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Abstract—We propose a new method of approximating mutual Il. NEW MI ESTIMATOR

information based on maximum likelihood estimation of adensity In thi . f | he MI . . bl
ratio function. The proposed method,Maximum Likelihood Mu- n this section, we formulate the estimation problem

tual Information (MLMI), possesses useful properties, e.g., it does &S & density ratio estimation problem and propose a new Ml
not involve density estimation, the global optimal solution can estimation method.

be efficiently computed, it has suitable convergence properties, Formulation: Let Dx C R% and Dy C R% be data
and model selection criteria are avaﬂablt_a. Nur_ne_ncal experiments 4o aine Suppose we are giverindependent and identically
show that MLMI compares favorably with existing methods. S L .
distributed (i.i.d.) paired sampleSx;,y;) € Dx x Dy},
drawn from a joint distribution with densityxy (x,y). Let
px (x) andpy (y) denote the marginal densities &f andY’,
Mutual information (MI) between two random variablas Fespectively. The goal is to estimate MI defined by (1).
andY A key factor of our approach is to avoid density esti-
mation, since density estimation is harder than estimation
I(X,Y) = [[pxy(z,y) log#%dwdy (1) ?f MI; instead, we est.imate thek.ansity. ratio w(z, y) dt_’-:—
ined by (2). An obtained density-ratio modelx,y) is
plays a central role in information theory and statistics sincethiten plugged into (3) to estimate MI. We model the den-
vanishes if and only ifX andY are independent. A great dealsity ratio by a linear model(z,y) := a'p(x,y), where
of effort has been made to estimate Ml from samples. Suoh := (ai,...,a;)' are parameters to be learned from
MI estimators are useful in testing independence, and has@mples, wheré denotes the transpose of a vector, and where
been applied to various machine learning and signal processipge, y) = (¢1(z,y),...,¢s(x,y))" are basis functions
tasks such as feature selection and independent comporstich thatyp(x,y) > 0, for all (z,y) € Dx x Dy. 04
analysis. denotes thé-dimensional all-zero vector. The basis functions
In this paper, we propose a new MI estimatbtaximum ¢ (x,y) and their numbeb could be dependent on the samples
Likelihood Mutual Information(MLMI), that can overcome {(zi,¥:)}i_;, i.e.,kernelmodels are also allowed.
the limitations of existing approaches. MLMI does not involve Maximum Likelihood Estimation of Density Ra-
density estimation, but directly learns the density ratio tio: Given a density-ratio modeg(x,y), one may es-
timate the joint densitypxy (x,y) by pxy(x,y) =
(2) g(x,y)px(x)py (y), based on which we propose to estimate
the parameterx of g(x,y) from the samples in the ML

via maximum likelihood (ML) estimation. Given a densityframework: Ignoring irrelevant constants, it is equivalent to
ratio modelg(x,y), MI can simply be approximated by maximizing

I. INTRODUCTION

. _pxvy(z,y)
w(@,y) = px)éf;,)py(y)

f(va) = %Z?:l log g(x;, y;)- ©)) j(a) = 2 log (el (@i, yi) -

We prove consistency of the MLMI procedure and elucidafgiS IS our objective function, which is concave. _

its rate of convergence. Estimation of the density ratio is The density-ratio model(z,y) should be non-negative
formulated in the ML framework as a convex optimizatiork?y definition. It is therefore natural to impose the corlstralnt
problem. Therefore, the unique global optimal solution caff®:¥) = 0 forall (z,y) € Dx x Dy. This can be achieved
be obtained efficiently. Furthermore, cross validation and iffy IMPosinge > 0,. In addition to non-negativityg(z, y)
formation criteria are available for model selection, so thaf'ould be properly normalized sing& v (z,y) is a density:
values of tuning parameters, such as the kernel width, can pe [[pxy(
adaptively determined in an objective manner. Numerical ex-

periments show that MLMI compares favorably with existingvhere we used thé/-statistic for obtaining the empirical
methods. estimator. LetS := {a | ;) Dicizjcn @ @(@i ;) =

z,y)dzdy ~ m Zlgi;ﬁjgn aTgo(a:i, Yi)s



1,a > 0,}. Then our optimization criterion is summarized as Let E denote expectation over random samples
. ~ {(z;,y:)}_,. The behavior ofE[I(g)] as a function of
a = argmax, s J (). the number of samples is called thelearning curve The

