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Abstract

Appropriately designing sampling policies is
highly important for obtaining better control poli-
cies in reinforcement learning. In this paper, we
first show that theleast-squares policy iteration
(LSPI) framework allows us to employ statistical
active learning methods for linear regression. Then
we propose a design method of good sampling poli-
cies for efficient exploration, which is particularly
useful when the sampling cost of immediate re-
wards is high. We demonstrate the usefulness of
the proposed method, namedactive policy iteration
(API), through simulations with a batting robot.

1 Introduction
In practical reinforcement learning (RL), it is often expen-
sive to obtain immediate reward samples while state-action
trajectory samples are readily available. For example, let us
consider a robot-arm control task of hitting a ball by a bat
and drive the ball as far as possible (see Figure 5). Let us use
the carry distance of the ball as the immediate reward. In this
setting, obtaining state-action trajectory samples of the robot
arm is easy and relatively cheap since we just need to con-
trol the robot arm and record its state and action trajectories
over time. On the other hand, explicitly computing the carry
of the ball from the state-action samples is hard due to fric-
tion and elasticity of links, air resistance, and unpredictable
disturbances such a current of air. Thus, in practice, we may
have to put the robot in a large place, let the robot really hit
the ball, and measure the carry of the ball manually. Thus
gathering immediate reward samples is much more expensive
than the state-action trajectory samples.

When the sampling cost of immediate rewards is high,
it is important to design the sampling policy appropriately
so that a good control policy can be obtained from a small
number of samples. In this paper, we first show that the
least-squares policy iteration (LSPI) framework[Lagoudakis
and Parr, 2003] allows us to use statistical active learn-
ing (AL) methods for linear regression[Cohn et al., 1996;
Sugiyama, 2006].

In the LSPI framework, the state-action value function is
approximated by fitting a linear model with least-squares es-
timation. A traditional AL scheme[Cohnet al., 1996] is de-

signed to find the input distribution1 that minimizes the vari-
ance of the least-squares estimator. Since the expected ap-
proximation error of the value function is expressed as the
sum of the (squared) bias and variance, the bias needs to be
zero for justifying the use of the traditional AL scheme. To
this end, we need to assume that the linear model used for
approximating the value function iscorrectly specified, i.e., if
the parameters are learned optimally, the true value function
can be perfectly approximated.

However, such a correct model assumption may not be ful-
filled in practical RL tasks since the profile of value func-
tions may be highly complicated. To cope with this problem,
an importance-sampling based AL method has been devel-
oped recently[Sugiyama, 2006]. This AL algorithm is valid
even when the model is misspecified, i.e., even when the true
value function is not included in the model—which would
be a usual case in practice—a good input distribution can be
designed.

In this paper, we develop a new exploration scheme for
LSPI based on the importance-sampling based AL idea. The
proposed method combined with LSPI is calledactive policy
iteration (API). Through batting-robot simulations, the use-
fulness of API is demonstrated.

2 Formulation of RL Problem
In this section, we review how Markov decision problems
(MDPs) can be solved using policy iteration based on value
functions.

MDPs: Let us consider an MDP specified by
(S,A, PT, R, γ), where S is a set of states,A is a set
of actions,PT(s′|s, a) (∈ [0, 1]) is the conditional probabil-
ity density of the agent’s transition from states to next state
s′ when actiona is taken,R(s, a, s′) (∈ R) is a reward for
transition froms to s′ by taking actiona, andγ (∈ (0, 1]) is
the discount factor for future rewards. Letπ(a|s) (∈ [0, 1])
be a stochastic policy which is the conditional probability
density of taking actiona given states. The state-action
value functionQπ(s, a) (∈ R) for policy π is the expected

1When approximating the state-action value function, the input
distribution corresponds to the stationary distribution of states and
actions.



discounted sum of rewards the agent will receive when taking
actiona in states and following policyπ thereafter, i.e.,

Qπ(s, a)≡ E
π,PT

[ ∞∑
n=1

γn−1R(sn, an, sn+1)
∣∣∣∣s1 = s, a1 = a

]
,

whereEπ,PT denotes the expectation over{sn, an}∞n=1 fol-
lowing π(an|sn) andPT(sn+1|sn, an).

