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Abstract

In the previous chapter, Kanamori and Shimodaira provided generalization error
estimators which can be used for model selection and active learning. The accuracy
of these estimators is theoretically guaranteed in terms of the expectation over
realizations of training input-output samples. In practice, we are only given a single
realization of training samples. Therefore, ideally, we want to have an estimator of
the generalization error that is accurate in each single trial. However, we may not
be able to avoid taking the expectation over the training output noise since it is
not generally possible to know the realized value of noise. On the other hand, the
location of the training input points is accessible by nature. Motivated by this fact,
we propose to estimate the generalization error without taking the expectation over
training input points. That is, we evaluate the unbiasedness of the generalization
error in terms of the conditional expectation of training output noise given training
input points.

1 Conditional Expectation Analysis of Generaliza-

tion Error

In order to illustrate a possible advantage of the conditional expectation approach, let
us consider a simple model selection scenario where we have only one training sample
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(a) Generalization error for model M1 (b) Generalization error for model M2

Figure 1: Schematic illustrations of the conditional expectation and full expectation of
the generalization error.

(x, y) (see Figure 1). The solid curves in Figure 1(a) depict GM1(y|x), the generalization
error for a model M1 as a function of the (noisy) training output value y given a training
input point x. The three solid curves correspond to the cases where the realization of
the training input point x is x′, x′′, and x′′′, respectively. The value of the generalization
error for the model M1 in the full expectation approach is depicted by the dash-dotted
line, where the expectation is taken over both the training input point x and the training
output value y (this corresponds to the mean of the three solid curves). The values of the
generalization error in the conditional expectation approach are depicted by the dotted
lines, where the expectation is taken only over the training output value y, conditioned
on x = x′, x′′, x′′′, respectively (this corresponds to the mean value of each solid curve).
The graph in Figure 1(b) depicts the generalization errors for a model M2 in the same
manner.

In the full expectation framework, the model M1 is judged to be better than M2

regardless of the realization of the training input point since the dash-dotted line in
Figure 1(a) is lower than that in Figure 1(b). However, M2 is actually better than M1 if
x′′ or x′′′ is realized as x. In the conditional expectation framework, the goodness of the
model is adaptively evaluated depending on the realization of the training input point x.
This illustrates that the conditional expectation framework can indeed provide a better
model choice than the full expectation framework.
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Figure 2: Regression problem of learning f(x) from {(xi, yi)}n
i=1. {ϵi}n

i=1 are i.i.d. noise

with mean zero and variance σ2, and f̂(x) is a learned function.

In this chapter, we address the problems of model selection and active learning in the
conditional expectation framework. The rest of this chapter is organized as follows. After
the problem formulation in Section 2, we introduce a model selection criterion (Section 3)
and an active learning criterion (Section 4) in the conditional expectation framework and
show that they are more advantageous than the full expectation methods in the context of
approximate linear regression. Then we discuss how model selection and active learning
can be combined in Section 5. Finally we give concluding remarks and future prospects
in Section 6.

2 Linear Regression under Covariate Shift

In this section, we formulate a linear regression problem with covariate shift.

2.1 Statistical Formulation of Linear Regression

Let us consider a regression problem of estimating an unknown input-output dependency
from training samples. Let {(xi, yi)}n

i=1 be the training samples, where xi ∈ X ⊂ Rd is
an i.i.d. training input point following a probability distribution Ptr(x) and yi ∈ Y ⊂ R
is a corresponding training output value following a conditional probability distribution
P (y|x = xi). We denote the conditional mean of P (y|x) by f(x) and assume that the
conditional variance is σ2, which is independent of x. Then P (y|x) may be regarded
as consisting of the true output f(x) and the noise ϵ with mean 0 and variance σ2 (see
Figure 2).

Let us employ a linear regression model for learning f(x).

f̂(x; α) =
t∑

ℓ=1

αℓφℓ(x), (1)

where {αℓ}t
ℓ=1 are parameters to be learned and {φℓ(x)}t

ℓ=1 are fixed basis functions. A

model f̂(x; α) is said to be correctly specified if there exists a parameter α∗ such that

f̂(x; α∗) = f(x). (2)
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Otherwise the model is said to be misspecified. In the following, we do not assume that
the model is correct.

Let us consider a test sample, which is not given to the user in the training phase,
but will be given in a future test phase. We denote the test sample by (xte, yte), where
xte ∈ X is a test input point and yte ∈ Y is a corresponding test output value. The goal
of regression is to determine the value of the parameter α so that the generalization error
G (the test error expected over test samples) is minimized:

G ≡ Exte,yte

[
(f̂(xte; α) − yte)2

]
, (3)

where Exte,yte [·] denotes the expectation over (xte, yte).

2.2 Covariate Shift

In standard supervised learning theories, the test sample (xte, yte) is assumed to follow the
joint distribution P (y|x)Ptr(x), which is the same as the training samples (e.g., Wahba,
1990; Bishop, 1995; Vapnik, 1998; Duda et al., 2001; Hastie et al., 2001; Schölkopf and
Smola, 2002). On the other hand, here, we consider the covariate shift situation, i.e., the
conditional distribution P (y|x) remains unchanged, but the test input point xte follows a
different probability distribution Pte(x).

Let ptr(x) and pte(x) be the probability density functions corresponding to the input
distributions Ptr(x) and Pte(x), respectively. We assume that ptr(x) and pte(x) are strictly
positive over the entire domain X .

