS-AL works well. 
However, when model is misspecified, 
it is totally unreliable.
WLS-AL works well even when model 
is misspecified.

T-test (95%)Mean±Std (1000 trials)



33Application to Robot Control
Golf robot: control the robot arm so that the ball 
is driven as far as possible.

State     : joint angles, angular velocities
Action    : torque to be applied to joints

We use reinforcement learning (RL).
In RL, reward    (carry                                    
distance of the ball) is                                    
given to the robot.
Robot updates its                                      
control policy      so that                                     
the maximum amount of                           
rewards is obtained.



34Policy Iteration
Value function : sum of rewards 
when taking action    at state     and then 
following policy    . 

Sutton & Barto, Reinforcement Learning: An Introduction,
MIT Press, 1998.

Learn
value function

Update policies

Gather samples
using current policy



35Covariate Shift in Policy Iteration

When policies are updated, the 
distribution of    and     changes.
Thus we need to use importance 
weighting for being consistent.

Learn
value function

Update policies

Gather samples
using current policy

Hachiya, Akiyama, Sugiyama & Peters.
Adaptive importance sampling for value function approximation
in off-policy reinforcement learning. Neural Networks, to appear



36AL in Policy Iteration

Sampling cost is high in golf robot 
control (manually measuring carry 
distance is painful).

Learn
value function

Update policies

Gather samples
using optimized policy

Akiyama, Hachiya & Sugiyama.
Active policy iteration, IJCAI2009.



37Experimental Results

AL improves the performance!

1 2 3 4 5 6 7
35

40

45

50

55

60

65

70

Iteration

P
er

fo
rm

an
ce

(a
ve

ra
ge

)

 

 

Passive Learning

Active Learning

Active
learning

Passive learning

The difference of the performances at 7-th iteration is 
statistically significant by the t-test at the significance level 1%.



38Passive Learning



39Active Learning



40WLS-based AL: Summary

Pros:
Robust against model misspecification.
Easy to implement.

Cons:
Test input density                could be 
unknown in practice.



41Organization of My Talk

1. Formulation.
2. AL for correctly specified models.
3. AL for misspecified models.
4. Choosing inputs from unlabeled samples.
5. AL with model selection.



42Pool-based AL: Setup
Test input density             is unknown.
A pool of input samples following             
is available.

From the pool, we choose sample             
and gather output values            .



43Difficulty of Pool-based AL

in            are unknown, so AL 
criterion cannot be directly computed.



44Naïve Approach

Estimate test density from            .
Plug-in the estimator            :

However, density estimation is hard and 
thus this approach is not reliable.



45Better Approach
: empirical approximation

: define resampling probability over pool

Sugiyama & Nakajima.
Pool-based active learning in approximate linear regression.
Machine Learning, vol.75, no.3, pp.249-274, 2009. 

This is exact!



46Benchmark Datasets (8-dim)

“Pool/WLS” is consistently better than “Passive”.
“Pool/OLS” is still useful.
“Population/WLS” is unstable.

1.00(0.20)0.92(0.30)0.89(0.15)0.87(0.16)Average
1.00(0.17)0.98(0.16)0.91(0.13)0.91(013.)Pumadyn-8nh
1.00(0.18)1.03(0.18)0.92(0.13)0.91(013.)Pumadyn-8nm
1.00(0.17)0.93(0.15)0.88(0.12)0.89(0.13)Pumadyn-8fh
1.00(0.18)0.93(0.16)0.89(0.12)0.89(0.13)Pumadyn-8fm
1.00(0.17)0.95(0.17)0.90(0.13)0.90(0.13)Kin-8nh
1.00(0.17)0.97(0.18)0.92(0.14)0.91(0.14)Kin-8nm
1.00(0.23)0.54(0.16)0.85(0.17)0.80(0.17)Kin-8fh
1.00(0.25)0.39(0.20)0.87(0.22)0.78(0.22)Kin-8fm
1.00(0.21)1.02(0.28)0.87(0.16)0.88(0.16)Bank-8nh
1.00(0.21)1.18(0.28)0.91(0.18)0.89(0.16)Bank-8nm
1.00(0.20)0.97(0.20)0.85(0.14)0.86(0.14)Bank-8fh
1.00(0.19)1.16(0.26)0.91(0.14)0.89(0.14)Bank-8fm
PassivePopulation / WLS-ALPool / OLS-ALPool / WLS-ALDataset

Mean (std.) of normalized test error. 
Red: Significantly better by 95% Wilcoxon test,    Blue: Worth than baseline passive



47Benchmark Datasets (32-dim)

“Pool/WLS” is consistently better than “Passive”.
“Pool/OLS” and “population/WLS” are unstable.