The goal of RL is to obtain the policy which maximizes the
discounted sum of future rewards; the optimal policy can be
expressed asπ∗(a|s) ≡ δ(a − argmaxa′ Q∗(s, a′)), where
δ(·) is Dirac’s delta function andQ∗(s, a) ≡ maxπ Q

π(s, a)
is theoptimalstate-action value function.
Qπ(s, a) can be expressed as the following recurrent form

called theBellman equation: ∀s ∈ S,∀a ∈ A,

Qπ(s, a) = R(s, a) + γ E
PT(s′|s,a)

E
π(a′|s′)

[Qπ(s′, a′)] ,

whereR(s, a) ≡ EPT(s′|s,a) [R(s, a, s′)] is the expected re-
ward when the agent takes actiona in states, EPT(s′|s,a) de-
notes the conditional expectation ofs′ overPT(s′|s, a) given
s anda, andEπ(a′|s) denotes the conditional expectation of
a′ overπ(a′|s′) givens′.

Policy Iteration: Computing the value functionQπ(s, a)
is calledpolicy evaluation. UsingQπ(s, a), we may find a
better policyπ′(a|s) by ‘softmax’ update:

π′(a|s) ∝ exp(Qπ(s, a)/τ),

whereτ (> 0) determines the randomness of the new policy
π′; or by ϵ-greedy update:

π′(a|s) = ϵpu(a) + (1 − ϵ)I(a = arg max
a′

Qπ(s, a′)),

whereI(c) is the indicator function (1 if c is true and0 other-
wise),pu is the uniform probability density over actions, and
ϵ (∈ (0, 1]) determines how deterministic the new policyπ′

is. Updatingπ based onQπ(s, a) is calledpolicy improve-
ment. Repeating policy evaluation and policy improvement,
we may find the optimal policyπ∗(a|s). This entire process
is calledpolicy iteration[Sutton and Barto, 1998].

Least-squares Framework for Value Function Approxi-
mation: Although policy iteration is useful, it is often com-
putationally intractable since the number of state-action pairs
|S| × |A| is very large; |S| or |A| becomes infinite when
the state space or action space is continuous. To overcome
this problem, we approximate the state-action value function
Qπ(s, a) using the following linear model:

Q̂π(s, a;θ) ≡
B∑

b=1

θbϕb(s, a) = θ⊤ϕ(s, a),

whereϕ(s, a) = (ϕ1(s, a), ϕ2(s, a), . . . , ϕB(s, a))⊤ are
the fixed linearly independent basis functions,⊤ denotes the
transpose,B is the number of basis functions, andθ =
(θ1, θ2, . . . , θB)⊤ are model parameters. Note thatB is usu-
ally chosen to be much smaller than|S| × |A|.

ForN -step transitions, we ideally want to learn the param-
etersθ so that the squared Bellman residualG(θ) is mini-
mized[Lagoudakis and Parr, 2003]:

θ∗ ≡ arg min
θ

G(θ),

G(θ) ≡ E
Pπ

[
1
N

N∑
n=1

(θ⊤ψ(sn, an) −R(sn, an))2
]
,

ψ(s, a) ≡ ϕ(s, a) − γ E
PT(s′|s,a)

E
π(a′|s′)

[ϕ(s′, a′)] .

EPπ denotes the expectation over the joint probability
density function Pπ(s1, a1, s2, a2, . . . , sN , aN , sN+1) ≡
PI(s1)

∏N
n=1 PT(sn+1|sn, an)π(an|sn), where PI(s) de-

notes the initial-state probability density function.

Value Function Learning from Samples: Suppose that
roll-out data samples consisting ofM episodes withN steps
are available as training data. The agent initially starts from a
randomly selected states1 following the initial-state probabil-
ity densityPI(s) and chooses an action based on asampling
policy π̃(an|sn). Then the agent makes a transition following
the transition probabilityPT(sn+1|sn, an) and receives a re-
wardrn(= R(sn, an, sn+1)). This is repeated forN steps—
thus the training datasetDπ̃ is expressed as

Dπ̃ ≡ {dπ̃
m}M

m=1,

where each episodic sampledπ̃
m consists of a set of 4-tuple

elements as

dπ̃
m ≡ {(sπ̃

m,n, a
π̃
m,n, r

π̃
m,n, s

π̃
m,n+1)}N

n=1.

