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Abstract

Kernel methods such as the support vector machine are one of the most successful
algorithms in modern machine learning. Their advantage is that linear algorithms
are extended to non-linear scenarios in a straightforward way by the use of the kernel
trick. However, naive use of kernel methods is computationally expensive since the
computational complexity typically scales cubically with respect to the number of
training samples. In this article, we review recent advances in the kernel methods,
with emphasis on scalability for massive problems.
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1 Introduction

Kernel methods are a family of machine learning algorithms that can handle non-linear
models as if they are linear models. The key technique is the use of similarity functions
called kernel functions. Thanks to this, the kernel methods possess favorable characteris-
tics, and in particular, their computational complexity is independent of the dimension-
ality of the feature space.
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One of the most famous kernel methods is the support vector machine (SVM) [1]. Since
Vapnik’s seminal work, many linear supervised and unsupervised learning algorithms have
been kernelized [2, 3], including ridge regression, perceptrons, Fisher discriminant analysis,
principal component analysis (PCA), k-means clustering, and independent component
analysis (ICA). These kernelized algorithms have been shown to perform very well in
many real-world problems. However, naive use of these kernel methods is computationally
expensive since the computational complexity typically scales cubically with respect to
the number of training samples.

Recently, considerable effort has been devoted to improving the computational effi-
ciency of the kernel methods [4]. The purpose of this paper is to review various tech-
niques for accelerating the kernel methods. After briefly reviewing the basic ideas of
kernel methods in Section 2, we review recent advances in the kernel methods for large
scale problems. One of the computational bottlenecks of the kernel methods is the com-
putation of the kernel matrix. In Section 3, we review how the kernel matrix can be
approximated by low-rank matrices, considering incomplete Cholesky decomposition, the
Lanczos approximation, the Nyström method, and the fast Gaussian transform. In Sec-
tion 4, we review supervised kernel methods. For regression problems, we show how the
low-rank approximation techniques can be used to speed up the kernel algorithms such
as ridge regression, partial least-squares, and Gaussian processes. For classification prob-
lems, we show how the optimization problem involved in the support vector algorithm
can be solved efficiently by using the cutting-plane or dual coordinate descent techniques.
In Section 5, we focus on unsupervised methods and show how the dimensionality of
sparse data can be efficiently reduced by the Laplacian eigenmap. This can be employed
naturally in the spectral clustering algorithm. In Section 6, we address how the kernel
functions themselves can be computed efficiently when dealing with structured data. Sec-
tion 6 also considers how to learn a kernel from multiple kernels. Finally we conclude in
Section 7.

2 Basics of Kernel Methods

In order to briefly explain how linear algorithms can be non-linearized by using kernel
functions, let us consider the linear parametric model

f(x;w) ≡
⟨
w,x

⟩
, (1)

where x ∈ Rd is an input variable, w ∈ Rd is a parameter vector, and
⟨
·, ·
⟩
denotes the

inner product. Given input-output training data {(xi, yi) |xi ∈ Rd, yi ∈ R}ℓi=1, the param-
eterw is determined so that the linear sum of an empirical risk term (or a “goodness-of-fit”
term for the training data) and a regularization term is minimized:

J(w) ≡ Remp(w) + λΩ(w),

where λ > 0 is the regularization parameter that controls the balance between goodness-
of-fit and regularization. For ridge regression, the squared loss function is used for mea-
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suring the risk and the squared regularization function is adopted as the regularizer:

Remp(w) ≡
ℓ∑

i=1

(yi − f(xi;w))2 , (2)

Ω(w) ≡ ∥w∥22, (3)

where ∥ · ∥2 denotes the 2-norm. We denote the matrix consisting of all input samples by

X = (x1|x2| · · · |xℓ).

Then the ridge regression solution is given analytically as

ŵ = (X⊤X + λI)−1X⊤y, (4)

where I denotes the identity matrix, ⊤ indicates the transpose, and

y ≡ (y1, y2, . . . , yℓ)
⊤.

This implies that the computational complexity of computing the ridge regression solution
is O(d3) and that it explicitly depends on the input dimensionality.

Suppose the parameter w is written as the linear combination of the training samples
{xi}ℓi=1 as

w ≡
ℓ∑

i=1

αixi = Xα, (5)

where
α ≡ (α1, α2, . . . , αℓ)

⊤

is an ℓ-dimensional vector of the parameters. Then Eq.(1) can be expressed using the
inner product as

f(x;α) =
ℓ∑

i=1

αi

⟨
xi,x

⟩
.

Now let us define the kernel function as

k(x,x′) ≡
⟨
x,x′⟩.

Then the parametric model is expressed as

f(x) =
ℓ∑

i=1

αik(xi,x). (6)

With this kernelized model, the training objective function of ridge regression can be
rewritten as

J(α) = ∥y −Kα∥2 + λα⊤Kα,
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where K is the ℓ× ℓ matrix called the kernel matrix defined as

Ki,j ≡ k(xi,xj).

The solution α̂ can be obtained as

α̂ = (K + λI)−1y. (7)

This implies that the computational complexity is O(dℓ3), where the factor d comes from
the computation of the kernel function values and the cubic factor ℓ3 is the computa-
tional complexity of inverting the kernel matrix. Therefore, now the dependency of the
computational complexity on the number ℓ of training samples is more significant than
the input dimensionality d. Note that in this kernel formulation, the data samples are
accessed only through the kernel functions both in the training and test phases; the input
vectors are not directly handled.

The above formulation is based on the fact that the parameter vector w is expressed
by a linear combination of training samples (see Eq.(5)). This can be justified by the
representer theorem [5]. In order to highlight an advantage of the kernel formulation, let
us consider the transformation

ϕ : Rd → Rd′ .

We assume d′ ≫ d and learning is carried out with the transformed samples {ϕ(xi)}ℓi=1.
In the primal formulation (4), computing the solution for {ϕ(xi)}ℓi=1 may be intractable
due to high dimensionality d′. In contrast, in the kernel formulation (7), the input samples
are dealt with only through the kernel function evaluation

k(x,x′) ≡
⟨
ϕ(x),ϕ(x′)

⟩
.

Denoting by t the computational complexity for computing the kernel function value,
we can compute the solution with computational complexity O(tℓ3). Thus if the ker-
nel function can be computed efficiently (which means, independently of d′), the kernel
formulation allows us to efficiently compute the solution even when d′ is large. This
computational trick is called the kernel trick.

Conversely, if there exists a kernel function which corresponds to the inner product
between ϕ(x) and ϕ(x′), then the use of the kernel formulation would be beneficial. The
existence of such an inner product is guaranteed when the kernel function is positive semi-
definite. Such a kernel function is called a Mercer kernel or a reproducing kernel [6, 7].
There are many kernel functions whose computational complexity is independent of d′. A
typical example would be the polynomial kernel (of order c):

k(x,x′) =
(⟨
x,x′⟩+ 1

)c
.