Let§(z,y) := &' p(x,y). Then our MI estimator is given by Ie:\arnin{q curvbe has db(;,\enda .q.uc'slr;tity oI' inter?[st' iantatistics
T(MLMI) 1y o i since it can be used for derivingformation criteria Here,

i/laximu(r‘;1)(|7_i?<fe)lihogdzl\:/liitlulaolglﬁl(‘:r?n%t)ibx\k(el\/(lzlz_ill\l/lﬁ;\IS method in order to avoid technical difficulties, we assume in the
analysis of the learning curve of MLMI that, is a linear

I1l. RATES OFCONVERGENCE space. Then the learning curve can be expres§ed as follows.
, ) , i 7 « _ tr(RGR(RQR)") |
Parametric Cases:We start with parametric cases where 1heorem 3:E[/(g)] = I(g") — ===~ + 55 +

the number of basis functiorisis fixed. We derive the asymp- O(n™2), wheret denotes the Moore-Penrose pseudo-inverse.

totic distribution of learned parametér; the convergence rate Non-Parametric Cases:Now we go on to elucidation of

of MI estimation, and the learning curve of MLMI. We assum&€ hon-parametric convergence rates. . o

the same regularity conditions as those used in [11], which isFirst, we define some notations. The.set of basis fupctlons is

a common setup in developing asymptotic parametric theofgnoted byF := {py | 6 € O}, where® is a parameter/index
First, we define some notations. Létand S be the ‘ideal’ S€t: The set of basis functions used for estimation with

objective function and feasible set of MLMI, respectively: Sa@mples is characterized by a subset of the parameter set

0, C © and denoted byF,, := {¢9 | 0 € ©,} C F,

J(e) = [[pxy(z,y)log(a’ ¢(z,y))dzdy, which can be stochastic. The set of finite linear combinations

S:={a| [[px(®)py(¥)aT¢(x,y)dedy = 1,a > 0}. Of F with non-ne.gative coefficients and its bounded subset are
() and g*(z, ) . .9) denoted respectively by

Let o* := argmax, s J(a) and g*(z,y) := o™ p(z,y).

S is a convex polytgbge and thepproximating con& at o* = {2 o, [ aw 20, po, € T},

is defined a = {A(a—a*) | @ € S, A > 0}. Let V, g":={9€G |9l <M}

be a partial derivative operator with respectco\We denote rpejr sybsets used for estimation withsamples are denoted
Valog glg—a+, DY Vo log g*; similarly we useV,, log g. Let by G == {3, cugs, | au >0, @p, € F} C G. Let G, and

CL:=CNn{d |8 pxy(z,y)Valogg*(z,y)dzdy = 0} gn be the feasible set and the solution of MLMI:

G = [[pxvy(z,y)Valog g* (z,y)V, log g* (z, y)dzdy, G = {9 €G] ﬁ Zlgi;ﬁjgn g(xi, yj) = 1},
Q= - [[pxy(®,y)VaV{ logg*(z,y)dzdy, G =argmax o [ D0 logg(ai, yi)] -

c:= 5 [[[px(@)px (@)py (y)g*(x,y)g" (@, y)dzdz'dy For simplicity, we assume that the solutigp is unique.
+2([[[pxyle, Yrx@)py®)g*(x,y') g (@, y)dedydzdy’ Here we use the (generalizedjellinger distancewith