We use two types of policies which have different pur-
poses: thesampling policyπ̃(a|s) for collecting data sam-
ples and theevaluation policyπ(a|s) for computing the value
functionQ̂π. Minimizing theimportance-weightedempirical
generalization error̂G(θ), we can obtain aconsistentestima-
tor of θ∗ as follows:

θ̂ ≡ argmin
θ

Ĝ(θ),

Ĝ(θ)≡ 1
MN

M∑
m=1

N∑
n=1

(θ⊤ψ̂(sπ̃
m,n, a

π̃
m,n;Dπ̃) − rπ̃

m,n)2wπ̃
m,N ,

ψ̂(s, a;D) ≡ ϕ(s, a) − γ

|D(s,a)|
∑

s′∈D(s,a)

E
π(a′|s′)

[ϕ(s′, a′)] ,

whereD(s,a) is a set of 4-tuple elements containing states
and actiona in the training dataD,

∑
s′∈D(s,a)

denotes the

summation overs′ in the setD(s,a), and

wπ̃
m,N ≡

∏N
n′=1 π(aπ̃

m,n′ |sπ̃
m,n′)∏N

n′=1 π̃(aπ̃
m,n′ |sπ̃

m,n′)

is called theimportance weight[Sutton and Barto, 1998]. It
is important to note that consistency ofθ̂ can be maintained
even if wπ̃

m,N is replaced by theper-decision importance

weightwπ̃
m,n [Precupet al., 2000], which is more efficient



to calculate.θ̂ can be analytically expressed with the matri-
cesL̂(∈ RB×MN ), X̂(∈ RMN×B),W (∈ RMN×MN ), and
the vectorrπ̃(∈ RMN×1) as

θ̂ = L̂rπ̃, L̂ ≡ (X̂
⊤
WX̂)−1X̂

⊤
W ,

rπ̃
N(m−1)+n ≡ rπ̃

m,n, X̂N(m−1)+n,b ≡ ψ̂b(sπ̃
m,n, a

π̃
m,n;Dπ̃),

WN(m−1)+n,N(m′−1)+n′ ≡
{
wπ̃

m,n if (m,n) = (m′, n′),
0 if (m,n) ̸= (m′, n′).

3 Efficient Exploration with Active Learning
The accuracy of the estimated value function depends on
the training samples collected following the sampling policy
π̃(a|s). In this section, we propose a new method for de-
signing a good sampling policy based on a statistical active
learning method[Sugiyama, 2006].

Preliminaries: Here we consider the case where collecting
state-action trajectory samples is easy and cheap, but gather-
ing immediate reward samples is hard and expensive (exam-
ples include the batting robot explained in the introduction).
In such a case, immediate reward samples cannot be used for
designing the sampling policy, but only state-action trajectory
samples are available.

The goal of active learning in the current setup is to deter-
mine the sampling policy so that the expected generalization
error is minimized. The generalization error is not accessible
in practice since the expected reward functionR(s, a) and the
transition probabilityPT(s′|s, a) are unknown, so the gener-
alization error needs to be estimated from samples. A dif-
ficulty of estimating the generalization error in the context
of active learning is that its estimation needs to be carried
out only from state-action trajectory sampleswithout using
immediate reward samples; thus standard techniques such as
cross-validation[Hachiyaet al., 2008] cannot be employed
since it requires both state-action and immediate reward sam-
ples. Below, we explain how the generalization error could
be estimated under the active learning setup.

Decomposition of Generalization Error: The information
we are allowed to use for estimating the generalization error
is a set of roll-out sampleswithout immediate rewards:

Dπ̃ ≡ {dπ̃

m}M
m=1, d

π̃

m ≡ {(sπ̃
m,n, a

π̃
m,n, s

π̃
m,n+1)}N

n=1.

Let us define the deviation of immediate rewards from the
mean as

ϵπ̃m,n ≡ rπ̃
m,n −R(sπ̃

m,n, a
π̃
m,n).

Note thatϵπ̃m,n could be regarded as additive noise in least-
squares function fitting. By definition,ϵπ̃m,n has mean zero
and the variance may depend onsπ̃

m,n and aπ̃
m,n, i.e., het-

eroscedasticnoise. However, since estimating the variance of
ϵπ̃m,n without using reward samples is not possible, we assume
that the variance does not depend onsπ̃

m,n andaπ̃
m,n—let us

denote the common variance byσ2.

