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Abstract

Background: Although microarray gene expression analysis has become popular,
it remains difficult to interpret the biological changes caused by stimuli or variation
of conditions. Clustering of genes and associating each group with biological func-
tions are often used methods. However, such methods only detect partial changes
within cell processes. Herein, we propose a method for discovering global changes
within a cell by associating observed conditions of gene expression with gene func-
tions.

Results: To elucidate the association, we introduce a novel feature selection method
called Least-Squares Mutual Information (LSMI), which computes mutual informa-
tion without density estimaion, and therefore LSMI can detect nonlinear associa-
tions within a cell. We demonstrate the effectiveness of LSMI through comparison
with existing methods. The results of the application to yeast microarray datasets
reveal that non-natural stimuli affect various biological processes, whereas others
are no significant relation to specific cell processes. Furthermore, we discover that
biological processes can be categorized into four types according to the responses of
various stimuli: DNA/RNA metabolism, gene expression, protein metabolism, and
protein localization.

Conclusions: We proposed a novel feature selection method called LSMI, and ap-
plied LSMI to mining the association between conditions of yeast and biological
processes through microarray datasets. In fact, LSMI allows us to elucidate the
global organization of cellular process control.
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Background

Advances in microarray technologies enable us to explore the comprehensive dynamics
of transcription within a cell. The current problem is to extract useful information from
a massive dataset. The primarily used approach is clustering. Cluster analysis reveals
variations of gene expression and reduces the complexity of large datasets. However,
additional methods are necessary to associate genes in each cluster with genetic function
using GO term finder [3], or to understand stimuli related to specific cellular status.

However, these clustering-association strategies cannot detect global cell status
changes because of the division of clusters. Some stimuli activate a specific pathway,
although others might change overall cellular processes. Understanding the effect of stim-
uli in cellular processes directly, in this paper, we introduce a novel feature selection
method called Least-Squares Mutual Information (LSMI), which selects features using
mutual information without density estimation. Mutual information has been utilized to
measure distances between gene expressions [15]. To compute the mutual information in
existing methods, density estimation or discritization is required. However, the estimation
of gene expression is difficult because we have little knowledge about density function of
gene expression profile. LSMI offers an analytic-form solution and avoid the estimation.

Feature selection techniques are often used in gene expression analysis [16]. Actually,
LSMI has three advantages compared to existing methods: capability of avoiding density
estimation which is known to be a hard problem [18], availability of model selection, and
freedom from a strong model assumption. To evaluate the reliability of ranked features
using LSMI, we compare receiver operating characteristic (ROC) curves [14] to those of
existing methods: kernel density estimation (KDE) [20, 6], k-nearest neighbor (KNN) [13],
Edgeworth expansion (EDGE) [11], and Pearson correlation coefficient (PCC). Thereby,
we certify that our method has better performance than the existing methods in prediction
of gene functions about biological processes. This fact implies that features selected using
our method reflect biological processes.

Using the ranked features, we illustrate the associations between stimuli and biological
processes according to gene expressions. Results show that stimuli damage essential pro-
cesses within a cell, causing association with some cellular processes. From the response
to stimuli, biological processes are divisible into four categories: DNA/RNA metabolic
processes, gene expression, protein metabolic processes, and protein localization.

Results

Approach—Mutual Information Detection

In this study, we detect underlying dependencies between gene expressions obtained by
groups of stimuli and gene functions. The dependencies are studied in various machine
learning problems such as feature selection [8, 22] and independent component analysis [4].
Although classical correlation analysis would be useful for these problems, it cannot detect
nonlinear dependencies with no correlation. On the other hand, mutual information (MI),
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which plays an important role in information theory [5], enables us to detect general
nonlinear dependencies. Let & and y be a set of gene expressions and a set of known gene
functions. A variant of MI based on the squared loss is defined by

ey = || (L‘“’) - 1)2px<w>py<y>dwdy. 1)

px(w)py(y)

Note that I, vanishes if and only if  and y are independent. The use of MI allows us to
detect no correlation stimulus with a specific gene function or process.

Estimating MI is known to be a difficult problem in practice [22, 13, 11]. Herein, we
propose LSMI, which does not involve density estimation but directly models the density
ratio:

Pxy (2, Y)
px(®)py(y)

Given a density ratio estimator w(x,y), squared loss MI can be simply estimated by

w(z,y) =

~ ] —
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Mathematical definitions related to LSMI are provided in the Methods section. LSMI
offers an analytic-form solution, which allows us to estimate MI in a computationally
very efficiently manner.