The dimensionality d′ of the polynomial feature ϕ(x) will be very large if c is large.
However, the value of the polynomial kernel can still be computed with computational
complexity O(d), which is independent of d′. A more striking example is the Gaussian
kernel (with width σ),

k(x,x′) = e−∥x−x′∥2/σ2

.
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For the Gaussian kernel, the dimensionality d′ is actually infinite. Therefore, computing
the solution within the primal formulation of Eq.(4) is no longer possible. In contrast,
the kernel formulation of Eq.(7) still allows us to compute the solution.

Through the kernel trick, non-linear learning can be performed without regard to
the input dimensionality. However, it still greatly depends on the number of training
samples. The ridge regression described above requires the computational complexity of
O(ℓ3). Thus, when the number of training samples is large, the kernel methods are still
computationally expensive.

3 Kernel Matrix Approximation

The learning algorithms of kernel machines are generally designed so that they do not
depend on the dimensionality of the feature space. Given an efficient way to compute the
kernel function itself, most of the kernel methods require O(ℓ3) cost in naive implemen-
tations. However, this can be prohibitive when ℓ is large. This difficulty leads us to the
idea of first performing feature extraction to produce a relatively small number of fea-
tures based on the kernel matrix and then tackling the learning task using the extracted
features. If the extracted features contain rich information on the nonlinearities of the
data, the simple linear learning algorithms will be useful for the learning tasks.

In this section, we review various approaches to building a low-dimension feature space
through feature extraction.

3.1 Spectral Decomposition

Perhaps the most direct method for nonlinear feature extraction is spectral decomposition.
Any real symmetric matrix A ∈ Sℓ can be expanded with eigenvectors as

A =
ℓ∑

i=1

µ(i)u(i)u(i)⊤,

where µ(i) and u(i) are the i-th eigenvalue and the i-th eigenvector of A, respectively.
We assume that the eigenvalues are always sorted in descending order. This type of
expansion is called the spectral expansion [8]. If A is positive definite, it is easy to see
that this expansion can be written as

A = UU⊤,

where
U ≡ (

√
µ(1)u(1)|

√
µ(2)u(2)| . . . |

√
µ(ℓ)u(ℓ)).

If we regard A as the kernel matrix K, by Mercer’s Theorem there exists a basis function
ϕ such that Ki,j = ⟨ϕ(xi),ϕ(xj)⟩. In matrix notation, we have

K = Φ⊤Φ, (8)
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where Φ ≡ (ϕ(x1)|ϕ(x2)| . . . |ϕ(xℓ)). This means that each column vector of U⊤ corre-
sponds to a feature vector.

If we use the kernel PCA [9], the small eigenvalues will correspond to noise, and
the larger eigenvalues will dominate the distribution of the data. This leads us to an
approximation using the first r terms of the expansion. In this case, the feature vectors
are represented with u(1), . . . ,u(r). If one uses an iterative method such as the power
method [10], the computational cost of this approximation is O(rℓ2) if the power iteration
is terminated witha finite number of repetitions.

3.2 Incomplete Cholesky Decomposition

Another useful method for extracting feature vectors in the feature space is incom-
plete Cholesky decomposition. Let us look at the original Cholesky decomposition first.
Cholesky decomposition factorizes a positive definite matrix into the product of lower
triangular matrices. For a kernel matrix K, the decomposition is written as

K = LL⊤, (9)

where L is a lower triangular matrix in which Li,j = 0 for i < j. Note that Cholesky
factorization amounts to implicitly finding the basis functions of the kernel. Comparing
Eqs. (8) and (9), we see that L corresponds to the data matrix Φ⊤ up to an arbitrary
orthogonal matrix. This means that Cholesky factorization essentially finds the basis
function apart from the arbitrary orthogonal matrix. Cholesky factorization is quite
useful not only for numerical efficiency but also for theoretical interpretation.

The numerical computation of a Cholesky factorization is very easy. Direct element-
wise comparison between both sides of Eq.(9) leads to

Li,i =

√√√√Ki,i −
i−1∑
k=1

L2
i,k,

Li,j =
1

Li,i

[
Kj,i −

j−1∑
k=1

Li,kLj,k

]

for j = i + 1, i + 2, . . . , ℓ, from which the entries of L are computed. Note that L−1 and
thus K−1 can be easily computed once L has been obtained [10]. As suggested by these
simple equations, Cholesky factorization is numerically very stable, although it requires
ℓ3/6 operations.

The incomplete Cholesky decomposition [11, 12] truncates this procedure at a pre-
determined number d̃ < ℓ, which amounts to explicitly generating a d̃-dimensional feature
space. At each step of incomplete Cholesky decomposition, one column of the matrix is
chosen and added so that the truncation error is minimized for the current number of
columns. It is important to note that we do not need an ℓ× ℓ memory space to store the
Gram matrix, and that only the diagonal elements are needed to compute the off-diagonal
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elements. The computational cost is only O(d̃2ℓ), which means that the computation can
be carried out without accessing all of the elements. Although incomplete Cholesky
factorization is less popular than the original Cholesky factorization, good performance
has been reported in an SVM classification task [11] and kernel ICA [12].

3.3 Tridiagonalization

In this subsection, we consider a feature extraction method via tridiagonalization. Tridi-
agonalization is an orthogonal transformation of a symmetric matrix A ∈ Sℓ such that

Q⊤AQ = T , (10)

where Q and T are orthogonal and tridiagonal matrices, respectively. A symmetric tridi-
agonal matrix is a matrix whose entries are all zero except for diagonal and subdiagonal
elements, i.e.,

T =



γ1 β1 0
β1 γ2 β2

β2
. . . . . .
. . . γℓ−1 βℓ−1

0 βℓ−1 γℓ


.

By setting the number of columns in Q to be smaller than ℓ, this transformation can
be viewed as a low-rank approximation of A. Note that tridiagonalization is not unique.
The key fact is that there exists an algorithm which allows us to find an optimal Q in
that T reproduces extremal eigenvalues such as the largest and smallest eigenvalues with
high precision. This is in contrast to the spectral low-rank approximation, where smaller
eigenvalues are simply truncated. This subsection focuses on a useful tridiagonalization
algorithm called the Lanczos algorithm, and briefly discusses its connection to the well-
known conjugate gradient (CG) algorithm.

The derivation of the Lanczos algorithm is very simple. Consider a tridiagonal trans-
formation as in Eq.(10). Let γ1, . . . , γℓ and β1, . . . , βℓ−1 be the diagonal and subdiago-
nal elements of T , respectively. If we directly record the s-th column of the equation
AQ = QT , we have

Aqs = γsqs + βs−1qs−1 + βsqs+1,

where qs is the s-th column vector of Q. Using the orthogonal relation q⊤
i qj = δi,j, we

immediately have γs = qs
⊤Aqs. In this way, it is easy to construct an algorithm to find

γs and βs sequentially from this recurrent equation:

1: Input r0.
2: β0 ← ∥r0∥;
3: repeat
4: qs+1 ← rs/βs;
5: s← s+ 1;
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6: γs ← qs
⊤Aqs;

7: rs ← Aqs − γsqs − βs−1qs−1;
8: βs ← ∥rs∥;
9: until s = ℓ;
10: return {γi}, {βi}, and {qi}.
This procedure needs an initial vector r0 and its norm β0 = ∥r0∥. This tridiagonalization
procedure is called the Lanczos algorithm [13].