Now we would like to estimate the generalization error

G(θ̂) ≡ E
Pπ

[
1
N

N∑
n=1

(θ̂
⊤
ψ̂(sn, an;Dπ̃

) −R(sn, an))2
]

fromDπ̃
. Its expectation can be decomposed as

E
ϵπ̃
G(θ̂) = B + V + C,

where Eϵπ̃ denotes the expectation over ‘noise’
{ϵπ̃m,n}

M,N
m=1,n=1. B, V , and C are thebias term, vari-

ance term, andmodel errordefined by

B ≡ E
Pπ

[
1
N

N∑
n=1

{
(E
ϵπ̃
θ̂ − θ∗)⊤ψ̂(sn, an;Dπ̃

)
}2

]
,

V ≡ E
Pπ

E
ϵπ̃

[
1
N

N∑
n=1

{
(θ̂ − E

ϵπ̃
θ̂)⊤ψ̂(sn, an;Dπ̃

)
}2

]
,

C ≡ E
Pπ

[
1
N

N∑
n=1

(θ∗⊤ψ̂(sn, an;Dπ̃
) −R(sn, an))2

]
,

where the matrixU(∈ RB×B) is defined as

U ij ≡ E
Pπ

[
1
N

N∑
n=1

ψ̂i(sn, an;Dπ̃
)ψ̂j(sn, an;Dπ̃

)

]
.

Note that the variance termV can be expressed as

V = σ2tr(UL̂L̂
⊤

).

Estimation of Generalization Error for AL: The model
errorC is constant and can be safely ignored in generalization
error estimation. So we only need to estimate the bias termB
and the variance termV . However,B includes the unknown
optimal parameterθ∗ and therefore it may not be possible to
estimateB without using reward samples; similarly, it may
not be possible to estimate the ‘noise’ varianceσ2 included
in the variance termV without using reward samples.

It is known that the bias termB is small enough to be ne-
glected when the model isapproximately correct[Sugiyama,
2006], i.e., θ∗⊤ψ̂(s, a) approximately agrees with the true
functionR(s, a). Then we have

E
ϵπ̃
G(θ̂) − C −B ∝ tr(UL̂L̂

⊤
),

which does not require immediate reward samples for its
computation. SinceEPπ included inU is not accessible, we
replaceU by its consistent estimator̂U :

Û≡ 1
MN

M∑
m=1

N∑
n=1

ψ̂(sπ̃
m,n, a

π̃
m,n;Dπ̃

)ψ̂(sπ̃
m,n, a

π̃
m,n;Dπ̃

)⊤wπ̃
m,n.

Consequently, we have the following generalization error es-
timator:

J ≡ tr(ÛL̂L̂
⊤

),

which can be computed only fromDπ̃
and thus can be em-

ployed in the AL scenarios. If it is possible to gatherDπ̃

multiple times, the aboveJ may be computed multiple times
and its averageJ may be used as a generalization error esti-
mator.



Designing Sampling Policies: Based on the generalization
error estimator derived above, we give an algorithm for de-
signing a good sampling policy, which fully makes use of the
roll-out samples without immediate rewards.

1. PrepareK candidates of sampling policy:{π̃k}K
k=1.

2. Collect episodic samples without immediate rewards for

each sampling-policy candidate:{Dπ̃k}K
k=1.

3. EstimateU using all samples{Dπ̃k}K
k=1 :

Ũ =
1

KMN

K∑
k=1

M∑
m=1

N∑
n=1

ψ̂(sπ̃k
m,n, a

π̃k
m,n; {Dπ̃k}K

k=1)

× ψ̂(sπ̃k
m,n, a

π̃k
m,n; {Dπ̃k}K

k=1)
⊤wπ̃k

m,n.

4. Estimate the generalization error for eachk:

Jk ≡ tr(ŨL̂
π̃k
L̂

π̃k⊤),

L̂
π̃k ≡ (X̂

π̃k⊤W π̃kX̂
π̃k

)−1X̂
π̃k⊤W π̃k ,

X̂
π̃k

N(m−1)+n,b ≡ ψ̂b(sπ̃k
m,n, a

π̃k
m,n; {Dπ̃k}K

k=1),

W π̃k

N(m−1)+n,N(m′−1)+n′≡
{
wπ̃k

m,n if (m,n)=(m′, n′),
0 if (m,n) ̸=(m′, n′).

