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Abstract—We propose a new method of approximating mutual
information based on maximum likelihood estimation of adensity
ratio function. The proposed method,Maximum Likelihood Mu-
tual Information (MLMI), possesses useful properties, e.g., it does
not involve density estimation, the global optimal solution can
be efficiently computed, it has suitable convergence properties,
and model selection criteria are available. Numerical experiments
show that MLMI compares favorably with existing methods.

I. I NTRODUCTION

Mutual information (MI) between two random variablesX
andY

I(X,Y ) :=
∫∫

pXY (x,y) log pXY (x,y)
pX(x)pY (y) dxdy (1)

plays a central role in information theory and statistics since it
vanishes if and only ifX andY are independent. A great deal
of effort has been made to estimate MI from samples. Such
MI estimators are useful in testing independence, and have
been applied to various machine learning and signal processing
tasks such as feature selection and independent component
analysis.

In this paper, we propose a new MI estimator,Maximum
Likelihood Mutual Information(MLMI), that can overcome
the limitations of existing approaches. MLMI does not involve
density estimation, but directly learns the density ratio

w(x,y) := pXY (x,y)
pX(x)pY (y) (2)

via maximum likelihood (ML) estimation. Given a density-
ratio modelg(x,y), MI can simply be approximated by

Î(X,Y ) := 1
n

∑n
i=1 log g(xi,yi). (3)

We prove consistency of the MLMI procedure and elucidate
its rate of convergence. Estimation of the density ratio is
formulated in the ML framework as a convex optimization
problem. Therefore, the unique global optimal solution can
be obtained efficiently. Furthermore, cross validation and in-
formation criteria are available for model selection, so that
values of tuning parameters, such as the kernel width, can be
adaptively determined in an objective manner. Numerical ex-
periments show that MLMI compares favorably with existing
methods.

II. N EW MI ESTIMATOR

In this section, we formulate the MI estimation problem
as a density ratio estimation problem and propose a new MI
estimation method.

Formulation: Let DX ⊂ RdX and DY ⊂ RdY be data
domains. Suppose we are givenn independent and identically
distributed (i.i.d.) paired samples{(xi,yi) ∈ DX × DY }n

i=1

drawn from a joint distribution with densitypXY (x,y). Let
pX(x) andpY (y) denote the marginal densities ofX andY ,
respectively. The goal is to estimate MI defined by (1).

A key factor of our approach is to avoid density esti-
mation, since density estimation is harder than estimation
of MI; instead, we estimate thedensity ratiow(x,y) de-
fined by (2). An obtained density-ratio modelg(x,y) is
then plugged into (3) to estimate MI. We model the den-
sity ratio by a linear modelg(x,y) := α⊤φ(x,y), where
α := (α1, . . . , αb)⊤ are parameters to be learned from
samples, where⊤ denotes the transpose of a vector, and where
φ(x,y) := (φ1(x,y), . . . , φb(x,y))⊤ are basis functions
such thatφ(x,y) ≥ 0b for all (x,y) ∈ DX × DY . 0b

denotes theb-dimensional all-zero vector. The basis functions
φ(x,y) and their numberb could be dependent on the samples
{(xi,yi)}n

i=1, i.e., kernelmodels are also allowed.
Maximum Likelihood Estimation of Density Ra-

tio: Given a density-ratio modelg(x,y), one may es-
timate the joint densitypXY (x,y) by p̂XY (x,y) :=
g(x,y)pX(x)pY (y), based on which we propose to estimate
the parameterα of g(x,y) from the samples in the ML
framework: Ignoring irrelevant constants, it is equivalent to
maximizing

Ĵ(α) := 1
n

∑n
i=1 log

(
α⊤φ(xi,yi)

)
.