2.3 Functional Analytic View of Linear Regression

Technically, we assume that the target function f(x) and the basis functions {φℓ(x)}t
ℓ=1

are included in a functional Hilbert space F , where the inner product and the norm in F
are defined by

⟨f, g⟩F =

∫
X

(f(x) − g(x))2 pte(x)dx, (4)

∥f∥F =
√

⟨f, f⟩F . (5)

Then the generalization error G (3) is expressed in terms of F as

G =
∥∥∥f̂ − f

∥∥∥2

F
+ σ2 (6)

Given our linear regression model (1), the learning target function f(x) can be decom-
posed as

f(x) = g(x) + δr(x), (7)
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Figure 3: Decomposition of f(x) in a functional Hilbert space F .

where g(x) is the optimal approximation in the model (1):

g(x; α∗) =
t∑

ℓ=1

α∗
ℓφℓ(x). (8)

α∗ is the unknown optimal parameter under G:

α∗ ≡ argmin
α

G. (9)

r(x) is the residual function orthogonal to {φℓ(x)}t
ℓ=1 in F , i.e.,

⟨r, φℓ⟩F = 0 for ℓ = 1, 2, . . . , t. (10)

Without loss of generality, we normalize r(x) as

∥r∥F = 1. (11)

Thus the function r(x) governs the nature of the model error and δ (≥ 0) is the magnitude
of the error.

Geometrically, in the functional Hilbert space F , g(x) is the orthogonal projection of
f(x) onto the subspace spanned by {φℓ(x)}t

ℓ=1 and δr(x) is the residual (see Figure 3).
Let U be a t × t matrix with the (ℓ, ℓ′)-th element

Uℓ,ℓ′ = ⟨φℓ, φℓ′⟩F . (12)

In the following theoretical analysis, we assume that U is accessible.

2.4 Parameter Learning

We learn the parameter α in our linear regression model (1) by a linear learning method,
i.e., a learned parameter α̂ is given by the following form:

α̂ = Ly, (13)

where L is a t × n matrix called the learning matrix and

y = (y1, y2, . . . , yn)⊤. (14)
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We assume that L does not depend on the noise in y.
Adaptive importance weighted least squares (AIWLS) introduced in Chapter 6 is an

example of linear learning methods:

α̂AIWLS ≡ argmin
α

[
n∑

i=1

(
pte(xi)

ptr(xi)

)λ

(f̂(xi; α) − yi)
2

]
, (15)

where 0 ≤ λ ≤ 1. We call λ a flattening parameter since it flattens the importance
weights. The corresponding learning matrix LAIWLS is given by

LAIWLS = (X⊤W λX)−1X⊤W λ, (16)

where W is the diagonal matrix with diagonal element being the importance:

Wi,i =
pte(xi)

ptr(xi)
. (17)

In the following, we assume that the importance is known. If it is unknown, we may esti-
mate it by proper methods such as kernel mean matching (KMM, see Chapter 8), kernel
logistic regression (see Chapter 9), the Kullback-Leibler importance estimation procedure
(KLIEP, see Sugiyama et al., 2008).

3 Model Selection

In this section, we address the problem of model selection in the conditional expectation
framework. Here, the term ‘model’ refers to the number t and the type {φℓ(x)}t

ℓ=1 of
basis functions. Some tuning parameters contained in the learning matrix L, e.g., the
flatteining parameter λ in AIWLS (15), are also included in the model.

The goal of model selection is to choose the best model M∗ from a model set M such
that the generalization error G is minimized.

M∗ ≡ argmin
M∈M

G(M). (18)

The true generalization error G is inaccessible since it contains the unknown target func-
tion f(x) (see (6))—in practice, we replace G by its estimator Ĝ. Therefore, the main
goal of model selection research is to obtain an accurate estimator of the generalization
error.

In this section, we introduce a generalization error estimator called the importance-
weighted subspace information criterion (IWSIC) (Sugiyama and Müller, 2005). IWSIC
is an extension of SIC, which is a generalization error estimator derived within the condi-
tional expectation framework (Sugiyama and Ogawa, 2001, 2002; Sugiyama and Müller,
2002). IWSIC is shown to possess proper unbiasedness even under covariate shift. For
simplicity, we consider fixed basis functions {φℓ(x)}t

ℓ=1 and focus on choosing the flat-
tening parameter λ in AIWLS (15). However, IWSIC can be generally used for choosing
basis functions and moreover the learning matrix L.
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3.1 IWSIC

The generalization error G (3) is expressed as

G =
∥∥∥f̂∥∥∥2

F
− 2

⟨
f̂ , g + δr

⟩
F

+ ∥f∥2
F + σ2

= ⟨Uα,α⟩ − 2 ⟨Uα,α∗⟩ + C + σ2, (19)

where C is constant:
C ≡ ∥f∥2

F . (20)

In (19), the first term ⟨Uα,α⟩ is accessible and the third term C and the fourth term
σ2 are constants independent of the model. For this reason, we focus on estimating the
second term ‘⟨Uα, α∗⟩’. Let

G′ ≡ ⟨Uα, α⟩ − 2 ⟨Uα,α∗⟩ = G − C − σ2, (21)

which is an essential part of G.
A basic idea of IWSIC is to replace the unknown α∗ by its linear estimator α̃:

α̃ ≡ L̃y, (22)

where
L̃ ≡ (X⊤WX)−1X⊤W. (23)

Note that α̃ is an unbiased estimator of α∗ if the model is correct (i.e., δ = 0); otherwise
it is asymptotically unbiased in general.