By running this procedure up to r < ℓ, we obtain an r × r tridiagonalized matrix Tr

with calculated {γi} and {βi}. This matrix can be thought of as a low-rank approxima-
tion of the original matrix, but its nature is quite different from the spectral low-rank
approximations in that the spectrum of Tr reproduces the extremal eigenvalues to a very
high accuracy [13].

One useful application of the Lanczos algorithm is (kernel) PCA. As shown in [14], the
eigenspace projection of a given vector can be computed directly from the eigenvectors of
the truncated tridiagonalized matrix Tr. The computational cost to diagonalize Tr is only
O(r) when r ≪ ℓ. A similar idea is used in [15] to accelerate a Markov decision process.

The Lanczos algorithm has a close relationship with the CG method for solving lin-
ear equations. Consider a linear equation Ax = b, for A ∈ Sℓ

+. In the CG algo-
rithm, we first initialize a residual vector r0 as b − Ax0 using an initial estimate of
the solution x0. Then we repeat the following procedure until the residual rs+1 is small
enough.

1: Input: x0, ϵ
2: r0 ← b−Ax0;
3: repeat
4: γs ← ∥rs∥2/(p⊤

s Aps);
5: xs+1 ← xs + γsps;
6: rs+1 ← rs − γsAps;
7: βs ← ∥rs+1∥2/∥rs∥2;
8: ps+1 ← rs+1 − βsps;
9: s← s+ 1;
10: until ∥rs+1∥ < ϵ;
11: return the solution xs+1.

This algorithm solves Ax = b by iteratively minimizing

1

2
x⊤Ax− x⊤b.

One major advantage of CG is that it gives a very accurate approximate solution with the
number of iterations far smaller than the size of the matrix. It can be shown that the resid-
ual vectors generated in the CG procedure are essentially the same as the Lanczos vectors
{qi} (for a proof, see Section 10.2 in [13]), which means that the excellent convergence
properties of CG are due to the low-rank approximation by Lanczos tridiagonalization.
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3.4 The Nyström Method

When ℓ is very large, directly handling the kernel matrix K is inconvenient. The Nyström
method allows us to approximate K and its eigenvectors with a smaller kernel matrix of
a subset of the samples.

Suppose we have a data set D = {xi|i = 1, . . . , ℓ} with a very large ℓ, and let the
corresponding kernel matrix be K ∈ Sℓ

+. Without loss of generality, let a subset of D be

D̃ = {xi|i = 1, . . . ,m} with m < ℓ. Corresponding to this, we partition K as

K =

(
K̃ L⊤

L ∗

)
, C ≡

(
K̃
L

)
, (11)

where K̃ ∈ Sm
+ , and we also define a matrix C ∈ Rℓ×m.

The Nyström approximation relates the eigenvalues and eigenvectors of K with those
of K̃ as (for a proof, see Section 8 in [16])

µ(i) ≈ ℓ

m
µ̃(i) and u(i) ≈

√
m

ℓ

1

µ̃(i)
Cũ(i), (12)

where (µ(i),u(i)) are the i-th eigenvalue and eigenvector of K, and (µ̃(i), ũ(i)) are those of
K̃. Since K̃ is an m×m matrix, i runs from 1 through m.

These expressions lead to a rank-m approximation of the kernel matrix K as

K ≈
m∑
i=1

µ(i)u(i)u(i)⊤ = CK̃−1C⊤,

where the final equality is easily verified by plugging in Eq.(12). This type of approxima-
tion was used in Gaussian process regression for large data sets [17]. However, applying
the Nyström method to real-world problems is sometimes tricky, since it is extremely
sensitive to the choice of the parameters (how to choose D̃) [18].

3.5 The Fast Gauss Transform

In iterative algorithms such as CG, the computational cost is bounded by the cost of the
matrix-vector products such as Kα, which scales as O(ℓ2) in a naive implementation. If
the kernel is Gaussian, the product is reduced to computing the Gaussian transform as

G(x) ≡
ℓ∑

n=1

αne
−∥xn−x∥2/σ2

.

In this case, an algorithm called the Fast Gauss Transform (FGT) significantly reduces
the computational costs [19]. The idea of the original FGT, which is a special case of
multi-pole expansion, a standard technique in physics, is to utilize a truncated form (up
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to the first p terms) of the Hermite expansion of the Gaussian. When d = 1, the truncated
Hermite expansion reads

e−∥x−xn∥2/σ2 ≈
p−1∑
s=0

1

s!

(
xn − x∗

σ

)s

hs

(
x− x∗

σ

)
,

where hs is the Hermite polynomial of order s [20]. Notice that x and xn are separated
in each term by introducing the expansion center x∗, which is treated as a parameter
determined from the data. By inserting this expansion, G(x) can be written as

G(x) =

p−1∑
s=0

Cshs

(
x− x∗

σ

)
,

where

Cs =
ℓ∑

n=1

αn

s!

(
xn − x∗

σ

)s

.

Since Cs is independent of x, the computational cost for estimating G(x) over the ℓ
different locations is just (ℓ + ℓ)p, which is linear with respect to ℓ. When d > 1, the
cost scales as O(pdℓ). The FGT is further accelerated by using the Taylor expansion and
spatial partitioning [20, 21].

4 Supervised Methods

In this section, we briefly address computational issues of the supervised kernel methods.

4.1 Regression

We begin with the regression methods including kernel ridge regression [22], partial
least squares [23], the Lasso [24], Gaussian process regression [24], relevance vector ma-
chines [25], and support vector regression [2].

4.1.1 Kernel Ridge Regression

Kernel Ridge Regression (KRR) (e.g., Section 2.2 in [22]) is a widely used regression
technique that is useful even when K is numerically rank deficient. Solving KRR amounts
to solving the following linear equation (cf. Eq.(7)):

(K + λIℓ)α = y,

where Iℓ denotes the ℓ-dimensional identity matrix. Since K is a dense matrix in general,
a common approach to solving this equation is Cholesky factorization followed by forward-
backward substitutions [10], which costs O(ℓ3). If the CG method is used to solve this
equation, the cost becomes O(rℓ2), where r is the number of CG iterations. Although
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the numerical stability of CG is not necessarily guaranteed for dense matrices due to the
nature of the Krylov subspace [13], it generally works well in many practical cases. If
the kernel function is Gaussian, the computational cost of CG can be reduced to O(ℓ), as
mentioned in the previous section.

To determine the regularization parameter λ, a theoretically valid approach would
be leave-one-out (LOO) cross validation (CV). In KRR, a closed-form solution of the
LOOCV score is available as

gLOO(λ) = ∥H−1(y −Kα)∥2,

where
H ≡ IN − diag(K(K + λIℓ)

−1),

and α is the solution of KRR under λ in H . The symbol ‘diag’ is an operator for setting
all of the off-diagonal elements to zero. For a proof, see [5, 26] and use the Woodbury
identity [2] to get a dual expression for X⊤(XX⊤+λId)

−1X. To compute this, however,
the inverse of (K + λIℓ) is needed, resulting in O(ℓ3) computational costs.