Mean (std.) of normalized test error. 
Red: Significantly better by 95% Wilcoxon test,    Blue: Worth than baseline passive

1.00(0.04)0.97(0.04)0.92(0.03)0.96(0.03)Pumadyn-32nh
1.00(0.07)1.00(0.07)1.05(0.21)0.94(0.09)Average (32d)

1.00(0.05)0.96(0.03)0.93(0.03)0.96(0.04)Pumadyn-32nm
1.00(0.05)0.97(0.04)0.95(0.04)0.96(0.04)Pumadyn-32fh
1.00(0.13)0.96(0.12)1.15(0.15)0.98(0.12)Pumadyn-32fm
1.00(0.05)1.02(0.04)0.92(0.03)0.95(0.04)Kin-32nh
1.00(0.05)1.03(0.05)0.93(0.04)0.95(0.04)Kin-32nm
1.00(0.10)0.98(0.09)1.40 (0.12)0.79(0.07)Kin-32fh
1.00(0.11)0.98(0.09)1.53(0.14)0.79(0.07)Kin-32fm
1.00(0.06)0.99(0.05)0.96(0.05)0.97(0.05)Bank-32nh
1.00(0.07)1.03(0.07)0.96(0.05)0.98(0.06)Bank-32nm
1.00(0.05)1.01(0.05)0.96(0.04)0.98(0.05)Bank-32fh
1.00(0.06)1.04(0.06)0.96(0.04)0.97(0.05)Bank-32fm
PassivePopulation / WLS-ALPool / OLS-ALPool / WLS-ALDataset



48Wafer Alignment in
Semiconductor Exposure Apparatus

Recent silicon wafers have layer structure.
Circuit patterns are exposed multiple times.
Exact alignment of wafers is necessary.



49Markers on Wafer
Wafer alignment process:

Measure marker location printed on wafers.
Shift and rotate the wafer to minimize the gap. 

For speeding up, reducing the number of 
markers to measure is highly important.



50Non-linear Alignment Model
When the gap is caused only by shift and 
rotation, linear model is exact:

However, non-linear factors exist, e.g.,
Warp
Biased characteristic of measurement apparatus
Different temperature conditions

Exactly modeling non-linear factors is not 
possible in practice!



51Experimental Results

WLS-based method works well.

20 markers (out of 38) are chosen by AL.
Gaps of all markers are predicted.
Repeated for 220 different wafers.
Mean (standard deviation) of the gap prediction error
Red: Significantly better by 95% Wilcoxon test
Blue: Worse than the baseline passive method

2.13(1.08)

2.36(1.15)

“Outer” heuristic 
AL

2.32(1.15)1.96(0.91)1.93(0.89)Order 2

2.32(1.11)2.37(1.15)2.27(1.08)Order 1

Passive 
(Random)OLS-ALWLS-ALModel

Order 1:
Order 2:



52Pool-based AL: Summary

Pros:
Robust against model misspecification.

can be unknown.
Easy to implement.

Cons:
WLS has a larger variance.



53Organization of My Talk

1. Formulation.
2. AL for correctly specified models.
3. AL for misspecified models.
4. Choosing inputs from unlabeled samples.
5. AL with model selection.



54Adaptive WLS (ALS)
“flattening” importance for variance reduction.

Bias: Large
Variance: Small

Bias: Small
Variance: Large

OLS WLSALS



55Flattening Parameter Choice
Performance of ALS depends on 
flattening parameter value    .
Several model selection methods for 
covariate shift are available.