However, simply replacing α∗ by α̃ induces a bias in generalization error estimation
since the same sample y is used for obtaining α̂ and α̃—here, we are addressing the bias
in terms of the conditional expectation over training output values {yi}n

i=1 given training
input points {xi}n

i=1. The bias can be expressed as

Ey [⟨Uα, α̃⟩ − ⟨Uα,α∗⟩] = Ey

[⟨
Uα, L̃(y − z)

⟩]
, (24)

where Ey [·] denotes the expectation over y (or equivalently {ϵi}n
i=1) and

z ≡ (f(x1), f(x2), . . . , f(xn))⊤. (25)

Based on (24), we define

preIWSIC ≡ ⟨Uα,α⟩ − 2 ⟨Uα, α̃⟩ + 2Ey

[⟨
Uα, L̃(y − z)

⟩]
. (26)

If we can compute (or approximate) the third term in preIWSIC (26), the entire criterion
becomes accessible and therefore it can be used for model selection.

If the learning matrix L is determined based on AIWLS (15), we have

Ey

[⟨
Uα̂, L̃(y − z)

⟩]
= σ2tr

(
ULL̃⊤

)
. (27)
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Let us replace the unknown noise variance σ2 by an ordinary estimator σ̂2:

σ̂2 ≡
∥∥X(X⊤X)−1X⊤y − y

∥∥2

n − t
, (28)

which is known to be unbiased if δ = 0. Summarizing the above approximations, we have
IWSIC:

IWSIC ≡ ⟨Uα̂, α̂⟩ − 2 ⟨Uα̂, α̃⟩ + 2σ̂2tr
(
ULL̃⊤

)
. (29)

IWSIC satisfies
Ey [IWSIC − G′] = Op(δn

− 1
2 ), (30)

where Op denotes the asymptotic order in probability. This means that IWSIC is an
exact unbiased estimator of the essential generalization error G′ if the model is correct
(i.e., δ = 0); generally, IWSIC is asymptotically unbiased with asymptotic order n− 1

2 . In
addition to the unbiasedness, IWSIC is shown to be useful for comparing the generalization
error of two different models (Sugiyama and Müller, 2005).

Eq. (30) further shows that the bias of IWSIC is proportional to the model error δ.
Thus IWSIC is more accurate if the target model has a smaller model error. This is
practically a useful property in model selection because of the following reason. The goal
of model selection is to choose the best model from a model set M. The set M may
contain various models including good ones and poor ones. In practice, it may not be
difficult to distinguish very poor models from good ones; just using a rough estimator
of the generalization error would be enough for this purpose. Therefore, what is really
important in model selection is how to choose a very good model from a set of good
models. Usually good models have small model errors and IWSIC is accurate for such
models. For this reason, IWSIC is most useful when choosing a very good model from a
set of good models.

A variance reduction method of SIC is discussed in Sugiyama et al. (2004), which
could be used for further improving the model selection performance of IWSIC. IWSIC
can also be extended to the situation where the learning transformation L is non-linear
(Sugiyama, 2007).

In the above discussion, the matrix U (see (12)) and the importance {pte(xi)/ptr(xi)}n
i=1

(see (17)) are assumed known. Even when they are estimated from data, the unbiasedness
of IWSIC is still approximately maintained (Sugiyama and Müller, 2005).

3.2 Relation to Other Model Selection Methods

IWSIC is shown to possess proper unbiasedness within the conditional expectation frame-
work. Here, we qualitatively compare IWSIC with other model selection methods.

3.2.1 Importance-Weighted AIC

The modified AIC given in Chapter 6, which we refer to as Important-Weighted AIC
(IWAIC) here, is unbiased in terms of the full expectation over the training set.
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For the linear regression model (1) with the linear learning method (13), IWAIC is
expressed as follows (we properly shifted and rescaled it for better comparison):

IWAIC =
⟨
Ûα̂, α̂

⟩
− 2

⟨
Ûα̂, α̃

⟩
+ 2tr

(
ÛLΣ̂L̃⊤

)
, (31)

where

Û ≡ 1

n
X⊤WX, (32)

and Σ̂ is the diagonal matrix with the i-th diagonal element

Σ̂i,i ≡ (yi − f̂(xi; α̂))2. (33)

The appearances of IWAIC and IWSIC are similar but different in two aspects.

(i) The matrix U in IWSIC is replaced by its empirical estimate Û in IWAIC.

(ii) Instead of Σ̂ in IWAIC, σ̂2I is used in IWSIC, where I denotes the identity matrix.

IWAIC satisfies
EX,y [IWAIC − G′] = o(n−1), (34)

where EX,y [·] denotes the expectation over {(xi, yi)}n
i=1. This shows that IWAIC has a

smaller asymptotic bias in the full expectation analysis. On the other hand, if only the
conditional expectation of training output values y given training input points X is taken,
IWAIC satisfies

Ey [IWAIC − G′] = Op(n
− 1

2 ), (35)

which is the same asymptotic order as IWSIC (see (30)). However, a crucial difference is
that the bias of IWAIC is not proportional to the model error δ. In approximately linear
regression where the model error is δ = o(1) with respect to n, the bias of IWSIC is

Ey [IWSIC − G′] = op(n
− 1

2 ), (36)

which is smaller than IWAIC. Thus IWSIC is more accurate than IWAIC in approximate
linear regression.

Note that the range of IWAIC is not limited to linear regression; it can be applied to
any statistically regular models (Watanabe, 2001) and any smooth loss functions.

3.2.2 Importance-Weighted CV

Cross validation (CV) is another popular method for model selection (Stone, 1974; Wahba,
1990), which gives an estimate of the generalization error G. Under covariate shift, a
variant of CV called importance-weighted CV (IWCV) has proper unbiasedness (Sugiyama
et al., 2007). In IWCV, the training set T = {(xi, yi)}n

i=1 is randomly divided into k
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disjoint subsets {Ti}k
i=1 with (approximately) same size. The k-fold IWCV estimate of

the generalization error G is given by

kIWCV ≡ 1

k

k∑
r=1

1

|Tr|
∑

(x,y)∈Tr

(f̂(x; α̂Tr) − y)2, (37)

where f̂(x; α̂Tr) is a function learned from {Ti}i̸=r. That is, Tr is not used for learning,
but is used for computing the validation error. When k = n, kIWCV is particularly called
leave-one-out IWCV (LOOIWCV):

LOOIWCV ≡ 1

n

n∑
r=1

(f̂(xr; α̂r) − yr)
2, (38)

where f̂(x; α̂r) is a function learned from {(xi, yi)}i̸=r.
LOOIWCV is almost unbiased in the full expectation framework.