4.1.2 Partial Least Squares

In chemometrics, a class of heuristic iterative algorithms called partial least squares (PLS)
is a popular regression technique. In recent years, many attempts have been made in
the machine learning community to investigate and improve the PLS procedures, e.g.,
kernelized PLS [23]. For a general description on PLS, see, e.g., Section 6.7 in [3].

Although PLS is usually introduced as an iterative procedure without explicit objec-
tive functions, it was shown [27] that kernel PLS minimizes the same objective function
as ordinary least squares, but the solution is restricted within a subspace spanned by
Ky,K2y, . . . ,Kry, where r is a given integer representing the number of PLS compo-
nents. This type of subspace is called the Krylov subspace. It can be shown that the
solution is found by solving

K2α = Ky

using CG with the initial estimate of α = 0. To determine r, see [27] for a comparison
among various criteria. In all kernelized PLS algorithms known so far, the computational
cost is dominated by the matrix-vector products. While naive implementations require
O(ℓ2) computational cost, FGT reduces the cost to linear time when the kernel is Gaussian
(see Section 3.5). The Lanczos approximation can also be used for speeding up kernel
PLS [28].

Since kernel PLS gives a dense solution in general, great efforts have been made to
sparsify PLS. For example, an ε-insensitive loss function is adopted in the objective func-
tion [29], a smaller Gram matrix via a random selection of samples is used [30], and a
fixed threshold on α is introduced to force many components to have the zero values in
a graph regression task [31].
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4.1.3 Lasso

The least absolute shrinkage and selection operator (Lasso) [24] is a shrinkage and selection
method for linear regression. It minimizes the sum of a squared loss function (Eq.(2))
with the ℓ1 regularizer

Jlasso(w) =
1

2

ℓ∑
i=1

(yi − ⟨xi,w⟩)2 + λ∥w∥1, (13)

where ∥w∥1 =
∑d

i=1 |wi|. The ℓ1 regularizer allows us to automatically prune irrelevant
features, so the Lasso solution tends to be sparse.

The lasso optimization problem can be reformulated as a linear program by doubling
the number of parameters, so the solution can be obtained using a standard optimization
software. Using the fact that the solution path of Lasso is piecewise linear with respect to
λ, least angle regression (LARS) [32] allows us to obtain the Lasso solution for all λ (the
technique is called parametric optimization [33]). However, when computing the solution
for a single λ, a simple coordinate descent algorithm is much faster [34].

Let us briefly look at how the algorithm coordinate descent proposed in [34] works.
Consider minimizing the convex objective function using Eq.(13) with respect to w using
the subgradient method. Differentiating the objective function, we have

∂g

∂wi

=
∑
m

Wi,mwm − si + λ sign(wi)

= Wi,iwi +
∑
m̸=i

Wi,mwm − si + λ sign(wi),

where W ≡XX⊤ and s ≡Xy. By considering the equation ∂g/∂wi = 0 separately for
wi > 0 and wi < 0, it is straightforward to derive the following update rule:

wi ←


(Ai − λ)/Wi,i for Ai > λ,
0 for − λ < Ai < λ,

(Ai + λ)/Wi,i for Ai < −λ,
(14)

for each i = 1, . . . , d. Here we define

Ai ≡ si −
∑
m̸=i

Wi,mwm. (15)

This algorithm is in particularly useful in structure learning since structure learning re-
quires to solve a series of regression problems [35]. For recent work, see [36, 37].

Although the Lasso is a linear method, it can be kernelized in a straightforward way
in [38, 39]. Some authors have focused on how to compute the regularization path of
nonlinear versions of the Lasso [40].
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4.1.4 Gaussian Process Regression

Gaussian Process Regression (GPR) is a popular Bayesian regression method due to its
good generalization ability and simple closed-form equations to give the global solutions.
The predictive mean (m) and variance (s2) for a test input x are given as follows [16]:

m = k⊤C−1y, (16)

s2 = σ2 + k(x,x)− k⊤C−1k,

where k and C are defined as

k = (k(x1,x), . . . , k(xℓ,x))
⊤,

C = K + σ2Iℓ.

σ2 denotes the variance of the observation noise. From Eq.(16), we see that the compu-
tational cost to calculate m is the same as that for KRR: O(rℓ2) to compute C−1y with
the use of CG [41]. For computing s2, one needs to compute C−1k in making predictions
for each input x, which costs O(ℓ2) with the use of CG at every trial of a prediction.
This can be problematic for repeated predictions, making the precomputation of C−1 via
(incomplete) Cholesky factorization a useful approach in practice.

For choosing hyperparameter values such as the noise variance σ2 and the kernel
parameters, a common approach from a Bayesian perspective is evidence maximization.
More specifically, the hyperparameters are chosen so that the marginalized log-likelihood

−1

2
ln det(C)− 1

2
y⊤C−1y

is maximized (for a derivation, see [16]). Unlike KRR, no closed-form solution is known
for σ, and currently, gradient-based methods are the only practical methods to learn the
hyperparameters. At each update step of the search direction, O(ℓ3) computations are
needed to compute the inverse of C. This can be prohibitive for large datasets.

Speeding up GPR is an active research area, and many approaches have been proposed
to date. One popular approach is to reduce the size of the problem in some way. The
Nyström method [17] was a popular approach until it was shown to be extremely sensitive
to the parameter choice and thus impractical [18]. A recent research trend is to use
pseudo-inputs, rather than to use a subset of samples [42, 43]. However, these methods
are not mature enough for use in critical applications since most of them require solving
a complicated non-convex optimization problems.

4.1.5 Relevance Vector Machines

The Relevance Vector Machine (RVM) [25] is a Bayesian regression method that is ca-
pable of producing sparse solutions. While the Lasso uses ℓ1 regularization for sparsity,
RVM utilizes the automatic relevance determination mechanism to obtain sparse solu-
tions. RVM assumes the linear regression model as in Eq.(6) (for centered data), but
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treats the coefficient α as a random variable with a prior

p(α|θ) ≡
N∏
i=1

N (αi|0, θ−1
i ),

where N (α|0, θ−1
i ) denotes a Gaussian density with mean 0 and variance θ−1

i . If we also
assume Gaussian observation noise with mean 0 and variance σ2, we have a Gaussian
posterior distribution for α with mean and covariance given by

ᾱ = σ−2ΣKy,

Σ =
(
Θ+ σ−2K2

)−1
,

respectively, where Θ is the matrix whose diagonal elements are {θi}Ni=1 and all the off-
diagonal elements are zero.

To determine {θi}Ni=1 and σ, RVM uses evidence approximation to obtain the following
simple updating rules [25]:

θnewi ← γi/ᾱ
2
i ,

σ2
new ←

∥y −Kᾱ∥2

ℓ−
∑

i γi
,

where γi is defined as 1 − θiΣii. While updating the parameters by the above equa-
tions require O(ℓ3) computational costs in naive implementations, an efficient algorithm
is known [44]—this requires only O(M3), where M is the number of relevance vectors
included at an update round. For detailed discussions on the RVM, see [2].