This is our objective function, which is concave.
The density-ratio modelg(x,y) should be non-negative

by definition. It is therefore natural to impose the constraint
g(x,y) ≥ 0 for all (x,y) ∈ DX ×DY . This can be achieved
by imposingα ≥ 0b. In addition to non-negativity,g(x,y)
should be properly normalized sincêpXY (x,y) is a density:

1 =
∫∫

p̂XY (x,y)dxdy ≈ 1
n(n−1)

∑
1≤i ̸=j≤n α⊤φ(xi,yj),

where we used theU -statistic for obtaining the empirical
estimator. LetŜ := {α | 1

n(n−1)

∑
1≤i ̸=j≤n α⊤φ(xi,yj) =



1,α ≥ 0b}. Then our optimization criterion is summarized as

α̂ := arg maxα∈Ŝ Ĵ(α).

Let ĝ(x,y) := α̂⊤φ(x,y). Then our MI estimator is given by
Î(MLMI)(X,Y ) := 1

n

∑n
i=1 log ĝ(xi,yi). We call this method

Maximum Likelihood Mutual Information (MLMI).

III. R ATES OFCONVERGENCE

Parametric Cases:We start with parametric cases where
the number of basis functionsb is fixed. We derive the asymp-
totic distribution of learned parameter̂α, the convergence rate
of MI estimation, and the learning curve of MLMI. We assume
the same regularity conditions as those used in [11], which is
a common setup in developing asymptotic parametric theory.

First, we define some notations. LetJ andS be the ‘ideal’
objective function and feasible set of MLMI, respectively:

J(α) :=
∫∫

pXY (x,y) log(α⊤φ(x,y))dxdy,

S := {α |
∫∫

pX(x)pY (y)α⊤φ(x,y)dxdy = 1,α ≥ 0}.

Let α∗ := arg maxα∈S J(α) and g∗(x,y) := α∗⊤φ(x,y).
S is a convex polytope and theapproximating coneC at α∗

is defined asC := {λ(α − α∗) | α ∈ S, λ ≥ 0}. Let ∇α

be a partial derivative operator with respect toα. We denote
∇α log g|g=α∗⊤φ by ∇α log g∗; similarly we use∇α log ĝ. Let

C⊥ := C ∩ {δ | δ⊤∫∫ pXY (x,y)∇α log g∗(x,y)dxdy = 0},
G :=

∫∫
pXY (x,y)∇αlog g∗(x,y)∇⊤

α log g∗(x,y)dxdy,

Q := −
∫∫

pXY (x,y)∇α∇⊤
α log g∗(x,y)dxdy,

c := 1
n

∫∫∫
pX(x)pX(x′)pY (y)g∗(x,y)g∗(x′,y)dxdx′dy

+ 2
n

∫∫∫∫
pXY(x,y)pX(x′)pY(y′)g∗(x,y′)g∗(x′,y)dxdydx′dy′

+ 1
n

∫∫∫
pX(x)pY (y′)pY (y)g∗(x,y)g∗(x,y′)dxdydy′− 4

n

ϕ :=
∫∫

pXY (x,y)pY (y′) φ(x,y)
g∗(x,y)g

∗(x,y′)dxdydy′

+
∫∫

pXY (x,y)pX(x′) φ(x,y)
g∗(x,y)g

∗(x′,y)dx′dxdy.

Let R be the orthogonal projection matrix onto the linear hull
of C⊥. Let N (µ,Σ) be the normal distribution with meanµ
and covariance matrixΣ. Then we have the following theorem.

Theorem 1:
√
n(α̂ − α∗) converges in law to

arg minδ∈C⊥
∥δ − Z∥Q + α∗Z ′, where ∥α∥2

Q := α⊤Qα,
and whereZ ∈ Rb and Z ′ ∈ R are random variables such

that

[
Z
Z ′

]
∼ N

(
0b+1,

[
RQ−1RGRQ−1R Rϕ

ϕ⊤R c

])
.

We analyze the convergence rate of our MI estimator. Let

I(g) :=
∫∫

pXY (x,y) log g(x,y)dxdy,

Î(g) := 1
n

∑n
i=1 log g(xi,yi).