EX,y [LOOIWCV] = G(n−1) ≈ G(n), (39)

where G(n) is the expected generalization error over all the training set with size n:

G(n) = EX,y [G] . (40)

Thus LOOIWCV with n training samples is an exact unbiased estimator of the expected
generalization error with n− 1 training samples. However, in the conditional expectation
framework, its unbiasedness is only asymptotic:

Ey [LOOIWCV] = Ey [G] + Op(n
− 1

2 ). (41)

This means that LOOIWCV has the same asymptotic order as IWSIC (see (30)). However,
the bias of IWSIC is proportional to the model error δ, so IWSIC has a smaller bias than
LOOIWCV in approximately linear regression.

Note that the unbiasedness of IWCV is valid for any loss function, any model, and
any parameter learning method; even non-parametric learning methods are allowed.

3.3 Numerical Examples

Here, we illustrate how IWSIC works through numerical experiments.
Let the input dimension be d = 1 and the target function f(x) be

f(x) = sinc(x). (42)

We use the following linear regression model for learning:

f̂(x) = α0 + α1x. (43)
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Figure 4: (a) Training and test input densities. (b), (c), and (d) Learning target function
and functions learned by AIWLS with λ = 0, 0.5, 1.

We determine the parameters α0 and α1 by AIWLS (15). Let the training input dis-
tribution be Gaussian with mean 1 and standard deviation 1/2, and let the test input
distribution be Gaussian with mean 2 and standard deviation 1/4. Let the conditional
distribution P (y|x) be Gaussian with mean sinc(x) and standard deviation 1/2, and let
the number of training samples be

n = 50, 100, 200. (44)

The above setting is summarized in Figure 4(a).
In addition to the training samples, we draw 1000 test unlabeled samples and esti-

mate the importance by KLIEP (Sugiyama et al., 2008) using these data samples. Fig-
ure 4(b)–(d) depicts examples of functions learned by AIWLS with flattening parameter
λ = 0, 0.5, 1. Our model selection task here is to choose the flattening parameter λ in
AIWLS from

λ = 0, 0.1, 0.2, . . . , 1. (45)

We use IWSIC, IWAIC and IWCV for the selection of λ. The simulation is repeated 30000
times for each n. The obtained generalization error by each model selection method is



A Conditional Expectation Approach to Model Selection and Active Learning 12

Table 1: Means and standard deviations of generalization error. All values in the table are
multiplied by 102. The best method and comparable ones by the t-test at the significance
level 5% are marked by ‘◦’.

n IWSIC IWAIC IWCV
50 ◦12.01±10.86 13.50±13.54 12.22±11.85
100 ◦8.57±3.92 9.01±4.56 ◦8.63±4.01
200 ◦7.34±1.85 7.54±2.16 ◦7.37±1.95

summarized in Table 1, showing that IWSIC is significantly better than other approaches
particularly when n is small.

4 Active Learning

In this section, we address the problem of active learning in the conditional expectation
framework. The goal of (batch) active learning is to choose training input points {xi}n

i=1

such that the generalization error G is minimized. However, directly optimizing {xi}n
i=1

may be computationally hard since n input points of d dimensions needs to be simulta-
neously optimized. Here, we avoid this difficulty by optimizing the training input density
ptr(x) from which we draw training input points:

p∗tr ≡ argmin
ptr

G(ptr). (46)

The true generalization error G is inaccessible since it contains the unknown target func-
tion f(x). Therefore, the main goal of active learning research is to obtain an accurate
estimator of the generalization error, which is actually the same as model selection. How-
ever, generalization error estimation in active learning is generally harder than model
selection since the generalization error has to be estimated before observing training out-
put values {yi}n

i=1.
We assume that the test input density pte(x) is known and the parameter α is learned

by IWLS, i.e.,

α̂IWLS ≡ argmin
α

[
n∑

i=1

pte(xi)

ptr(xi)
(f̂(xi; α) − yi)

2

]
. (47)

The corresponding learning matrix LIWLS is given by

LIWLS = (X⊤WX)−1X⊤W. (48)

In this section, we introduce an active learning method called ALICE (Active Learning
using Importance-weighted least-squares learning based on Conditional Expectation of the
generalization error) (Sugiyama, 2006). ALICE is an extension of the traditional variance-
only method (Fedorov, 1972; Cohn et al., 1996; Fukumizu, 2000) to approximately correct
models (see Section 4.2 for detail).
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4.1 ALICE

The conditional expectation of the generalization error G over training output values
{yi}n

i=1 given training input points {xi}n
i=1 can be decomposed as

Ey [G] = B + V + δ2 + σ2, (49)

where

B ≡
∥∥∥g − Ey

[
f̂
]∥∥∥2

F
, (50)

V ≡ Ey

[∥∥∥f̂ − Ey

[
f̂
]∥∥∥2

F

]
= σ2tr

(
ULIWLSL

⊤
IWLS

)
. (51)

B is the squared conditional bias and V is the conditional variance of the learned function.
δ2 and σ2 are constants. Let

G′′ ≡ G − δ2 − σ2, (52)

which is an essential part of the generalization error G. Note that it is different from G′