+ % fffpx(:c)py(y’)py(y)g*(w,y)g*(w,y’)dwdydy’—% respect topx py as the_e_rror_metnc, since this allows us to
avoid some technical difficulties:

halg.q') == ([f px (@)py (¥)(VG — VT)?dady)'/,

where g and ¢’ are non-negative measurable functions (not

Let R be the orthogonal projection matrix onto the linear huliecessarily probability densities). We further make the fol-

of C,. Let N(u,X) be the normal distribution with mega lowing assumptions.

and covariance matriX. Then we have the following theorem.l_ On the support OlﬁXY: there exists a constant< oo such
Theorem 1:\/n(@ — «*) converges in law 1o that the true density ratio is upper-bounded as(z, y) < 7.

argmingec, [|6 — Z|lq + a*Z’, where a3, == a"Qa, 2. All basis functions are non-negative, and there exist con-

and whereZ € R* and Z’ € R are random variables suchstantse, ¢ > 0 such thatVy € F, |¢]lea < & and

¢ = [[ pxv (@, 9)py (v) EEY ¢ (z,y')dadydy’

+ [ pxy (@ y)px (@) EEL g* (!, y)da'dedy.

-1 -1
that {ZZ, ~N (0b+1, {RQ R?gQ R R¢ [ px(x)py (y)o(x, y)dzdy >
¢ 1/ ?f There exist constant® < v < 2 and K > 0 such that
We analyze the convergence rate of our MI estimator. Lelog Ny (e GM hg) < K(VM /e where Ny (¢, . h) is the
1(9) == [[ pxy (z,y)log g(x, y)dzdy, e-bracketing numbepf F with distanceh [9]. '
(o) = 13" log glai, ui) Assumption 3 ensures that the model is not so complicated.
(9) = 5 2izs logg (@i, yi). Gaussian mixture models satisfy this condition [2]. hgt:=

Let O, be the asymptotic order in probability. Then, we haverg max, s [/ pxy (z,y)logg(z,y)dzdy. Then we have
Theorem 2|f(§) — I(w)| = |I(g") — I(w)] + Op(n*%) the following theorems. .
Corollary 1: If the parametric model contains the true Theorem 4:If there existco, c; such thatP(z, 43 (co <
density ratio, i.e.g* = w, then|I(g) — I(w)| = Op(n=2). 3 < c1) = 1, thenhg(gn, w) = Op(n™ 77 + hq(gy, w)).
The corollary means that MLMI retains optimality in terms Theorem 5:1f there existss > 0 such thatg(z,y) > ¢ for
of the order of convergence in since®, (n~ %) is the optimal V(z,y) € Dx x Dy andvyg € Gy, then|I(g,) — I(w)| =
convergence rate in the parametric setup. 11(g;) — I(w)| + Op(n™ 7).



Corollary 2: If there exists N such thatw € G, for Then we have the following theorem.

Vn > N, and if there existsy > 0 such thatg(z,y) > § = Theorem 7:The leave-one-out cross-validation score
for ¥(x,y) € Dx x Dy andVyg € Gn, then|I(G,) — I(w)| = I™CV) is an unbiased estimate of Ml learned frcm — 1)
Op(n~77). samplesE[T"CV)] = E[I(§,_1)].

This corollary shows that the convergence rate of non-Given thatE[/(g,—1)] = E[I(g,)], cross validation gives an
parametric MLMI is slightly slower than the parametric counalmostunbiased estimate of MI: Similar almost unbiasedness
terpart, but the non-parametric method requires a milder modei be established for geneféHold cross validation, but the
assumption for eliminating the modeling error. Accordindias may be larger. For model selection, we comgite©V)
to [5], the above convergence rate achieves the optimal mifér all model candidates and choose the one that maximizes
max rate under some setup. Thus the convergence propertyhef cross-validation score.
non-parametric MLMI would be optimal in the same sense. Basis Function Design:A good model may be chosen by
an information criterion or cross validation, given that a set of