4.1.6 Support Vector Regression

Support vector regression (SVR) [2] is formulated as a minimization problem of the fol-
lowing objective function:

JSVR(w) =
C

ℓ

ℓ∑
i=1

lϵ (yi − ⟨xi,w⟩) +
1

2
∥w∥22, (17)

where lϵ is called the ϵ-insensitive loss function defined as

lϵ(η) ≡

{
0 if |η| < ϵ,

|η| − ϵ otherwise.

A standard approach to obtaining the SVR solution is to solve a quadratic programming
problem derived as the dual problem of Eq.(17). Recently, it was shown that linear
SVR can be efficiently solved with the bundle methods for regularized empirical risk
minimization [45]. For this approach, see Section 4.2.1.
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4.2 Classification

In this subsection, we turn our focus to classification by support vector machines (SVMs).
More specifically, we review recent approaches to SVM learning from huge datasets, in
which both the number of examples and the number of dimensions are extremely large.
Such massive problems are found, e.g., in document or compound classification and linear
SVMs are often preferred to nonlinear SVMs in this context. There are mainly two
reasons for this: One is that linear SVMs performs as accurate as non-linear SVM in these
extremely high-dimensional problems; and the other reason is that the feature vectors are
typically sparse, which can be utilized for developing computationally efficient training
algorithms. Here we review two state-of-the-art approaches: a cutting plane algorithm [45]
and a coordinate descent algorithm [46].

Note that these methods are specialized to linear SVMs. One might consider employing
these approaches in non-linear kernel methods by extracting feature vectors from a kernel
matrix using eigenvalue decomposition. However, the feature vectors extracted as such
are typically dense and therefore advantages of these approaches cannot be enjoyed.

4.2.1 Cutting Plane Algorithm

We begin with a cutting plane algorithm called the bundle methods for regularized risk
minimization (BMRM) [45]. BMRM is applicable to general linear learning machines.

As seen in Section 2, many learning machines are trained by minimizing the objective
function consisting of the empirical risk Remp(w) and a regularization function Ω(w):

J(w) ≡ Ω(w) + CRemp(w), (18)

wherew ∈ Rd is the model parameters and C ∈ R is a positive constant. For simplicity, we
here focus on binary classification, and we assume to be given ℓ labeled training examples
(xi, yi) ∈ Rd × {±1} (i = 1, . . . , ℓ). The empirical risk is expressed as

Remp(w) ≡ 1

ℓ

ℓ∑
i=1

l(xi, yi;w),

where l(·, ·; ·) is a loss function; we assume the loss function is nonnegative and convex.
The linear SVMs use the ℓ2-norm of w as the regularization function Ω(·) and the

hinge loss for l(·, ·; ·). Namely,

Ω(w) ≡ 1

2
∥w∥2,

l(x, y;w) ≡ max(0, 1− y ⟨w,x⟩).

Note that the bias term is not used here (i.e., we set b = 0 in the linear scoring function
⟨w,x⟩+ b).

Solving the learning problem directly is often computationally intractable for large
datasets. BMRM tackles this issue by using the cutting plane algorithm as follows. For



Recent Advances and Trends in Large-scale Kernel Methods 16

any set of the model parameters W ⊆ Rd, the empirical risk can be bounded from below
as

Remp(w) ≥ ⟨a(w̄),w⟩+ b(w̄), ∀w ∈ W , (19)

where

a(w̄) ≡ ∂wRemp(w̄),

b(w̄) ≡ Remp(w̄)− ⟨a(w̄), w̄⟩ .

The plane ⟨a(w),x⟩ + b(w) = 0 is called the cutting plane. For example, in the case of
the hinge loss, the parameters of the cutting plane is expressed as

a(w̄) = −1

ℓ

ℓ∑
i=1

ciyixi, b(w̄) ≡ 1

ℓ

ℓ∑
i=1

ci,

where

ci ≡

{
1 if yi(w̄

⊤xi) < 1,

0 otherwise.

We can easily see that the parameters of the cutting plane can be computed with the
order of the number of non-zero values in the whole training set. This bound can be
utilized to develop the BMRM algorithm [45]:

R(w;W) ≡ max
w̄∈W

(⟨a(w̄),w⟩+ b(w̄)) ,

BMRM is summarized as below:

1: Input: {xi, yi}ℓi=1.
2: t← 0; wt ← 0; W ← ∅;
3: repeat
4: W ←W ∪ {wt};
5: Compute the parameters of the cutting plane, a(wt) and b(wt) to compose

R(w̄;W);
6: wt+1 ← argmin

w̄
Ω(w̄) + CR(w̄;W);

7: t← t+ 1;
8: until converged;
9: return w.

The algorithm is guaranteed to converge to the optimum solution [45]. In the case of
linear SVM, it is shown [47] that the algorithm terminates at the optimum after a limited
number of iterations; thus the time complexity for training is a linear function of the
number of non-zero values in the whole training set.

The following two modifications have been proposed to further speed-up BMRM [48]:
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• A new step is inserted after Step 6. This step searches for a new solution wb
t that

minimizes the original objective function in Eq.(18) by the following line search:

wb
t ← min

β≥0
J((1− β)wb

t−1 + βwt).

• The cutting plane is constructed from interpolation between wt and wb
t .

The modified algorithm is called the optimized cutting plane algorithm (OCAS) [48], and
it was shown that the number of iterations needed for convergence is the same order
as that in [47]. On the other hand, OCAS is reported to be much faster in numerical
experiments than the algorithm proposed in [47].

4.2.2 Dual Coordinate Descent Algorithm

Another type of popular techniques for training linear SVMs is the dual coordinate descent
algorithm (DCDA) [46]. While the cutting plane methods [47, 48] reviewed above solved
the primal problems DCDA solves the dual problem:

Problem 1.

min
1

2
α⊤Qα− ∥α∥1 wrt α ∈ Rℓ

+ subj to α ≤ C

ℓ
1ℓ,

The matrix Q ∈ Sℓ
+ has elements

Qij ≡ yiyj ⟨xi,xj⟩ .

Below, we describe the detail of DCDA. Let us denote the dual objective function by
Jdual(α). Note that Problem 1 has no equality constraint, which comes from the absence
of the bias term in the primal problem (i.e., b = 0 in ⟨w,x⟩+b). DCDA repeats the outer
loop until α becomes optimal. Each outer iteration has ℓ inner iterations. The ith inner
iteration optimizes αi fixing the other variables. Namely, the inner iteration minimizes
the following quadratic function with respect to a scalar δ:

Jdual(α
old + δei) ≡

1

2
Qiiδ

2 + ∂αi
Jdual(α

old)δ + const.,

subject to the following box constraint:

0 ≤ αi + δ ≤ C

ℓ
.