It is noteworthy that « includes a multi-dimensional vector. In fact, LSMI can handle a
group of stimuli, although generic correlation indices such as Pearson correlation between
parameters and target value are calculated independently. Therefore, we can elucidate
which type of stimulus has no dependency to biological processes using LSMI.

Datasets and Feature Selection

In this section, we first prepare datasets to show the association between stimuli and
biological process, and introduce feature selection using the datasets.

Biological Process

We compute mutual information between gene expression values grouped by stimuli and
class of genes’ biological processes. As the class, we use biological process terms in Gene
Ontology (GO) categorization [1]. We select GO terms associated with more than 800
and less than 2,000 genes because terms having a small number of genes only describe a
fraction of the cell status, whereas terms having a large number of genes indicate functions
associated with almost all genes in yeast. Actually, GO has a directed acyclic graph
(DAG) structure, and each term has child terms. The GO terms are classified into three
categories; we use only biological process terms to identify the changes within a cell. Using
this method, we select 12 GO terms.
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Gene Expression Profiles

The gene expression profile is the best comprehensive dataset to associate stimuli and
biological processes. We use two different microarray datasets. One is of 173 microarray
data under stress conditions of various types [7]. We categorize the 173 stress conditions
into 29 groups based on the type of condition such as heat shock, oxidizing condition, etc.
The other is of 300 microarray data under gene-mutated conditions [10]. We categorize
the genes into 146 groups based on associated GO terms. We use only the GO terms
which are associated with 1,500 genes or fewer. We also use child terms on a GO layered
structure if the term has more than 1,200 genes. When one gene belongs to multiple GO
terms, we classify the gene into the the classification whose number of associated genes is
smallest.

In both profiles, we remove genes whose expression values are obtained from fewer
than 30% of all observed conditions. All missing values are filled out by the average of all
the expression values.

Feature Selection using LSMI

We use a novel feature selection method called LSMI, which is based on MI, to asso-
ciate stimuli with cellular processes. Here we consider the forward feature-group addition
strategy, i.e., a feature-group score between each input feature-group and output cellular
process is computed. The top m feature-groups are used for training a classifier. We pre-
dict 12 GO terms independently. We randomly choose 500 genes from among 6, 116 genes
on the stress condition dataset for feature-group selection and for training a classifier; the
rest are used for evaluating the generalization performance. For using the gene-mutated
expression dataset, we select 500 genes from among 6,210 genes. We repeat this trial 10
times. For classification, we use a Gaussian kernel support vector machine (GK-SVM)
[18], where the kernel width is set at the median distance among all samples and the
regularization parameter is fixed at C' = 10. We explain the efficiency of feature selection
of LSMI in the Discussion section.

Results

The association between stress conditions and biological processes in GO terms is shown
in Fig.1. Each row and column respectively indicate a group of conditions and a GO term.
Row and column dendrograms are clustering results by the Ward method according to
cell values. Each cell contains an average ranking over 10 trials by LSMI. The red cell
denotes that the parameter has a higher rank; that is, the parameter has association with
the target GO term. A blue cell denotes that the parameter has a lower rank.

As shown in this figure, conditions are divided into two groups. Almost all conditions
in the upper cluster have higher rank, whereas those in a lower cluster have higher rank
only under specific conditions. The conditions in the upper cluster include strong heat
shocks, dithiothreitol (DTT) exposure, nitrogen depletion, and diamide treatments, which
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Figure 1: Matrix of stress conditions (rows) versus biological processes (columns). Red
cells have higher correlation.

are non-natural conditions. The result reveals that non-natural conditions change overall
cellular processes.

The GO term clusters are divided into three groups: DNA/RNA metabolism (right),
localization of protein (middle), and others (left). The leftmost cluster contains bio syn-
thesis, gene expression process, and protein metabolic process. From this figure, nucleic
acid metabolism processes are inferred to be independent from amino acid metabolism
processes. We will confirm the independence and consider the division of clusters by using
other dataset later.