Let Op be the asymptotic order in probability. Then, we have
Theorem 2:|Î(ĝ) − I(w)| = |I(g∗) − I(w)| + Op(n−

1
2 ).

Corollary 1: If the parametric model contains the true
density ratio, i.e.,g∗ = w, then |Î(ĝ) − I(w)| = Op(n−

1
2 ).

The corollary means that MLMI retains optimality in terms
of the order of convergence inn, sinceOp(n−

1
2 ) is the optimal

convergence rate in the parametric setup.

Let E denote expectation over random samples
{(xi,yi)}n

i=1. The behavior ofE[I(ĝ)] as a function of
the number of samplesn is called thelearning curve. The
learning curve has been a quantity of interest in statistics
since it can be used for derivinginformation criteria. Here,
in order to avoid technical difficulties, we assume in the
analysis of the learning curve of MLMI thatC⊥ is a linear
space. Then the learning curve can be expressed as follows.

Theorem 3:E[I(ĝ)] = I(g∗) − tr(RGR(RQR)†)
2n + c

2n +
O(n−

3
2 ), where† denotes the Moore-Penrose pseudo-inverse.

Non-Parametric Cases:Now we go on to elucidation of
the non-parametric convergence rates.

First, we define some notations. The set of basis functions is
denoted byF := {φθ | θ ∈ Θ}, whereΘ is a parameter/index
set. The set of basis functions used for estimation withn
samples is characterized by a subset of the parameter set
Θn ⊆ Θ and denoted byFn := {φθ | θ ∈ Θn} ⊂ F ,
which can be stochastic. The set of finite linear combinations
of F with non-negative coefficients and its bounded subset are
denoted respectively by

G := {
∑

l αlφθl
| αl ≥ 0, φθl

∈ F},
GM := {g ∈ G | ∥g∥∞ ≤M}.

Their subsets used for estimation withn samples are denoted
by Gn := {

∑
l αlφθl

| αl ≥ 0, φθl
∈ Fn} ⊂ G. Let Ĝn and

ĝn be the feasible set and the solution of MLMI:

Ĝn := {g ∈ Gn | 1
n(n−1)

∑
1≤i ̸=j≤n g(xi,yj) = 1},

ĝn := arg maxg∈Ĝn

[
1
n

∑n
i=1 log g(xi,yi)

]
.

For simplicity, we assume that the solutionĝn is unique.
Here we use the (generalized)Hellinger distancewith

respect topXpY as the error metric, since this allows us to
avoid some technical difficulties:

hQ(g, g′) :=
(∫∫

pX(x)pY (y)(
√
g −

√
g′)2dxdy

)1/2
,

where g and g′ are non-negative measurable functions (not
necessarily probability densities). We further make the fol-
lowing assumptions.
1. On the support ofpXY , there exists a constantη <∞ such
that the true density ratiow is upper-bounded asw(x,y) ≤ η.
2. All basis functions are non-negative, and there exist con-
stants ϵ, ξ > 0 such that∀φ ∈ F , ∥φ∥∞ ≤ ξ and∫∫

pX(x)pY (y)φ(x,y)dxdy ≥ ϵ.
3. There exist constants0 < γ < 2 andK > 0 such that
logN[](ϵ,GM , hQ) ≤ K(

√
M/ϵ)γ , whereN[](ϵ,F , h) is the

ϵ-bracketing numberof F with distanceh [9].
Assumption 3 ensures that the model is not so complicated.

Gaussian mixture models satisfy this condition [2]. Letg∗n :=
arg maxg∈Ĝn

∫∫
pXY (x,y) log g(x,y)dxdy. Then we have

the following theorems.
Theorem 4:If there existc0, c1 such thatP{(xi,yi)}(c0 ≤

w
g∗

n
≤ c1) → 1, thenhQ(ĝn, w) = Op(n−

1
2+γ + hQ(g∗n, w)).