The solution can be obtained analytically. If Qii > 0, the new value of αi is given by

αnew
i ← min

(
max

(
αold
i −

∂αi
Jdual(α

old)

Qii

, 0

)
,
C

ℓ

)
,
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where αold is the old value of α. The current value of the model parameters can be
written as

wold ≡
ℓ∑

i=1

yiα
old
i xi.

This allows us to express the gradient as

∂αi
Jdual(α

old) = yi
⟨
wold,xi

⟩
− 1.

This can be computed with O(s), where s is the average number of non-zero elements.
To compute the gradient in each iteration, DCDA also updates the model parameters by

wnew ← wold + (αnew
i − αold

i )yixi.

This update takes O(s). Totally, the computational cost of the inner loop is O(s). It was
shown [46] that the series of the solutions generated by DCDA converges to the optimum
solution.

Sequential minimal optimization (SMO) [49, 50], is also well-known as an efficient algo-
rithm for training SVM. SMO breaks the original quadratic programming (QP) problem
into a series of smallest possible QP problems (i.e., with two parameters). These small
QP problems can be actually solved analytically and therefore we can avoid employing a
numerical QP optimization as an inner loop. SMO is more general than DCDA in that
linear/non-linear SVMs with the bias term can be dealt with, while DCDA would be
faster than SMO but is specialized to linear SVMs without the bias term.

5 Unsupervised Methods

In this section, we give a review of unsupervised methods that could be applied to large-
scale datasets.

5.1 Dimensionality Reduction

The goal of dimensionality reduction is to reduce the dimensionality of samples while most
of the ‘intrinsic’ information contained in the data is kept. Let {xi}ℓi=1 be the original
samples of d-dimension and we would like to reduce the dimensionality of these samples
to r (1 ≤ r ≤ d); let {zi}ℓi=1 be the dimension-reduced expressions of {xi}ℓi=1. In the case
of linear dimensionality reduction, the dimension-reduced sample zi is given by using a
transformation matrix T (∈ Rr×d) as

zi ≡ Txi.

Otherwise zi is obtained by a non-linear transformation of xi.
Principal component analysis (PCA), which finds the subspace that retains the max-

imum variance of the data, would be one of the most fundamental methods of linear
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unsupervised dimensionality reduction [51]. A PCA solution can be computed through
eigendecomposition of the sample-covariance matrix, which is a d× d matrix. Thus even
when ℓ is huge, PCA may still be computationally tractable as long as d is not too large.

A non-linear variant of PCA has been investigated in the context of neural network
learning [52]. However, since neural network learning involves non-convex optimization,
it is hard to obtain a good solution in a systematic way. After emergence of support
vector machines [53], the kernel trick has been applied in PCA and a non-linear variant
called kernel PCA has been developed [9]. However, for computing a kernel PCA solution,
the ℓ× ℓ kernel matrix needs to be eigendecomposed which requires O(ℓ3) computational
costs; this may be infeasible when ℓ is huge.

In the last decade, various types of non-linear unsupervised dimensionality reduction
methods have been proposed and their properties have been studied [54, 55, 56, 57, 58, 59].
Among them, we briefly review a scalable method called the Laplacian eigenmap [56]
below.

First, we give a brief review of a linear version of the Laplacian eigenmap called the
locality preserving projection (LPP) [60]. The basic idea of LPP is to seek a transformation
matrix T such that nearby data pairs in the original space Rd are kept close in the
embedding space Rr. Thus, LPP tends to preserve local structure of the data.

Let A be an affinity matrix, i.e., the ℓ× ℓ matrix with Ai,j being the affinity between
xi and xj. We assume that Ai,j ∈ [0, 1]; Ai,j is large if xi and xj are ‘close’ and Ai,j

is small if xi and xj are ‘far apart’. There are several different manners of defining A.
Among them, we adopt the nearest neighbor method here, i.e., Ai,j = 1 if xi is a k-nearest
neighbor of xj or vice versa; otherwise Ai,j = 0. This definition is advantageous in that
the affinity matrix A becomes sparse if k is not so large. Let D be the ℓ × ℓ diagonal
matrix with

Di,i ≡
ℓ∑

j=1

Ai,j,

and let L be the ℓ× ℓ matrix called the Laplacian matrix [61] defined by

L ≡D −A. (20)

Note that L is sparse if A is sparse. Then the LPP transformation matrix TLPP is defined
as

TLPP ≡ argmin
T∈Rr×d

tr(TXLX⊤T⊤(TXDX⊤T⊤)−1).

Let {φt}dt=1 be the generalized eigenvectors associated with the generalized eigenvalues
{µt}dt=1 of the following generalized eigenvalue problem:

XLX⊤φ = µXDX⊤φ.

We assume that the generalized eigenvalues are sorted as

µ1 ≤ · · · ≤ µd,
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and the generalized eigenvectors are normalized as

φ⊤
t XDX⊤φt = 1 for t = 1, . . . , d.

Note that this normalization is often automatically carried out by an eigensolver. Then
a solution TLPP is given analytically as

TLPP = (φ1| · · · |φr)
⊤.

XLX⊤ and XDX⊤ are d×d matrices and L and D are sparse; so even when ℓ is huge,
LPP may still be computationally tractable as long as d is not too large.

By an application of the kernel trick, LPP can be non-linearized in a straightforward
manner. That is, the above generalized eigenvalue problem can be kernelized as

KLKα = µKDKα,

where Kα corresponds to X⊤φ. Since KLK and KDK are ℓ × ℓ matrices, this
generalized eigenvalue problem may not be computationally tractable when ℓ is large.
However, if we only reduce the dimensionality of training samples {xi}ℓi=1, the solution of
the above generalized eigenvalue problem can be obtained by solving the following sparse
generalized eigenvalue problem.

Lα = µDα.

More specifically, a solution is given by

(z1| · · · |zℓ) = (α2| · · · |αr+1)
⊤,

where {αt}ℓt=1 are the generalized eigenvectors of the above generalized eigenvalue problem
associated with the generalized eigenvalues µ1 ≤ · · · ≤ µℓ. Note that µ1 is always zero so
α1 is discarded. As long as A is sparse, the above generalized eigenvalue problem may
be solved efficiently even when ℓ is huge.

5.2 Spectral Clustering

The goal of data clustering is to group a given set of samples so that samples in the same
group are ‘similar’ to each other. Let {xi}ℓi=1 be the original samples of d-dimension and
we would like to group the samples into k disjoint groups. We assume that the number
of clusters k is fixed in advance.

The k-means clustering algorithm would be one of the most fundamental clustering
algorithms. Let Ct be the set of samples assigned to the cluster t. Every sample belongs
to one of the clusters without overlap, i.e., {Ct}kt=1 satisfies

k∪
t=1

Ct = {xi}ℓi=1 and Ct ∩ Ct′ = ∅ for t ̸= t′.
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If the similarity of samples within the same class is measured by the variance, the optimal
solution may be given as the minimizer of the following optimization problem:

min
{Ct}kt=1

k∑
t=1

∑
x∈Ct

∥x− µt∥2,

where µt is the ‘center’ of the cluster t defined by

µt =
1

|Ct|
∑
x′∈Ct

x′.