We herein investigate the details of difference among DNA metabolic process, protein
metabolic process and localization of proteins. Under an overexpression condition indi-
cated by sign (A) in Fig.1, DNA/RNA metabolisms show no correlation with expressions
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Figure 2: Overview: a matrix of mutated gene groups (rows) versus biological processes
(columns)
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Figure 3: Sub-matrices of the full map

of genes belonging to over-expression genes. This finding of no correlation is one advan-
tage of LSMI. The menadione (vitamin K) exposure condition indicated by (B) in Fig.1 is
associated with localization of proteins. Menadione supplementation causes high toxicity;
such toxicity might result from the violation of protein localizations.

Next, we compute the association using expressions of gene mutants. The results are
shown in Fig.2. The stimulus can be categorized into two parts: high association under
almost all processes and under particular conditions. The division is the same because
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of stress condition associations. The GO terms also categorize three parts: DNA/RNA
metabolic processes, protein metabolic processes, and localization. In this experiment,
GO terms “gene expression” (G0O:0010467) and “organelle organization and biogenesis”
(GO:0006996) are in the DNA/RNA metabolic process cluster, although they are clas-
sified in protein metabolic processes cluster under stress conditions in Fig.1. Because
the both divisions are close to ancestor division, we can conclude that the cluster about
gene expression exists. From these results, GO terms are divisible into four categories:
DNA/RNA metabolic process, protein metabolic process, localization, and gene expres-
sion.

In Fig.3, we present details of three clusters in Fig.2. In fact, Fig.3(I) presents a cluster
whose members are correlated with any biological process. Furthermore, the functions of
the mutated genes are essential processes for living cells, such as cellular localization, cell
cycle, and growth. This result might indicate that the upper half stimulus in Fig.1 destroys
the functions of these essential genes. Furthermore, Fig.3(II) includes the groups of genes
associated with DNA/RNA metabolic processes. In this cluster, YEL0O33W/MTCI is a
gene with unknown function and is predicted to have a metabolic role using protein—
protein interaction [17]. Our clustering result indicates that YEL033W would have some
relation with metabolism, especially methylation (methylation is an important part of
the one-carbon compound metabolic process). We show genes which have no significant
association with DNA/RNA metabolic processes in Fig.3(III). In the cluster, all genes
except AQY?2 are of unknown function. No correlation clusters cannot be found by existing
methods. Our result might provide clues to elucidate these genes’ functions.

Discussion

A common analytical flow of the expression data is first clustering and then associating
clusters with GO terms or pathways. Although clustering reduces the complexity of large
datasets, the strategy might fail to detect changes of entire genes within a cell such as
metabolic processes.

To interpret such gene expression changes, gene set enrichment analysis [21] has been
proposed. This method treats microarrays independently. Therefore, housekeeping genes
are often ranked highly. When gene expressions under various conditions are available, our
method would show us the better changes of cellular processes because of the comparison
between groups of conditions. The module map [19] gives a global association between
a set of genes and a set of conditions. However, this method requires important changes
of gene expressions because it uses hypergeometric distributions to compute correlations.
Our correlation index is based on MI. Therefore, we can detect nonlinear dependencies
with no correlation. An example is depicted in Fig.3(III).

The characteristics of LSMI and existing MI estimators are presented in Table 1.
Detail comparisons are described in the Methods section. The kernel density estimator
(KDE) |20, 6] is distribution-free. Model selection is possible by likelihood cross-validation
(LCV). However, a hard task of density estimation is involved. Estimation of the entropies
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Table 1: Relation between existing and proposed MI estimators. If the order of the
Edgeworth expansion is regarded as a tuning parameter, model selection of EDGE is
expected to be ‘Not available’.

’ H Density estimation \ Model selection \ Distribution ‘

KDE Involved Available Free
KNN Not involved Not available Free
EDGE Not involved Not necessary | Nearly normal
LSMI Not involved Available Free

using k-nearest neighbor (KNN) samples [13] is distribution-free and does not involve den-
sity estimation directly. However, no model selection method exists for determining the
number of nearest neighbors. Edgeworth expansion (EDGE) [11] does not involve den-
sity estimation or any tuning parameters. However, it is based on the assumption that
the target distribution is close to the normal distribution. On the other hand, LSMI
is distribution-free; it involves no density estimation, and model selection is possible by
cross-validation (CV). Therefore, LSMI overcomes limitations of the existing approaches.
Within a cell, most processes have a nonlinear relation such as enzyme effects and feed-
back loops. The lack of one advantage might cause difficulty of application to biological
datasets. By virtue of these advantages, LSMI can detect correlation or independence
between features of complex cellular processes.