Theorem 5:If there existsδ > 0 such thatg(x,y) ≥ δ for
∀(x,y) ∈ DX × DY and ∀g ∈ Ĝn, then |Î(ĝn) − I(w)| =
|I(g∗n) − I(w)| + Op(n−

1
2+γ ).



Corollary 2: If there existsN such thatw ∈ Gn for
∀n ≥ N , and if there existsδ > 0 such thatg(x,y) ≥ δ
for ∀(x,y) ∈ DX ×DY and∀g ∈ Ĝn, then|Î(ĝn)− I(w)| =
Op(n−

1
2+γ ).

This corollary shows that the convergence rate of non-
parametric MLMI is slightly slower than the parametric coun-
terpart, but the non-parametric method requires a milder model
assumption for eliminating the modeling error. According
to [5], the above convergence rate achieves the optimal mini-
max rate under some setup. Thus the convergence property of
non-parametric MLMI would be optimal in the same sense.

IV. M ODEL SELECTION

We have shown that MLMI possesses preferable con-
vergence properties. However, the practical performance of
MLMI may strongly depend on the choice of the basis
functions φ(x,y). Here we show how model selection of
MLMI can be carried out.

Parametric Cases:For parametric models, we provide an
information criterion which can be used for model selection.
Assume thatC⊥ is a linear space for simplicity. Let̂H be the
inclusionwise minimal face of̂S which containsα̂, and let
Ĉ⊥ be the linear space defined bŷC⊥ := {λ(α − α̂) | λ ∈
R, α ∈ Ĥ}. Let R̂ be the orthogonal projection ontôC⊥ and
let

Î(IC)(ĝ) := Î(ĝ) − 1
n tr(R̂ĜR̂(R̂Q̂R̂)†),

Ĝ := 1
n

∑n
i=1 ∇α log ĝ(xi,yi)∇⊤

α log ĝ(xi,yi),

Q̂ := − 1
n

∑n
i=1 ∇α∇⊤

α log ĝ(xi,yi).

Then we have the following theorem:
Theorem 6:E[Î(IC)(ĝ)] = E[I(ĝ)] +O(n−

3
2 ).

The above theorem shows that̂I(IC) is an asymptotic
unbiased estimator ofE[I(ĝ)] up to O(n−1). On the other
hand, the naive empirical estimator̂I(ĝ) is asymptotically
unbiased only up toO(n−

1
2 ): E[Î(ĝ)] = E[I(ĝ)] + O(n−1).

Thus Î(IC) would be a more accurate estimator ofI(ĝ) than
the naive one.

For model selection, we prepare a set of model candidates
(the basis functionsφ(x,y) in the current setting) and choose
the one that has the largest value ofÎ(IC) as the ‘best’ model.

Non-Parametric Cases:For non-parametric models, we
cannot unfortunately utilize the theoretical results given in the
previous section since the coefficient of the convergence rate
is not explicitly given. Here, we propose to use numerical
estimation via cross validation for model selection.

First, the samples{zi |zi = (xi,yi)}n
i=1 are divided into

K disjoint subsets{Zk}K
k=1 of (approximately) the same size.

Then a density ratio estimator̂gZk
(x,y) is obtained using

{Zj}j ̸=k (i.e., without Zk) and the score for the hold-out
samplesZk is computed as

Î
(K-CV)
Zk

= 1
|Zk|

∑
(x′,y′)∈Zk

log ĝZk
(x′,y′),

where|Zk| denotes the number of sample pairs in the setZk.
Repeat this procedure fork = 1, . . . ,K and output its average

Î(K-CV) = 1
K

∑K
k=1 Î

(K-CV)
Zk

.

Then we have the following theorem.
Theorem 7:The leave-one-out cross-validation score

Î(n-CV) is an unbiased estimate of MI learned from(n − 1)
samples:E[Î(n-CV)] = E[I(ĝn−1)].