Shimodaira. Improving predictive inference under covariate shift 
by weighting the log-likelihood function, Journal of Statistical 
Planning and Inference, vol. 90, pp. 227-244, 2000.
Sugiyama & Müller. Input-dependent estimation of generalization 
error under covariate shift. Statistics & Decisions, vol.23, no.4, 
pp.249-279, 2005.
Sugiyama, Krauledat & Müller, Covariate shift adaptation by 
importance weighted cross validation, Journal of Machine 
Learning Research, vol.8, pp.985-1005, 2007. 



56MS/AL Dilemma
Model selection (MS):

Choose models using input-output 
training samples                    .
Thus MS is possible only after AL.

Active learning (AL):
Choose input points              for a 
fixed model.
Thus AL is possible only after MS.

MS and AL cannot be carried out 
by simply combining existing MS 
and AL methods.



57Sequential Approach

Iteratively choose
a training input point 
(or a small portion)
a model

This is commonly 
used in practice.

Choose the next training input point     Choose the next training input point     

Gather output value atGather output value at

Choose a modelChoose a model

Choose an initial modelChoose an initial model

Start

End

No

Yes



58Model Drift
However, sequential approach is not effective.

Target model varies through learning process.
Good training input density depends heavily on 
the target model.
Training input points                              
determined in early                                       
stages could be poor                                           
for finally chosen model.
AL overfits to target                                      
models.

The number of training samples
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Poor

Very good

Finally
chosen
model



59Batch Approach

Perform batch AL for an initially chosen model.
This does not suffer from model drift.

Choose all training input points     Choose all training input points     

Choose the final modelChoose the final model

Choose an initial modelChoose an initial model

Start

End

Gather all output values                 atGather all output values                 at

The number of training samples
Th

e 
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Poor

Optimal



60Difficulty in Initial Model Choice

We need to choose an initial model before 
observing training samples .

MS is not possible.
Variance-only AL is possible in principle,         
but the simplest model is always chosen.

In practice, we may have to determine the 
initial model randomly.
Therefore, batch approach is not reliable.



61Ensemble Active Learning (EAL)
Idea: perform AL for a set of model candidates

Sugiyama & Rubens. A batch ensemble approach to 
active learning with model selection. Neural Networks, 
vol.21, pp.1278-1286, 2008. 

Choose all training input points 
for ensemble of all models    

Choose all training input points 
for ensemble of all models    

Choose the final modelChoose the final model

Start

End

Gather all output values                atGather all output values                at

The number of training samples
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62Simulation Results

All methods outperform passive.
Ensemble method works the best! 

0.77(0.15)0.81(0.17)0.85(0.14)1.00(0.19)Pumadyn-8nh
0.81(0.18)0.85(0.20)0.86(0.15)1.00(0.18)Pumadyn-8nm
0.71(0.19)0.76(0.22)0.80(0.17)1.00(0.17)Pumadyn-8fh
0.91(0.73)0.92(0.68)0.83(0.36)1.00(0.22)Pumadyn-8fm
0.51(0.11)0.53(0.14)0.61(0.19)1.00(0.28)Bank-8nh
0.56(0.10)0.58(0.21)0.63(0.19)1.00(0.76)Bank-8nm
0.44(0.11)0.46(0.18)0.53(0.22)1.00(0.42)Bank-8fh
0.45(0.28)0.46(0.25)0.59(0.85)1.00(1.22)Bank-8fm
EnsembleBatchSequentialPassiveDataset

Wilcoxon test (95%)



63Conclusions
Active learning (AL) is useful when sampling 
cost is high.
OLS-AL: good for correct models.
WLS-AL: good for misspecified models.
Pool-based AL: unlabeled samples are utilized.
Ensemble AL: also choosing models.



64Books

Quiñonero-Candela, Sugiyama,      
Schwaighofer & Lawrence (Eds.),            
Dataset Shift in Machine Learning,                
MIT Press, 2009. 
Sugiyama, von Bünau, Kawanabe & Müller, 
Covariate Shift Adaptation in Machine Learning, 
MIT Press (in preparation)
Sugiyama, Suzuki & Kanamori,                
Density Ratio Estimation in Machine Learning, 
Cambridge University Press (in preparation)