IV. M ODEL SELECTION
We h h hat MLMI ferabl alromlsmg model candidates is prepared. As model candidates,
e have shown that POSSESSES preterable  Cofl, propose to use a Gaussian kernel model:

vergence properties. However, the practical performance of

MLMI may strongly depend on the choice of the basis

functions ¢(x,y). Here we show how model selection of

MLMI can be carried out. where {(us,v,)}5_, are Gaussian centers; we choose the
Parametric Cases:For parametric models, we provide arcenters randomly fromz; | z; = (@i, y:) }1 .

information criterion which can be used for model selection. By definition, the density ratlo% tends to take

Assume that’, is a linear space for simplicity. L&t be the large values ifpxy (z, y) is large andhx (x)py (y) is small;

|nclu5|onW|se minimal face OfS' WhICh containsay, and let conversely, the ratio tends to be small (| e., close to zero)

CJ_ be the linear ' space defined Iriy = {Ma - a) | A e if px (x)py (y) is large andpxy (x,y) is small. When a

R, « € H}. Let R be the orthogonal projection on. and non-negative function is approximated by a Gaussian mixture

llz—ue|® Hyfw\lz)
)

oo(x,y) = exp(—"5,2—) exp(— 5,7

|6t model in general, many kernels may be needed in the region
70C) () -— tr RGR(ROR where the output of the target function is large; on the other
(gA) 1( 9) =il (RQR))). N hand, only a small number of kernels would be enough in the

G ==Y Valogg(e:,y:)Va logg(xi, yi), region where the output of the target function is close to zero.

Q. =-1 LS VaValogg(zi, vi). On the basis of this idea, we propose a heuristic to allocate

many kernels in regions whegecy (x, y) is large, which can
be achieved by setting the Gaussian centers(af, y;)}7 ;.

The above theorem shows thal®) is an asymptotic Alternatively, we might locate Gaussian kernels on

o \m : T . :
unbiased estimator oE[(3)] up to O(n-1). On the other {(z:,y5) m:l,_whlch, hovx_/ever, requires; basis f_unctlons

) L . =0 . and therefore is computationally prohibitive wheris large.
hand, the naive empirical estimatdig) is asymptotlcally

unbiased only up tcO(n*%): E[T( ) = E[I(G)] + O(n-Y). Our preliminary experiments showed that using kernels

= did not improve the performance, but significantly increased
(1c) o Sl ) .
;heuf\; ive Ovr\]’gum be a more accurate estimator ffj) than the computation time. For this reason, in the experiments to

follow, we decided to use the above heuristic with the number

For model selection, we prepare a set of model Cand'dabefsoass functions fixed td = min(200,n) and to choose the
(the basis functiong(x, y) in the current setting) and ChooseGaussmn widthr by cross validation.

the one that has the largest valuel&© as the ‘best’ model.
Non-Parametric Cases:For non-parametric models, we
cannot unfortunately utilize the theoretical results given in the
previous section since the coefficient of the convergence ratdn this section, we discuss the characteristics of existing and
is not explicitly given. Here, we propose to use numericiie proposed approaches.
estimation via cross validation for model selection. Legendre-Fenchel Duality of KL-Divergence: MI (or,
First, the sample§z;|z; = (x;,y;)}7, are divided into more generally, KL-divergence for arbitrary two probability
K disjoint subsetd Z; } X, of (approximately) the same size.densities) can be characterized bggendre-Fenchel duality
Then a density ratio estimatdjz, (z,y) is obtained using Of the convex function*log’ [7]. More precisely,I(X,Y)
{Z;},2, (i.e., without Z;) and the score for the hold-outcan be characterized as the solution of the following concave

Then we have the following theorem:
Theorem 6:E[11)(g)] = E[I(g)] + O(n"?).