Given thatE[I(ĝn−1)] ≈ E[I(ĝn)], cross validation gives an
almostunbiased estimate of MI: Similar almost unbiasedness
can be established for generalK-fold cross validation, but the
bias may be larger. For model selection, we computeÎ(K-CV)

for all model candidates and choose the one that maximizes
the cross-validation score.

Basis Function Design:A good model may be chosen by
an information criterion or cross validation, given that a set of
promising model candidates is prepared. As model candidates,
we propose to use a Gaussian kernel model:

φℓ(x,y) = exp(−∥x−uℓ∥2

2σ2 ) exp(−∥y−vℓ∥2

2σ2 ),

where {(uℓ,vℓ)}b
ℓ=1 are Gaussian centers; we choose the

centers randomly from{zi | zi = (xi,yi)}n
i=1.

By definition, the density ratio pXY (x,y)
pX(x)pY (y) tends to take

large values ifpXY (x,y) is large andpX(x)pY (y) is small;
conversely, the ratio tends to be small (i.e., close to zero)
if pX(x)pY (y) is large andpXY (x,y) is small. When a
non-negative function is approximated by a Gaussian mixture
model in general, many kernels may be needed in the region
where the output of the target function is large; on the other
hand, only a small number of kernels would be enough in the
region where the output of the target function is close to zero.
On the basis of this idea, we propose a heuristic to allocate
many kernels in regions wherepXY (x,y) is large, which can
be achieved by setting the Gaussian centers at{(xi,yi)}n

i=1.
Alternatively, we might locate Gaussian kernels on

{(xi,yj)}n
i,j=1, which, however, requiresn2 basis functions

and therefore is computationally prohibitive whenn is large.
Our preliminary experiments showed that usingn2 kernels
did not improve the performance, but significantly increased
the computation time. For this reason, in the experiments to
follow, we decided to use the above heuristic with the number
of basis functions fixed tob = min(200, n) and to choose the
Gaussian widthσ by cross validation.

V. RELATION TO EXISTING METHODS

In this section, we discuss the characteristics of existing and
the proposed approaches.

Legendre-Fenchel Duality of KL-Divergence: MI (or,
more generally, KL-divergence for arbitrary two probability
densities) can be characterized byLegendre-Fenchel duality
of the convex function ‘− log’ [7]. More precisely,I(X,Y )
can be characterized as the solution of the following concave
maximization problem [5]:

I(X,Y ) = supg≥0[
∫

(−pX(x)pY (y)g(x,y)
+ pXY (x,y) log g(x,y))dxdy + 1],

where the supremum is taken over all non-negative measurable
functions. In [5], an empirical version of this optimization



problem is solved by restricting the search space within a
(Gaussian) reproducing kernel Hilbert space with a regularizer.

Our MLMI method is closely related to the method given
by [5]: Indeed, if the linear model assumption and the nor-
malization constraint are imposed, and if the expectation is
approximated by the sample average, the above formulation
is reduced to MLMI. However, our approach would be more
advantageous in the following respects.

• Our ML formulation is equipped with built-in regularization
effects due to non-negativity and normalization constraints.
This allows us to avoid introducing an additional regularization
parameter and contributes to reducing the computational cost.
• A non-parametric convergence rate was investigated for
general KL divergence estimation in [5]. On the other hand,
we elucidated the non-parametric convergence rate specifically
in the context of MI estimation; this includes proper treatment
of the ‘decoupling’ effect inpX(x)pY (y). Furthermore, the
strong positivity of the true density ratiow is not required in
our proof and our result also covers a situation where the true
density ratio is not contained in the model.
• We derived an asymptotic distribution of the estimator in the
parametric setup and elucidated the parametric convergence
rate of MI estimation and the asymptotic learning curve.
• We gave a practical heuristic for designing basis functions
for approximating the density ratio. This allows us to reduce
the computational cost significantly.