However, this discrete minimization problem is known to be NP-hard and thus may not
be exactly solved in practice. A local optimal solution may be obtained by the following
algorithm called k-means clustering :

1. Randomly initialize the cluster partition {Ct}kt=1.

2. For i = 1, . . . , ℓ, assign xi to the cluster which has the closest center, i.e, to the
cluster Ct̂ where

t̂ = argmin
t
∥xi − µt∥.

3. Repeat this until convergence.

The k-means clustering algorithm corresponds to maximum likelihood estimation of a
Gaussian mixture model, so the ‘shape’ of clusters is limited to be convex. This limitation
could be mitigated by the use of the kernel trick, which results in kernel k-means [62]:
the sample xi is assigned to the cluster Ct̂, where

t̂ = argmax
t

∑
x′∈Ct

k(x,x′)− 2

|Ct|
∑

x′,x′′∈Ct

k(x′,x′′).

However, the kernel k-means algorithm tends to suffer from more serious local optimum
problems than the plain k-means algorithm due to non-linearity introduced by the kernel
function k(·, ·).

Another idea for clustering is to group the data samples so that the sum of the simi-
larity values among different clusters is minimized [63]:

argmin
{Ct}kt=1

k∑
t=1

∑
x∈Ct

∑
x′ ̸∈Ct A(x,x

′)∑
x′′∈Ct

∑ℓ
i=1 A(x

′′,xi)
,

where A(x,x′) denotes the affinity value between x and x′. Note that this is equivalent to
finding the minimum normalized-cut in graph theory if the affinity matrix A is regarded
as the adjacency matrix of a graph. It was shown that the above normalized-cut criterion
is equivalent to a weighted variant of the kernel k-means criterion [62]. Thus a slightly
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modified kernel k-means algorithm could be used for obtaining a local optimal solution
of the normalized-cut criterion. However, the problem of frequently trapped by a local
optimum still remains.

Instead of learning the cluster assignment {Ct}kt=1, let us learn the cluster indicator
matrix W , which is the k × ℓ matrix defined by

Wt,i =

{
1 if xi ∈ Ct,
0 otherwise.

Then, it is known that the solution of the following optimization problem agrees with
normalized-cut clustering [62]:

argmin
A∈B

tr(ALA⊤) subject to ADA⊤ = I,

where B is the set of all k× ℓ matrices such that one of the elements in each column takes
one and others are all zero. This problem is again NP-hard so we may not be able to
obtain the optimal solution. A relaxation approach is to allow A to take real values, i.e.,
A ∈ Rk×ℓ. Then the solution of the relaxed problem is shown to agree with the solution
of the Laplacian eigenmap [62]. This implies that the embedded samples by the Laplacian
eigenmap has ‘soft’ cluster structure.

Based on this finding, a clustering algorithm called spectral clustering has been devel-
oped [64]:

1. Apply the Laplacian eigenmap algorithm to the original d-dimensional samples
{xi}ℓi=1 and obtain their (k − 1)-dimensional expressions {zi}ℓi=1.

2. Apply the plain k-means clustering algorithm to {zi}ℓi=1 and obtain the clustering
result {Ct}kt=1.

Thanks to the soft clustering property of the Laplacian eigenmap, the local optimum
problem tends to be mitigated in the above spectral clustering algorithm.

6 Kernel Functions

In this section, we consider computational issues for the kernel functions themselves.
The first part of this section is on designing kernel functions for complex data struc-

tures such as sequences, trees, and graphs. The second part of this section is on the
automatic selection of informative kernels when we have multiple kernel functions for
different information sources.

6.1 Kernels for Structured Data

In Section 2, we have seen the Gaussian kernel and the polynomial kernel as examples of
kernel functions where their computational costs are much smaller than the dimension of
the feature space.
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Here, we consider more complex data structures, such as sequences, trees, or more
general graph-structured data, and efficient kernel methods for handling such data. When
we consider structure in data, we have two types of structures, external structures and
internal structures. Graph structures formed by relationships among data are called
external structures, meaning that the feature spaces are given as graph structures. On
the other hand, graph structures observed inside each data sample are called internal
structure.

6.1.1 Externally Structured Data

When we consider an external structure, our main concern is how to define a kernel
function between arbitrary two nodes (representing two data instances) in a given graph
G = (E, V ) representing the feature space. The diffusion kernel [65] defines similarity
among nodes by a diffusion process over the graph. Let us denote the Laplacian matrix
of the given graph by L. Then the kernel matrix for the diffusion kernel is defined as

K ≡ exp(−tL) = I + (−tL) +
(−tL)2

2!
+

(−tL)3

3!
+ · · · . (21)

The naive computation of the diffusion kernel is time-consuming, but diagonalization of L
makes the computation efficient. Let us consider a diagonalization of L as L = U−1DU ,
where D is a diagonal matrix and U is a non-singular matrix. Then Eq.(21) becomes

K = U−1 exp(tD)U .

Since D is a diagonal matrix, exp(tD) is also a diagonal matrix whose i-th diagonal
element is exp(tDii).

In contrast to the diffusion kernel where the task is to predict the characteristics of
the data in a network-structured feature space, we can consider the different problem of
predicting the external structure (meaning the network structure) from the given feature
spaces. In that case, the task is to predict pair-wise relationships (such as the existence
of links) among data. The pair-wise kernel [66, 67, 68] is can be used for such purposes.
Let us denote by K̃ a kernel matrix defined by a given feature space. Then the pair-wise
kernel K is defined as

K ≡ K̃ ⊗ K̃, (22)

where ⊗ is the Kronecker product of two matrices. The pair-wise kernels are understood
as inner products in the product space of the two feature spaces of the given (element-wise)
kernels. Since K is an ℓ2 × ℓ2 dense matrix, it is not realistic to store the whole matrix
in memory (especially when we want to consider relationships that are more complicated
than pairs) and sub-sampling or sequential learning is used. Instead of Eq.(22), The
Kronecker sum pair-wise kernel has been proposed [69, 70]:

K ≡ K̃ ⊕ K̃ = K̃ ⊗ I + I ⊗ K̃,

where ⊕ indicates the Kronecker sum. This is much sparser than the (Kronecker product)
pair-wise kernel and easier to compute for large-scale data sets.
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Note that, in the case of external structure with bipartite graphs between two distinct
sets, the pair-wise kernel matrix is defined as K ≡ K̃1 ⊗ K̃2, where K̃1 and K̃2 are the
kernel matrices for the two sets.

6.1.2 Internally Structured Data

Now we turn to designing kernel functions for internally structured data. It seems natural
to consider that the characteristics of internally structured data can be represented by
substructures such as subsequences for sequences, subtrees for trees, and subgraphs for
graphs. The idea of the convolution kernels [71] is to construct feature spaces by using the
substructures. The challenge is to efficiently compute the inner products in a feature space
defined by the substructures since there exist a enormous number of possible substructures
and explicit construction of feature vectors is prohibitively expensive.