V. RELATION TO EXISTING METHODS

samplesz, is computed as maximization problem [5]:
K-CV
I = 2 Yt ez, 1080z, (@), I(X,Y) = supgso[[ (—px (@)py (y)9(z, y)
where|Z;| denotes the number of sample pairs in theZgt +pxy(z,y)logg(x,y))dedy + 1],
Repeat this procedure fér= 1, ..., K and output its average

A where the supremum is taken over all non-negative measurable
JECV) — L Zk v KCV). functions. In [5], an empirical version of this optimization



problem is solved by restricting the search space within Ml-entropy identity as
(Gaussian) reproducing kernel Hilbert space with a regularizer.

Our MLMI method is closely related to the method given I(X,Y) =H(X)+ H(Y) - H(X,Y),
by [5]: Indeed, if the linear model assumption and the nor- H(X):=— [px(z)logpx (x)d.
malizat_ion constraint are imposed, and if the expectation_isIn [4], an entropy estimator that utilizes the KNN distance
approximated by the sample average, the above formulatlﬁn

) as been developed. Let us define the norm ef (x, y) by
i reduced to MLIL However, our approach would b MO, .= max{|z]. |y|}, where|| - || denotes the Euclidean
9 g respects. norm. Let Ny (i) be the set of KNN samples dfc;, y;) with

e Our ML formulation is equipped with built-in regularizationreSpeCt to the norr - ., and let

effects due to non-negativity and normalization constraints. ex (i) = max{||lx; — zy|| | (x5, ysr) € Ni(i)},
This allows us to avoid introducing an additional regularization nx (i) = |{zo | |z — zo || < ex ()},
parameter and contributes to reducing the computational cost. N N. G

e A non-parametric convergence rate was investigated for EY(Z.) = max{lly; —yu| | ("Bi"yf') € Ni(@)},
general KL divergence estimation in [5]. On the other hand, ny (i) = {zi | lyi —yir|| < ex (i)}

we elucidated the non-para_metrlc_cqnvergence rate speuﬂcallp(en the KNN-based MI estimator is given by

in the context of MI estimation; this includes proper treatment
of the ‘decoupling’ effect inpx (z)py (y). Furthermore, the I =4 (k) +v(n) — ¢+ — = >0 [b(nx (i) + Y(ny (i))],
strong positivity of the true density ratio is not required in

our proof and our result also covers a situation where the t{g€re is thedigammatunction. _ ,
density ratio is not contained in the model. An advantage of the above KNN-based method is that it

« We derived an asymptotic distribution of the estimator in tH&°€S Not simply replace entropies with their estimates, but it

parametric setup and elucidated the parametric convergefit&€Signed to cancel errors of individual entropy estimates.
rate of Ml estimation and the asymptotic learning curve. 2 Practical drawback of the KNN-based approach is that the

« We gave a practical heuristic for designing basis functiofiStimation accuracy depends on the valug ahd there seems
for approximating the density ratio. This allows us to redudd® Systematic strategy to choose the valué aippropriately.
the computational cost significantly. Recently a KL divergence estimator utilizing KNN density

Kernel Density Estimation (KDE) and Adaptive His- estimgtion is proposed in [6] and its cpnsistgncy hgs been
togram Methods: KDE is a non-parametric technique to estilnvestigated. A notable property of this estimator is that

mate a density functiop(z) from its i.i.d. samplegx;}7,. consistency of density estimation is not necessary to establish
For the Gaussian kernel, KDE is expressed as =t consistency of the KL divergence estimator. However, the rate

, of convergence seems to be still an open research issue.
plx) = m S exp(— 1zt Edgeworth Expansion (EDGE) Based Methodin [3], an

The performance of KDE depends on the choice of tH1'OPY estimator based on tBelgeworth expansiowas pro-

kernel widtho, which can be optimized by cross validation.posed' The basic idea is to approximate the entropy by that of