Kernel Density Estimation (KDE) and Adaptive His-
togram Methods: KDE is a non-parametric technique to esti-
mate a density functionp(x) from its i.i.d. samples{xi}n

i=1.
For the Gaussian kernel, KDE is expressed as

p̂(x) = 1
n(2πσ2)d/2

∑n
i=1 exp(−∥x−xi∥2

2σ2 ).

The performance of KDE depends on the choice of the
kernel widthσ, which can be optimized by cross validation.
KDE-based estimation of MI can be performed using den-
sity estimateŝpXY (x,y), p̂X(x), and p̂Y (y) obtained from
{(xi,yi)}n

i=1, {xi}n
i=1, and{yi}n

i=1, respectively as

Î = 1
n

∑n
i=1 log p̂XY (xi,yi)

p̂X(xi)p̂Y (yi)
.

However, density estimation itself is known to be a hard
problem, and division by estimated densities may increase
estimation errors. For this reason, the KDE-based approach
may not be reliable in practice.

Histogram-based estimators with data-dependent partition
would be more adaptive density estimation schemes. In the
context of KL divergence estimation, consistency properties
of histogram-based methods, which could be regarded as
implicitly estimating the ratio pXY (x,y)

pX(x)pY (y) , have been inves-
tigated in [10], [8]. MI estimation following this line has
been explored in [1]. However, such histogram-based meth-
ods may seriously suffer from thecurse of dimensionality,
and are therefore not reliable in high-dimensional problems.
Furthermore, the convergence rate seems to be unexplored yet.
K-Nearest Neighbor (KNN) Based Method:If estimates

of the entropiesH are obtained, MI can be estimated via the

MI-entropy identity as

I(X,Y ) =H(X) +H(Y ) −H(X,Y ),
H(X) := −

∫
pX(x) log pX(x)dx.

In [4], an entropy estimator that utilizes the KNN distance
has been developed. Let us define the norm ofz = (x,y) by
∥z∥z := max{∥x∥, ∥y∥}, where∥ · ∥ denotes the Euclidean
norm. LetNk(i) be the set of KNN samples of(xi,yi) with
respect to the norm∥ · ∥z, and let

ϵX(i) := max{∥xi − xi′∥ | (xi′ ,yi′) ∈ Nk(i)},
nX(i) := |{zi′ | ∥xi − xi′∥ ≤ ϵX(i)}|,
ϵY (i) := max{∥yi − yi′∥ | (xi′ ,yi′) ∈ Nk(i)},
nY (i) := |{zi′ | ∥yi − yi′∥ ≤ ϵY (i)}|.

Then the KNN-based MI estimator is given by

Î = ψ(k) + ψ(n) − 1
k − 1

n

∑n
i=1[ψ(nX(i)) + ψ(nY (i))],

whereψ is thedigammafunction.
An advantage of the above KNN-based method is that it

does not simply replace entropies with their estimates, but it
is designed to cancel errors of individual entropy estimates.
A practical drawback of the KNN-based approach is that the
estimation accuracy depends on the value ofk and there seems
no systematic strategy to choose the value ofk appropriately.

Recently a KL divergence estimator utilizing KNN density
estimation is proposed in [6] and its consistency has been
investigated. A notable property of this estimator is that
consistency of density estimation is not necessary to establish
consistency of the KL divergence estimator. However, the rate
of convergence seems to be still an open research issue.

Edgeworth Expansion (EDGE) Based Method:In [3], an
entropy estimator based on theEdgeworth expansionwas pro-
posed. The basic idea is to approximate the entropy by that of
the normal distribution and additional higher-order correction
terms. More specifically, for ad-dimensional distribution, an
estimatorĤ of the entropyH is given by

Ĥ = H∗−
∑d

i=1

κ2
i,i,i

12 −
∑d

i,j=1,i̸=j

κ2
i,i,j

4 −
∑d

i,j,k=1,i<j<k

κ2
i,j,k

72 ,

where H∗ is the entropy of the normal distribution with
covariance matrix equal to the target distribution andκi,j,k is
the standardized third cumulant of the target distribution. An
estimate of MI can be obtained via the MI-entropy identity. In
practice, all the cumulants should be estimated from samples.