To investigate the efficiency of feature selection, we compare areas under the curve
(AUCs) with LSMI (CV), KDE(LCV), KNN(k) for £ = 1,5, EDGE, and PCC. Details
of these methods are described in the Methods section. Figure 4 depicts AUCs for 12
GO term classifications. The z-axis shows the number of stimulus groups used for the
prediction. The y-axis means averaged AUC over 10 trials, where AUCs are calculated
as the area under the receiver operating characteristic (ROC) curve, which is often used
for diagnostic tests. Each figure shows AUC curves calculated using the six methods.

In the AUC figures, the higher curves represent better predictions. For example,
Fig.4(a) shows that LSMI is the highest position, which means that LSMI achieves the
best performance among the six methods. In Figs.4(b) and 4(d), KNN(1) and KNN(5),
which are denoted by the light blue and dotted light blue lines, have the best performance.
However, in Figs.4(i), 4(j) and 4(1), averaged AUCs of KNN using numerous groups
are high, whereas the AUCs using small and few groups are low. No systematic model
selection strategies exist for KNN and therefore KNN would be unreliable in practice.
Figure 4(c) depicts that EDGE, which is indicated by the light green line, has the highest
AUC. In fact, EDGE presumes the normal distribution. Consequently, it works well only
on a few datasets. From these figures, LSMI indicated by the blue line appears to be the
best feature selection method.
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Conclusions

We provided a global view of the associations between stimuli and changes of biological
processes based on gene expression profiles. The association is generally difficult to use
for making models because of nonlinear correlation. To cope with this problem, we intro-
duced a novel feature selection method called LSMI, which uses MI and can be computed
efficiently. In comparison to other feature selection methods, LSMI showed better AUCs
in prediction of biological process functions. Consequently, our feature selection results
would be more reliable than those obtained using the other methods. We calculated
the association between stimuli and GO biological process terms using gene expression
profiles. The result revealed that the stimuli are categorized into four types: related to
DNA/RNA metabolic process, gene expression, protein metabolic process, and protein
localization. LSMI enabled us to reveal the global regulation of cellular processes from
comprehensive transcription datasets.

Methods

Mutual Information Estimation

A naive approach to estimating MI is to use a KDE [20, 6], i.e., the densities pyy(x,y),
px(x), and py(y) are separately estimated from samples and the estimated densities are
used for computing MI. The band-width of the kernel functions could be optimized based
on likelihood cross-validation (LCV) [9], so there remains no open tuning parameter in
this approach. However, density estimation is known to be a hard problem [18] and
therefore the KDE-based method may not be so effective in practice.

An alternative method involves estimation of entropies using KNN. The KNN-based
approach was shown to perform better than KDE [12], given that the number k is chosen
appropriately—a small (large) k yields an estimator with small (large) bias and large
(small) variance. However, appropriately determining the value of k is not straightforward
in the context of MI estimation.

Here, we propose a new MI estimator that can overcome the limitations of the existing
approaches. Our method, which we call Least-Squares Mutual Information (LSMI), does
not involve density estimation and directly models the density ratio:

pXY(ma y) (2>

vl Y) = )

The solution of LSMI can be computed by simply solving a system of linear equations.
Therefore, LSMI is computationally very efficient. Furthermore, a variant of cross-
validation (CV) is available for model selection, so the values of tuning parameters such
as the regularization parameter and the kernel width can be adaptively determined in an
objective manner.
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A New MI Estimator

In this section, we formulate the MI inference problem as density ratio estimation and
propose a new method of estimating the density ratio.

MI Inference via Density Ratio Estimation

Let Dx (C R%) and Dy (C R%) be the data domains and suppose we are given n
independent and identically distributed (i.i.d.) paired samples
{(mwyz) | T; € DX7 Y, € DY}?:I

drawn from a joint distribution with density pyy(,y). Let us denote the marginal den-
sities of «; and y,; by px(x) and py(y), respectively. The goal is to estimate squared-loss
MI defined by Eq.(1).