(cf. (21)).
The bias term B depends on the unknown target function f(x). Therefore, it is

generally not possible to estimate the bias term B before observing {yi}n
i=1 since we have

no information on the target function f(x). On the other hand, the variance term V
only depends on the learned function, and (51) implies that V can be computed without
{yi}n

i=1 up to the scaling factor σ2, which is an unknown noise variance. The basic idea
of variance-only active learning methods is to guarantee that B can be safely ignored and
focus on evaluating V/σ2; when IWLS (47) is used for parameter learning, we can show
that

B = Op(δ
2n−1), (53)

V = Op(n
−1). (54)

Based on these, ALICE is defined as

ALICE ≡ tr
(
ULIWLSL

⊤
IWLS

)
. (55)

The use of ALICE can be justified in approximate linear regression, i.e., if the model error
is δ = o(1) with respect to n, ALICE satisfies

σ2ALICE − G′′ = op(n
−1). (56)

4.2 Relation to Other Active Learning Methods

ALICE is shown to be a sound active learning criterion in approximately linear regression.
Here, we qualitatively compare ALICE with other active learning methods.
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4.2.1 Traditional Variance-Only Method with Ordinary Least Squares

A traditional approach to variance-only active learning employs ordinary least squares
(OLS) for parameter learning, i.e.,

α̂OLS ≡ argmin
α

[
n∑

i=1

(f̂(xi; α) − yi)
2

]
. (57)

The corresponding learning matrix LOLS is given by

LOLS = (X⊤X)−1X⊤. (58)

Based on OLS, an active learning criterion, which we refer to as the Variance-Only cri-
terion with Least-Squares (VOLS) here, is given as follows (Fedorov, 1972; Cohn et al.,
1996; Fukumizu, 2000):

VOLS = tr
(
ULOLSL

⊤
OLS

)
. (59)

The use of VOLS is justified also in approximate linear regression, i.e., if the model error
is δ = o(n− 1

2 ), VOLS satisfies the following property (Sugiyama, 2006):

σ2VOLS − G′′ = op(n
−1). (60)

However, the condition on the model error δ is stronger than for ALICE.

4.2.2 Full Expectation Variance-Only Method

Within the full expectation framework, Kanamori and Shimodaira (2003) proved that the
expected generalization error is asymptotically expressed as follows (see also Chapter 6):

EX,y [G′′] =
1

n
tr
(
U−1H

)
+ O(n− 3

2 ), (61)

where H is the n-dimensional square matrix defined by

H = S + σ2T. (62)

S and T are the t-dimensional square matrices with the (ℓ, ℓ′)-th elements

Sℓ,ℓ′ =

∫
X

φℓ(x)φℓ′(x)(δr(x))2 (pte(x))2

ptr(x)
dx, (63)

Tℓ,ℓ′ =

∫
X

φℓ(x)φℓ′(x)
(pte(x))2

ptr(x)
dx. (64)

Note that 1
n
tr (U−1S) corresponds to the squared bias while σ2

n
tr (U−1T ) corresponds to

the variance. T is accessible by assumption, but S is not (due to δr(x)).
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Based on this decomposition, a variance-only active learning criterion, which we refer
to as the Full Expectation Variance-Only (FEVO) method, is given as follows (Wiens,
2000):

FEVO =
1

n
tr
(
U−1T

)
. (65)

Sugiyama (2006) proved that the use of FEVO is also justified in approximate linear
regression, i.e., if the model error is δ = o(1) with respect to n, FEVO satisfies

σ2FEVO − G′′ = o(n−1). (66)

This implies that the asymptotic order of FEVO is the same as ALICE. Furthermore,
ALICE and FEVO are actually equivalent asymptotically, i.e.,

ALICE − FEVO = Op(n
− 3

2 ). (67)

However, they are different in the order of Op(n
−1). To investigate this difference more

precisely, let us measure the goodness of a generalization error estimator Ĝ by

Ey

[
(Ĝ − G′′)2

]
. (68)

If δ = o(n− 1
4 ) and terms of op(n

−3) are ignored, we have

Ey

[
(σ2ALICE − G′′)2

]
≤ Ey

[
(σ2FEVO − G′′)2

]
. (69)

Thus, for approximate linear regression with δ = o(n− 1
4 ), ALICE is a more accurate

estimator of the generalization error than FEVO in the above sense.
FEVO does not depend on the realization of training input points {xi}n

i=1 (though it
does depend on the training input density ptr(x)). Thanks to this property, the optimal
training input density p̂tr(x) can be obtained in a close-form as follows (Wiens, 2000):

p̂tr(x) =
ĥ(x)∫

X ĥ(x)dx
, (70)

where

ĥ(x) = pte(x)

(
t∑

ℓ,ℓ′=1

[U−1]ℓ,ℓ′φℓ(x)φℓ′(x)

) 1
2

. (71)

4.2.3 Full Expectation Bias-Variance Method

Another idea of approximating H in (61) is a two-stage sampling scheme introduced in
Chapter 6: in the first stage, ñ (≤ n) training input points {x̃i}ñ

i=1 are created indepen-
dently following the test input distribution with density pte(x), and the corresponding
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training output values {ỹi}ñ
i=1 are gathered. Then a consistent estimator H̃ of the un-

known matrix H in (61) can be obtained based on {(x̃i, ỹi)}ñ
i=1 as

H̃ℓ,ℓ′ =
1

ñ

ñ∑
i=1

pte(x̃i)

ptr(x̃i)
(ỹi − f̂(x̃i; α̃OLS))

2φℓ(x̃i)φℓ′(x̃i), (72)

where α̃OLS is obtained from {(x̃i, ỹi)}ñ
i=1 by OLS (57). This corresponds to estimating

the bias term S and the noise variance σ2 from {(x̃i, ỹi)}ñ
i=1. U−1 is also replaced by a

consistent estimator Ũ−1:

Ũℓ,ℓ′ =
1

ñ

ñ∑
i=1

φℓ(x̃i)φℓ′(x̃i). (73)

Based on these approximations, an active learning criterion, which we refer to as the Full
Expectation Bias-Variance (FEBV) method here, is given as

FEBV =
1

n
tr
(
Ũ−1H̃

)
. (74)

In the second stage, this criterion is used for optimizing the location of the remaining
n − ñ training input points. Kanamori and Shimodaira (2003) proved that the use of
FEBV can be justified for misspecified models, i.e., for δ = O(1) with respect to n, FEBV
satisfies

σ2FEBV − G′′ = o(n−1). (75)

The order of δ required above is weaker than that required in ALICE or FEVO. Therefore,
FEBV theoretically has a wider range of applications. However, this strong theoretical
property is not necessarily useful in practice since learning with totally misspecified models
(i.e., δ = O(1)) may not work well due to large model errors. Furthermore, due to the
two-stage sampling scheme, FEBV allows us to choose only n − ñ training input points.
This can be very restrictive when the total number n is not so large.

Note that the range of FEBV is not restricted to linear regression; it can be applied
to any statistically regular models (Watanabe, 2001) and any smooth loss functions.

4.3 Numerical Examples

Here, we illustrate how ALICE works through numerical experiments.
Let the input dimension be d = 1 and the target function f(x) be

f(x) = 1 − x + x2 + δr(x), (76)

where

r(x) = δ
z3 − 3z√

6
with z =

x − 0.2

0.4
. (77)

We use the following linear regression model for learning:

f̂(x) = α0 + α1x + α2x
2. (78)
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input density with width parameter c.

Note that for this regression model, the residual function r(x) fulfills (10) and (11). Let
us consider the following three cases.

δ = 0, 0.005, 0.05, (79)

which correspond to “correctly specified”, “approximately correct”, and “misspecified”
cases, respectively.

Let the test input distribution be Gaussian with mean 0.2 and standard deviation 0.4,
which is assumed to be known in this illustrative simulation. Let us gather 100 training
samples by active learning. Our task here is to choose the training input distribution
from a set of Gaussians with mean 0.2 and standard deviation 0.4c, where

c = 0.8, 0.9, 1.0, . . . , 2.5. (80)

We add i.i.d. Gaussian noise with mean zero and standard deviation 0.3 to the training
output values. The above setting is summarized in Figure 5. We repeat this simulation
1000 times for each δ.

In Table 2, the mean and standard deviation of the generalization error obtained by
each method are described. FEVO* denotes the case where the closed-form solution of
FEVO (see (70)) is used.

When δ = 0, VOLS works significantly better than other methods. Actually, in this
case, training input densities that approximately minimize the generalization error were
successfully found by ALICE, FEVO, FEBV, and VOLS. This implies that the difference
in the obtained error is caused not by the quality of the active learning criteria, but by
the difference between IWLS and OLS since IWLS generally has larger variance than
OLS (Shimodaira, 2000). Therefore, when δ = 0, OLS would be more accurate than
IWLS since both IWLS and OLS are unbiased. Although ALICE, FEVO, and FEBV
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Table 2: The mean and standard deviation of the generalization error G−σ2 obtained by
each method for the toy data set. The best method and comparable ones by the t-test at
the significance level 5% are marked by ‘◦’. The value of VOLS for δ = 0.05 is extremely
large but it is not a typo. All values in the table are multiplied by 103.

δ ALICE FEVO FEVO* FEBV VOLS Passive
0 2.08±1.95 2.40±2.15 2.32±2.02 3.09±3.03 ◦1.31±1.70 3.11±2.78

0.005 ◦2.10±1.96 2.43±2.15 2.35±2.02 3.13±3.00 2.53±2.23 3.14±2.78
0.05 ◦4.61±2.12 4.89±2.26 4.84±2.14 5.95±3.58 124±7.4 6.01±3.43

are outperformed by VOLS, they still work better than Passive (training input density
is equal to the test input density). Note that ALICE is significantly better than FEVO,
FEBV, and Passive by the t-test.

When δ = 0.005, ALICE gives significantly smaller errors than other methods. All
the methods except VOLS work similarly to the case with δ = 0, while VOLS tends to
perform poorly. This result is surprising since the learning target functions with δ = 0
and δ = 0.005 are visually almost the same, as illustrated in the top graph of Figure 5.
Therefore, intuitively the result when δ = 0.005 should not be much different from the
result when δ = 0. However, this slight difference appears to make VOLS unreliable.
Other methods are shown to be robust against model misspecification.

When δ = 0.05, ALICE again works significantly better than others. FEVO still works
reasonably well. The performance of FEBV is slightly degraded, although it is still better
than Passive. VOLS gives extremely large errors.

The above results are summarized as follows. For all three cases (δ = 0, 0.005, 0.05),
ALICE, FEVO, and FEBV work reasonably well and consistently outperform Passive.
Among them, ALICE appears to be better than FEVO and FEBV for all three cases.
VOLS works excellently for correctly specified models, although it tends to perform poorly
once the correctness of the model is violated. Therefore, ALICE is shown to be robust
against model misspecification and therefore work well.