If the underlying distribution is close to normal, the above
approximation is accurate and the EDGE-based method works
well. However, if the distributions are far from the normal dis-
tribution, the approximation error becomes large and therefore
the EDGE-based method is no longer reliable.

VI. N UMERICAL EXPERIMENTS

In this section, we experimentally investigate the perfor-
mance of the proposed and existing MI estimators. The task
is to estimate MI betweenX ∈ R andY ∈ R. We used the
following four datasets (see Figure 1):
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Fig. 1. Datasets used in experiments.
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Fig. 2. MI approximation error measured by|Î−I| averaged over100 trials
as a function of the sample sizen. The symbol ‘◦’ on a line means that the
corresponding method is the best in terms of the average error or is judged to
be comparable to the best method by thet-test at the significance level1%.

(a) Linear dependence:Y has a linear dependence onX as
X ∼ N (0, 0.5) andY |X ∼ N (3X, 1).
(b) Non-linear dependence with correlation:Y has a quadratic
dependence onX asX ∼ N (0, 1) andY |X ∼ N (X2, 1).
(c) Non-linear dependence without correlation:Y has a lattice-
structured dependence onX as X ∼ U(− 1

2 ,
1
2 ), Y |X ∼

N (0, 1
3 ) if X ≤ | 16 |, and Y |X ∼ 1

2 (N (1, 1
3 ) + N (−1, 1

3 ))
otherwise, whereU(a, b) is the uniform density on(a, b).
(d) Independence:X andY are independent of each other as
X ∼ U(0, 1

2 ) andY |X ∼ N (0, 1).
We compared MLMI, KDE, KNN (k = 1, 5, 15), and

EDGE. Figure 2 depicts the average approximation errors—
MLMI, KDE, KNN with k = 5, and EDGE performed well on
the dataset (a), MLMI tends to outperform the other methods
on the dataset (b), MLMI and KNN withk = 5 showed the
best performance against the other methods on the dataset (c),
and MLMI, EDGE, and KNN withk = 15 performed well on

the dataset (d). KDE worked moderately well on the datasets
(a)–(c), while it performed poorly on the dataset (d). This
instability would be ascribed to division by estimated densities,
which tends to magnify estimation errors. KNN seems to work
well on all four datasets if the value ofk is chosen optimally.
As already mentioned, however, there is no systematic model
selection strategy for KNN, so that KNN would be unreliable
in practice. EDGE worked well on the datasets (a), (b), and
(d), which possess high normality. However, for the dataset
(c), where normality of the target distributions is low, the
EDGE method performed poorly. In contrast, MLMI with
cross validation performed reasonably well for all four datasets
in a stable manner.

These experimental results have shown that MLMI nicely
compensates for the weaknesses of the existing methods, and
we therefore conclude that MLMI should be regarded as a
useful alternative to the existing methods of MI estimation.

VII. C ONCLUSIONS

We have proposed a new method of estimating mutual
information. The proposed method, called MLMI, has several
useful properties, e.g., it is a single-shot procedure, density
estimation is not involved, it is equipped with a cross-
validation procedure for model selection, and the unique global
solution can be computed efficiently. We have provided a
rigorous convergence analysis of the proposed algorithm as
well as numerical experiments illustrating the usefulness of
the proposed method.

A MATLAB R⃝ implementation of MLMI is avail-
able from ‘http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/
MLMI/index.html’. TS acknowledges support by MEXT
GCOE Program (G05). MS acknowledges supports by MEXT
(2068000), JFE 21st Century Foundation, AOARD, and SCAT.
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