Our key constraint is that we want to avoid density estimation when estimating MI.
To this end, we estimate the density ratio w(x,y) defined by Eq.(2). Given a density
ratio estimator w(x,y), MI can be simply estimated by

~ 1 w—
I(X,)Y) = = Z(w(wi,yj) —1)%
ij=1
We model the density ratio function w(x,y) by the following linear model:
Ta(z,y) = p(z,y),

where o = (g, ag,...,0,)" are parameters to be learned from samples, ' denotes the

transpose of a matrix or a vector, and
§0($, y) = (Sol(mv y)v 502(33’ y>7 s 7(,0[,(33, y))T
are basis functions such that
p(x,y) >0, forall (x,y)e€ Dx x Dy.

0, denotes the b-dimensional vector with all zeros. Note that ¢(x,y) could be dependent
on the samples {x;, y,;}7,, i.e., kernel models are also allowed. We explain how the basis
functions ¢ (@, y) are chosen in the later section.

A Least-squares Approach to Direct Density Ratio Estimation

We determine the parameter a in the model @, (,y) so that the following squared error
Jo is minimized:

hie)i=; [ [(@a(e. )~ ule.v) o (e)n (v)indy
=5 [[ falwvPp@m w)ddy ~ [ [ Balw.v)po (@ v)dady + C.
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where C' = % [ w(x, y)pxy(z, y)dedy is a constant and therefore can be safely ignored.
Let us denote the first two terms by J:

1
J(a) = Jy(a) = C = éaTHa —h'a,
where

H := // o, y)p(x,y) pe(@)py(y)dedy,

h = // oz, Y)pxy (, y)dzdy.

Approximating the expectations in H and h by empirical averages, we obtain the
following optimization problem:

~ i 1 +—= ~T

a ;= argmin [—aTHa —h a+Xa'al, (3)
acRb

where we included a regularization term Ao o and

n

o 1

H = E (p(wlay])(p(wwyj)—ra
1,j=1

~ 1 <&
hi==% oy,
i=1

Differentiating the objective function (3) with respect to a and equating it to zero, we
can obtain an analytic-form solution:

a = (H + \,)"'h,

where I is the b-dimensional identity matrix.
We call the above method Least-Squares Mutual Information (LSMI) . Thanks to the
analytic-form solution, the LSMI solution can be computed very efficiently.

Convergence Bound

Here, we show a non-parametric convergence rate of the solution of the optimization
problem (3).

Let G be a general set of functions on Dx x Dy. For a function ¢ (€ G), let us consider
a non-negative function R(g) such that

suplg(z,y)] < R(g).

zy
Then the problem (3) can be generalized as
~ |1~ Iy 2
o i 137 o+ aomta|

9€9 ij=1
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where g; ; := g(x;,y;). We assume that the true density ratio function w(z, y) is contained
in model G and satisfies

w(x,y) < My forall (x,y) € Dx x Dy.
We also assume that there exists v (0 < v < 2) such that

H[](gM7 €, LZ(poY)) = O((M/E)ﬂ/)y

where
Gu:={9€G|R(g) <M}

and Hj is the bracketing entropy of Gy with respect to the Lo(pgpy)-norm [25, 24]. This
means the function class G is not too much complex.
Then we have the following theorem. Its proof is omitted due to lack of space.

Theorem 1 Under the above setting, if A\, — 0 and \;' = o(n* 7)) then
1@ —wllz = O4(A/?),
where || - [|2 means the Lo(pxpy)-norm and O, denotes the asymptotic order in probability.

This theorem is closely related to [23, 2]. The paper [23] considers least squares estimators
for nonparametric regression, and related topics can be found in Section 10 of [24].

CV for Model Selection and Basis Function Design

The performance of LSMI depends on the choice of the model, i.e., the basis functions
p(x,y) and the regularization parameter A. Here we show that model selection can be
carried out based on a variant of CV.

First, the samples {z; | z; = (z;,y,)}}», are divided into K disjoint subsets {Z; }X .
Then a density ratio estimator @wy(x,y) is obtained using {Z;};2; and the cost J is
approximated using the held-out samples Z; as

j\(KfCV) . Z @k(af/ay')Q _ Z wi(x',yY')
k B 2n? ng ’
x' Yy €Zy k (' y')EZy

where ny, is the number of pairs in the set Z;. >, - is the summation over all

combinations of &’ and y’ (i.e., n} terms), while Z(w, ) is the summation over all

EZy
pairs (', y’) (i.e., ny terms). This procedure is repeated for k = 1,2,..., K and its

K—CV)

average Tt is used as an estimate of J:

K
:]\(KfCV) _ i } : :f(KfCV)'
K T
k=1
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We can show that JE=CV) is an almost unbiased estimate of the true cost J , where
the ‘almost’-ness comes from the fact that the number of samples is reduced in the CV
procedure due to data splitting [18].