KDE-based estimation of MI can be performed using defpe normal distribution and additional higher-order correction

sity estimate$ixy (z, y), px (z), and jy (y) obtained from terms. More specifically, for _d-di_mensional distribution, an
{(a, y:) Y7y, {27, and {y;}™,, respectively as estimatorH of the entropyH is given by
- ~ w2 K2 K2
I'= %2?:1 log % H = H*_Z?:I o _Z;l,jzl,iaéj%_Z?,j,kzl,i<j<k%’

However, density estimation itself is known to be a hardhere H* is the entropy of the normal distribution with
problem, and division by estimated densities may increasevariance matrix equal to the target distribution and ; is
estimation errors. For this reason, the KDE-based approable standardized third cumulant of the target distribution. An
may not be reliable in practice. estimate of M| can be obtained via the Ml-entropy identity. In

Histogram-based estimators with data-dependent partitipractice, all the cumulants should be estimated from samples.
would be more adaptive density estimation schemes. In thef the underlying distribution is close to normal, the above
context of KL divergence estimation, consistency propertiepproximation is accurate and the EDGE-based method works
of histogram-based methods, which could be regarded \asll. However, if the distributions are far from the normal dis-
implicitly estimating the ratio%, have been inves- tribution, the approximation error becomes large and therefore
tigated in [10], [8]. MI estimation folfowing this line hasthe EDGE-based method is no longer reliable.
been explored in [1]. However, such histogram-based meth-
ods may seriously suffer from theurse of dimensionality
and are therefore not reliable in high-dimensional problems.In this section, we experimentally investigate the perfor-
Furthermore, the convergence rate seems to be unexplored yetnce of the proposed and existing Ml estimators. The task

K-Nearest Neighbor (KNN) Based Method:If estimates is to estimate Ml betweelX € R andY € R. We used the
of the entropiesd are obtained, Ml can be estimated via théollowing four datasets (see Figure 1):

VI. NUMERICAL EXPERIMENTS
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the dataset (d). KDE worked moderately well on the datasets
(a)—(c), while it performed poorly on the dataset (d). This
instability would be ascribed to division by estimated densities,
+ which tends to magnify estimation errors. KNN seems to work
well on all four datasets if the value &fis chosen optimally.

As already mentioned, however, there is no systematic model
selection strategy for KNN, so that KNN would be unreliable
in practice. EDGE worked well on the datasets (a), (b), and
(d), which possess high normality. However, for the dataset
(c), where normality of the target distributions is low, the
EDGE method performed poorly. In contrast, MLMI with
cross validation performed reasonably well for all four datasets
in a stable manner.

255 ¢ o5 ‘5 01 0z 03 04 08 These experimental results have shown that MLMI nicely
compensates for the weaknesses of the existing methods, and
we therefore conclude that MLMI should be regarded as a
useful alternative to the existing methods of Ml estimation.

(b) Non-linear dependence with cor-
relation

(c) Non-linear dependence without
correlation

(d) Independence

Fig. 1. Datasets used in experiments.

— MLMI
— KDE

KNN (1)

KNN (15)
KNN (5)

— EDGE

-

0

VII. CONCLUSIONS

We have proposed a new method of estimating mutual
information. The proposed method, called MLMI, has several
useful properties, e.g., it is a single-shot procedure, density
estimation is not involved, it is equipped with a cross-
validation procedure for model selection, and the unique global
solution can be computed efficiently. We have provided a
rigorous convergence analysis of the proposed algorithm as
well as numerical experiments illustrating the usefulness of
the proposed method.

A MATLAB ® implementation of MLMI is avail-
able from ‘http://sugiyama-www.cs.titech.ac.jp/"sugi/software/
MLMl/index.html. TS acknowledges support by MEXT

GCOE Program (G05). MS acknowledges supports by MEXT
e (2068000), JFE 21st Century Foundation, AOARD, and SCAT.
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be comparable to the best method by thestat the significance level %. [2]
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