5 Active Learning with Model Selection

The problems of model selection and active learning share a common goal—minimizing
the generalization error (see (18) and (46)). However, they have been studied separately
as two independent problems so far. If models and training input points are optimized
at the same time, the generalization performance could be further improved. We call the
problem of simultaneously optimizing training input points and models active learning
with model selection:

min
M,ptr

G(M, ptr). (81)

This is the problem we address in this section.
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5.1 Direct Approach and Active Learning/Model Selection
Dilemma

A naive and direct solution to (81) would be to simultaneously optimize M and ptr.
However, this direct approach may not be possible by simply combining an existing active
learning method and an existing model selection method in a batch manner due to the
active learning/model selection dilemma: when choosing the model M with existing model
selection methods, the training input points (or the training input density) must have been
fixed and the corresponding training output values must have been gathered (Akaike, 1974;
Rissanen, 1978; Schwarz, 1978; Craven and Wahba, 1979; Shimodaira, 2000; Sugiyama
and Müller, 2005). On the other hand, when selecting the training input density with
existing active learning methods, the model must have been fixed (Fedorov, 1972; MacKay,
1992b; Cohn et al., 1996; Fukumizu, 2000; Wiens, 2000; Kanamori and Shimodaira, 2003;
Sugiyama, 2006). For example, IWSIC (29) can not be computed without fixing the
training input density (and without training output values) and ALICE (55) can not be
computed without fixing the model.

If there exist training input points which are optimal for all model candidates, it is
possible to solve both active learning and model selection without regard to the dilemma:
choose the training input points for some model by some active learning method (e.g.,
ALICE), gather corresponding training output values, and perform model selection using
some method (e.g., IWSIC). It is shown that such common optimal training input points
exist for correctly specified trigonometric polynomial models (Sugiyama and Ogawa,
2003). However, such common optimal training input points may not exist in general
and thus the range of application of this approach is limited.

5.2 Sequential Approach

A standard approach to coping with the active learning/model selection dilemma for
arbitrary models would be the sequential approach (MacKay, 1992a), i.e., in an iterative
manner, a model is chosen by a model selection method and the next input point (or
a small portion) is optimized for the chosen model by an active learning method (see
Figure 6(a)).

In the sequential approach, the chosen model M (i) varies through the online learning
process (see the dashed line in Figure 6(b)), where M (i) denotes the model chosen at the
i-th step. We refer to this phenomenon as the model drift. The model drift phenomenon
could be a weakness of the sequential approach since the location of optimal training
input points depends strongly on the target model in active learning; a good training
input point for one model could be poor for another model. Depending on the transition
of the chosen models, the sequential approach can work very well. For example, when
the transition of the model is the solid line in Figure 6(b), most of the training input
points are chosen for the finally selected model M (n) and the sequential approach has
an excellent performance. However, when the transition of the model is the dotted line
in Figure 6(b), the performance becomes poor since most of the training input points
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(a) Diagram (b) Transition of chosen models

Figure 6: Sequential approach to active learning with model selection.

are chosen for other models. Note that we can not control the transition of the model
properly since we do not know a priori which model will be chosen in the end. Therefore,
the performance of the sequential approach is unstable.

Another issue that needs to be taken into account in the sequential approach is that
the training input points are not i.i.d. in general—the choice of the (i + 1)-th training
input point xi+1 depends on the previously gathered samples {(xj, yj)}i

j=1. Since standard
model selection methods and active learning methods require the i.i.d. assumption for
establishing their statistical properties such as unbiasedness and consistency, they may
not be directly employed in the sequential approach (Bach, 2007).

IWSIC (29) and ALICE (55) also suffer from the violation of the i.i.d. condition and
loose their unbiasedness and consistency. However, this problem can be easily settled
by slightly modifying the criteria. Suppose we draw u input points from p

(i)
tr (x) in each

iteration (let n = uv, where v is the number of iterations). If u tends to infinity, simply
redefining the diagonal matrix W as follows makes IWSIC and ALICE still asymptotically
unbiased and consistent:

Wk,k =
pte(xk)

p
(i)
tr (xk)

, (82)

where k = (i − 1)u + j, i = 1, 2, . . . , v, and j = 1, 2, . . . , u. This would be another
advantage of the conditional expectation approach.
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(a) Diagram (b) Transition of chosen models

Figure 7: Batch approach to active learning with model selection.

5.3 Batch Approach

An alternative approach to active learning with model selection is to choose all the training
input points for an initially chosen model M (0). We refer to this approach as the batch
approach (see Figure 7(a)). Due to the batch nature, this approach does not suffer from
the model drift (cf. Figure 6(b)); the batch approach can be optimal in terms of active
learning if an initially chosen model M (0) agrees with the finally chosen model M (n) (see
the solid line in Figure 7(b)).

The performance of this batch approach heavily depends on the initial model M (0).
In order to choose the initial model appropriately, we may need a generalization error
estimator that can be computed before observing training output values—for example,
ALICE (55). However, this does not work well since ALICE only evaluates the variance
of the estimator; thus using ALICE for choosing the initial model M (0) merely results
in always selecting the simplest model in the candidates. Note that this problem is not
specific to ALICE, but is common to most generalization error estimators since it is
generally not possible to estimate the bias before observing training output values. For
this reason, in practice, we may have to choose the initial model M (0) randomly. If we
have some prior preference of models, P (M), we may draw the initial model according to
it.

Due to the randomness of the initial model choice, the performance of the batch
approach may be unstable (see the dashed line in Figure 7(b)).

5.4 Ensemble Active Learning

The weakness of the batch approach lies in the fact that the training input points chosen
by an active learning method are overfitted to the initially chosen model—the training
input points optimized for the initial model could be poor if a different model is chosen



A Conditional Expectation Approach to Model Selection and Active Learning 22

(a) Diagram (b) Transition of chosen models

Figure 8: Ensemble approach to active learning with model selection.

later.
We may reduce the risk of overfitting by not optimizing the training input density

specifically for a single model, but by optimizing it for all model candidates (see Figure 8).
This allows all the models to contribute to the optimization of the training input density
and thus we can hedge the risk of overfitting to a single (possibly inferior) model. Since
this approach could be viewed as applying a popular idea of ensemble learning to the
problem of active learning, this method is called ensemble active learning (EAL).