A good model may be chosen by CV, given that a family of promising model candidates
is prepared. As model candidates, we propose using a Gaussian kernel model:

2 — *

ey = e (122 ) oy — o),

where
b
{(we, ve) }ooy
are ‘center’ points randomly chosen from

{(zi,y:) sy

d(y = vy) is a indicator function, which is 1 if y = v, and 0 otherwise.
In the experiments, we fix the number of basis functions at

b = min(100,n),

and choose the Gaussian width o and the regularization parameter A by CV with grid
search.

Relation to Existing Methods

In this section, we discuss the characteristics of existing and proposed approaches.

Kernel Density Estimator (KDE)

KDE [20, 6] is a non-parametric technique to estimate a probability density function p(x)
from its i.i.d. samples {x;},. For the Gaussian kernel, KDE is expressed as

~ 1 - |z — i|”
plx) = n(@r0?) 2 ;exp <— 52 :

The performance of KDE depends on the choice of the kernel width ¢ and it can be
optimized by likelihood C'V as follows [9]: First, divide the samples {x;}? ; into K disjoint
subsets {X)}— ;. Then obtain a density estimate px, () from {X;},., and compute its
hold-out log-likelihood for AX:

This procedure is repeated for £k = 1,2,..., K and choose the value of ¢ such that the
average of the hold-out log-likelihood over all k£ is maximized. Note that the average
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hold-out log-likelihood is an almost unbiased estimate of the Kullback-Leibler divergence
from p(x) to p(x), up to an irrelevant constant.

Based on KDE, MI can be approximated by separately estimating the densities
Pxy(T,y), px(x) and py(y) using {x;,y,}",. However, density estimation is known to
be a hard problem and therefore the KDE-based approach may not be so effective in
practice.

k-nearest Neighbor Method (KINN)

Let Ny (i) be the set of k-nearest neighbor samples of (x;,vy;), and let

ex(i) = max{||@; — zy | | (@, y,) € Ni(i)},
ey(i) = max{|ly; — yull | (zir, yi) € Ni(0)},
(i) i = #ze | @ — 2| < ()},
ny(i) = #{zi [ 1y —yall < &(0)}

Then the KNN-based MI estimator is given as follows [13]:

n

~ 1 1

I(X,Y) = y(k) +¢(n) — 7 — D [(na(@) + ¢(ny ()],

i=1

where 1) is the digamma function.

A practical drawback of the KNN-based approach is that the estimation accuracy
depends on the value of k£ and there seems no systematic strategy to choose the value of
k appropriately.

Edgeworth Expansion (EDGE)

MI can be expressed in terms of the entropies as
IX,)Y)=HX)+HY)-H(X.,Y),

where H(X) denotes the entropy of X:

H(X):= —/px(w) log px(x)de.

Thus MI can be approximated if the entropies above are estimated.

In the paper [11], an entropy approximation method based on the Edgeworth expansion
is proposed, where the entropy of a distribution is approximated by that of the normal
distribution and some additional higher-order correction terms. More specifically, for a
d-dimensional distribution, the entropy is approximated by

1 & 2 1 : 2 1 2
H =~ Hnormal - E Z /{i,i,i - Z ' Z K’i,i,j - ﬁ Z Kjiy]}k’

i=1 G=1,i#j i,j,k=1,i<j<k
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where Hpormal i the entropy of the normal distribution with covariance matrix equal to
the target distribution and &; ;5 (1 < 4,j,k < d) is the standardized third cumulant of
the target distribution. In practice, all the cumulants are estimated from samples.

If the underlying distribution is close to the normal distribution, the above approxima-
tion is quite accurate and the EDGE method works very well. However, if the distribution
is far from the normal distribution, the approximation error gets large and therefore the
EDGE method may be unreliable.

In principle, it is possible to include the fourth and even higher cumulants for further
reducing the estimation bias. However, this in turn increases the estimation variance; the
expansion up to the third cumulants would be reasonable.
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