For sequential data where elements are connected by linear structures, a sequence ker-
nel has been constructed based on subsequences [72]. The algorithm is based on dynamic
programming, and can be computed in quadratic time. A simpler but more efficient
kernel called the spectrum kernel uses (contiguous) substrings and can be computed in
linear time [73, 74]. The spectrum kernel with gaps [75] was proposed as an intermediate
variation of these two string kernels.

For tree-structured data, dynamic programming-based kernels were extended for trees
by using subtrees as features [76, 77]; a spectrum kernel for trees which can be computed
in almost linear time has also been proposed [78].

For graph-structured data, graph kernels for labeled graphs have been proposed [79,
80]. Since subgraph-based graph kernels are still prohibitively expensive, paths generated
by random walks were used as features. A recursive formulation similar to those of the
other dynamic programming-based kernels results in a system of linear equations, and
allows us to efficiently compute the graph kernels. Several approaches to accelerating the
computation are discussed in [81].

6.2 Multiple Kernels

Recently, multiple kernel learning has received considerable attention in the field of ma-
chine learning. Multiple kernel learning involves training a learning machine from multiple
kernels instead of selecting a single kernel used for learning. In the early years, the mul-
tiple kernels were simply integrated as sums or averages [82], but the research focus has
shifted to automatic selection of the optimal combinations of kernels [83, 84]. A formu-
lation for multiple kernel learning based on semidefinite programming (SDP) has been
presented in [83]. This section begins by reviewing this formulation.

Given ℓ labeled training examples (xi, yi) ∈ Rd×{±1} (i = 1, . . . , ℓ), the regularized
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risk of an SVM is given by

J ≡ min
w

1

2
∥w∥2 + C

ℓ

ℓ∑
i=1

max(0, 1− yi(⟨w, ϕ(xi)⟩+ b))

= max
α∈S
∥α∥1 −

1

2
α⊤Qα,

where the matrix Q ∈ Sℓ
+ has elements

Qij ≡ yiyj ⟨ϕ(xi), ϕ(xj)⟩ .
The set S is defined as

S ≡ {α ∈ Rℓ
+ |y⊤α = 0, α ≤ C

ℓ
1ℓ}.

ϕ is a map from an input space to an embedding space on which the learning machine
operates. Learning the map ϕ is equivalent to learning the kernel matrix K int ∈ Sℓ

+

in which K int
ij = ⟨ϕ(xi), ϕ(xj)⟩. Learning the optimal kernel matrix from a subset of a

semidefinite cone K ⊂ Sℓ
+ has been considered in [83]. Typical multiple kernel learning

algorithms assume that the subset K is the set of weighted averages of p given kernel
matrices Kk ∈ Sℓ

+, (k = 1, . . . , p). When we use multiple kernel learning, we often nor-
malize each kernel matrix so that every diagonal element is one. We here impose this
assumption for simplicity. Then we can write the problem for learning the kernel matrix
which minimizes the regularized risk as

Problem 2.

min max
α∈S

J(α;K int) wrt β ∈ ∆p

subj to K int =

p∑
k=1

βkKk,

where J(α ; K) ≡ ∥α∥1 −
1

2
α⊤ diag(y)K diag(y)α,

∆p ≡ {β ∈ Rp
+ | ∥β∥1 = 1}.

It was shown [83] that Problem 2 is an SDP problem and can be reduced to second-
order cone programming (SOCP), which can be solved more efficiently than SDP. However,
the problem is still intractable when the number of training examples is large. A smoothed
version of the problem so that SMO [50] is applicable has been introduced in [85].

Another efficient algorithm for solving Problem 2 without modification has been pre-
sented in [86]. This algorithm is based on the following linear programming problem:

Problem 3.

min θ wrt θ ∈ R, β ∈∆p

subj to ∀α ∈ S ′ :

p∑
k=1

βkJ(α ; Kk) ≤ θ,

where S ′ is a subset of S.
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The optimal kernel weights coincide with the solution of Problem 2 when S ′ = S. How-
ever, since S is an infinite set, the problem cannot be solved by general-purpose linear pro-
gramming tools. In [86], this is solved iteratively as follows. Initially set S ′ = ∅ and β =
1/p; then repeat the following two steps until convergence:

1: Perform an SVM learning with the kernel matrix integrated with the current kernel
weights β and add the obtained α ∈ S to S ′;

2: Solve Problem 3 to get the new kernel weights.

Another algorithm for multiple kernel learning has been proposed in [87].
This algorithm basically repeats the following two steps until conver-
gence:

1: Train SVM using the kernel matrix combined with the current kernel weights β and
obtain α ∈ S.

2: Update the kernel weights β by using line search from the current weights in the
reduced descent direction of J(α ;

∑
k βkKk).

So far we have focused on binary classification tasks and used the hinge loss for mul-
tiple kernel learning. Multiple kernel learning methods for other tasks such as multi-class
classification, regression, and one-class classification has been discussed in [86, 88]. How-
ever, the computational cost for multiple kernel learning is still too large for learning from
large datasets. To cope with this problem, recent work replaces each kernel matrix with
an undirected graph [89, 90]. An efficient algorithm for learning from multiple graphs in
binary classification developed in [89] has been reported to be approximately 30 times
faster than the algorithm proposed in [86].

7 Conclusions

Optimization theory has been extensively studied in recent decades and various new tech-
niques have been explored to exploit the explosive increases of computational power. The
development of optimization methodologies has also had strong impact on the machine
learning community, allowing it to tackle large-scale real-world problems. At the same
time, beyond standard optimization paradigms, machine learning algorithms have highly
intricate structures and great efforts have been devoted to specific problems of machine
learning, such as improving overall computation times including model selection by track-
ing the entire solution path, reducing the computational costs in the test phases by sparci-
fying solutions, and improving the computation of complicated kernel functions by using
special data structures. Thus, for further improvements to the computational efficiency
of machine learning algorithms, it is important to have interdisciplinary collaboration be-
tween fundamental mathematical areas such as optimization theory, combinatorics, and
statistics and various application areas such as bioinformatics, computational chemistry,
robotics, natural language processing, speech analysis, and image processing.

The kernel methods we have dealt with in this article are essentially converting linear
algorithms to non-linear domains by using the kernel trick. Another movement in the
kernel machine community, which we could not cover in the current article due to the
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space limitation, is to use the kernel trick in the context of statistical tests, including the
independence test and the two-sample test. These ideas have been applied in various do-
mains such as independent component analysis [12], dimensionality reduction [91], feature
selection [92], and non-stationarity adaptation [93]. The computational issues in this new
topic do not seem to have been extensively explored yet. This may be a challenging new
research topic for kernel method researchers.

A popular classification approach apart from the support vector machines is boosting
[94, 95, 96], which sequentially combines weak learners to make predictions. Although
boosting and the support vector machines are very different in spirit, recent work has
shown that both are improving the margin distribution in some sense [97, 98]. Thus, going
beyond computational issues, it would be important for the kernel method community
to systematically merge the ideas of these two different approaches and develop a more
sophisticated approach.
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