This idea could be realized by determining the training input density so that the
expected generalization error over all model candidates is minimized:

min
ptr

∑
M

ALICEM(ptr)P (M), (83)

where ALICEM denotes ALICE for a model M and P (M) is the prior preference of the
model M . If no prior information on goodness of the models is available, the uniform
prior may be simply used.

5.5 Numerical Examples

Here, we illustrate how the ensemble active learning method behaves through numerical
experiments.

We use the same toy example as Section 4.3; the difference is the learning target
function and parameter learning methods. In Section 4.3, the target function is changed
through δ (see (76)) and IWLS is used; here we fix the target function at δ = 0.05 and
use AIWLS (15) for parameter learning. We choose the flattening parameter λ in AIWLS
by IWSIC (29) from

λ = 0, 0.5, 1. (84)

The choice of λ corresponds to model selection in this scenario.
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Figure 9: (a) Mean generalization error G − σ2 over 1000 trials as a function of training
input density c for each λ (when n = 100). (b) Frequency of chosen λ over 1000 trials as
a function of the number of training samples.

First, we investigate the dependency between the goodness of the training input den-
sity (i.e., c) and the model (i.e., λ). For each λ and each c, we draw training input points
{xi}100

i=1 and gather output values {yi}100
i=1. Then we learn the parameter by AIWLS and

compute the generalization error. The mean generalization error over 1000 trials as a
function of c for each λ is depicted in Figure 9(a). This graph underlines that the best
training input density c could strongly depend on the model λ, implying that a training
input density that is good for one model could be poor for others. For example, when
the training input density is optimized for the model λ = 0, c = 1.1 would be an excel-
lent choice. However, c = 1.1 is not so suitable for other models λ = 0.5, 1. This figure
illustrates a possible weakness of the batch method: when an initially chosen model is sig-
nificantly different from the finally chosen model, the training input points optimized for
the initial model could be less useful for the final model and the performance is degraded.

Next, we investigate the behavior of the sequential approach. In our implementation,
10 training input points are chosen at each iteration. Figure 9(b) depicts the transition
of the frequency of chosen λ in the sequential learning process over 1000 trials. It shows
that the choice of models varies over the learning process; a smaller λ (which has smaller
variance thus low complexity) is favored in the beginning, but a larger λ (which has larger
variance thus higher complexity) tends to be chosen as the number of training samples
increases. Figure 9(b) illustrates a possible weakness of the sequential method: the target
model drifts during the sequential learning process and the training input points designed
in an early stage could be poor for the finally chosen model.

Finally, we investigate the generalization performance of each method when the num-
ber of training samples to gather is

n = 100, 150, 200, 250. (85)
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Table 3: Means and standard deviations of generalization error for the toy data set. All
values in the table are multiplied by 103. The best method and comparable ones by the
t-test at the significance level 5% are marked by ‘◦’.

n Passive Sequential Batch Ensemble
100 5.92±3.28 5.57±2.75 5.65±2.92 ◦5.12±2.50
150 4.77±2.18 4.43±1.77 4.64±1.91 ◦4.11±1.55
200 4.21±1.75 3.89±1.40 4.19±1.60 ◦3.68±1.19
250 3.78±1.32 3.47±1.02 3.91±1.42 ◦3.35±0.92

Table 3 describes the means and standard deviations of the generalization error obtained
by the sequential, batch, and ensemble methods; as a baseline, we also included the result
of passive learning (or equivalently c = 1). The table shows that all three methods tend
to outperform passive learning. However, the improvement of the sequential method is
not so significant, which would be caused by the model drift phenomenon (see Figure 9).
The batch method also does not provide significant improvement due to the overfitting
to the randomly chosen initial model (see Figure 9(a)). On the other hand, the proposed
ensemble method does not suffer from these problems and works significantly better than
other methods.

6 Conclusions

We introduced a conditional expectation approach to model selection and active learning
under covariate shift and proved that it is more accurate than the full expectation ap-
proach in approximate linear regression. Furthermore a method to combine active learning
and model selection was introduced that was nicely showing its experimental validity.

Future work will consider nonlinear extensions to the proposed methods and study
their use for classification. From the practical application viewpoint we will employ co-
variate shift compensation techniques for BCI following the lines of Sugiyama et al. (2007)
and use the novel active learning strategies for improving experimental design in compu-
tational chemistry (cf. Warmuth et al., 2003).
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Is Importance Weighting Needed under Covariate

Shift?

Covariate shift matters in parameter learning only when the model used for function
learning is misspecified (i.e., the model is so simple that the true learning target func-
tion can not be expressed). When the model is correctly (or overly) specified, ordinary
maximum likelihood estimation (MLE) is still consistent. Following this fact, there is a
criticism that covariate shift adaptation by importance weighting is not needed, but just
the use of a complex enough (or a non-parametric) model with ordinary MLE can settle
the problem.

However, too complex models result in huge variance, so we need to choose a complex
enough but not too complex model for better generalization performance. In order to
perform model selection, we often use an unbiased generalization error estimation methods
such as Akaike’s information criterion or cross-validation. However, these generalization
error estimation methods are heavily biased for misspecified models under covariate shift.
Instead, importance weighted variants can eliminate the bias and therefore more reliable
under covariate shift (see e.g., Chapter 6 and Chapter 7). In the model selection process,
we can not avoid computing the generalization error estimates for misspecified models
since the purpose is to rule out such models from appropriate ones. For this reason, the
use of (and therefore estimation of) the importance weights is indispensable when covariate
shift occurs. Thus accurately estimating the importance weights (see e.g., Chapter 8 and
Chapter 9) is very important and we need to further investigate this issue.