5. (If possible) repeat 2. to 4. several times and calculate
the average for eachk: {Jk}K

k=1.

6. Determine the sampling policy:̃πAL ≡ argmink Jk.

7. Collect training samples with immediate rewards:Dπ̃AL .

8. Learn the value function by LSPI usingDπ̃AL .

Numerical Examples: Here we illustrate how the pro-
posed method behaves in the 10-state chain-walk environ-
ment shown in Figure 1. The MDP consists of 10 statesS =
{s(i)}10

i=1 = {1, 2, . . . , 10} and 2 actionsA = {a(i)}2
i=1 =

{‘L’ , ‘R’ }. The immediate reward functionR(s, a, s′) is de-
fined byR(s, a, s′) ≡ 0.3×(7−|s′−7|). The transition prob-
ability PT(s′|s, a) is indicated by the numbers attached to the
arrows in Figure 1; for example,PT(s(2)|s(1), ‘R’ ) = 0.9 and
PT(s(1)|s(1), ‘R’ ) = 0.1. Thus the agent can successfully
move to the intended direction with probability0.9 (indicated
by solid arrows in the figure) and the action fails with prob-
ability 0.1 (indicated by dashed arrows in the figure). The
discount factorγ is set to0.9. We use the 12 basis functions
ϕ(s, a) defined as

ϕ2(i−1)+j(s, a) =


I(a = a(j))exp(−(s− ci)2/(2σ2))

for 1 ≤ i ≤ 5, 1 ≤ j ≤ 2,
I(a = a(j)) for i = 6, 1 ≤ j ≤ 2,

wherec1 = 1, c2 = 3, c3 = 5, c4 = 7, c5 = 9, andσ = 3.0.
For illustration purposes, we evaluate the selection of sam-

pling policies only in one-step policy evaluation; evaluation
over iteration will be addressed in the next section. Sampling
policies and evaluation policies are constructed as follows.

102 31 9· · ·

0.9

0.1 0.1

0.9

8

Figure 1: 10-state chain walk. Filled/unfilled arrows indicate
the transitions when taking action ‘R’/‘L’ and solid/dashed
lines indicate the success/failed transitions.
Table 1: The parameters of sampling policy candidates
{π̃k}10

k=1 for the 10-state chain-walk simulation.

k 1 2 3 4 5 6 7 8 9 10
ϵk 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
αk R R R R R L L L L L
µk 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5

First, we prepare a deterministic ‘base’ policy, e.g., ‘LLL-
LLRRRRR’, where thei-th letter denotes the action taken at
s(i). Let πϵ be the ‘ϵ-greedy’ version of the base policy, i.e.,
the intended action can be successfully chosen with proba-
bility 1 − ϵ/2 and the other action is chosen with probability
ϵ/2. We useπ0.1 as the evaluation policyπ. 10 candidates of
the sampling-policy{π̃k}10

k=1 are constructed as follows: with
probability (1 − µk), the agent chooses an action following
πϵk

; with probabilityµk, the agent takes actionαk. The set-
tings of the sampling-policy parameters{ϵk, αk, µk}10

k=1 are
summarized in Table 1.

For each sampling policy, we calculate theJ-value 5 times
and take the average. The numbers of episodesM and steps
N are set to10 and5, respectively; the initial-state probability
PI(s) is set to be uniform. This experiment is repeated100
times and we evaluate the mean and standard deviation of the
true generalization error and its estimate.

The results are depicted in Figure 2 (the true generalization
error) and Figure 3 (its estimate) as functions of the indexk of
the sampling policies. We are interested in choosingk such
that the true generalization error is minimized. The results
show that the proposed generalization error estimator overall
captures the trend of the true generalization error well. Thus
the proposed generalization error estimator would be useful
for choosing a good sampling policy.

4 Active Learning in Policy Iteration
In Section 3, we have shown that the unknown generalization
error could be accurately estimated without using immediate
reward samples in one-step policy evaluation. In this section,
we extend the idea to the full policy-iteration setup.

Sample-reuse Policy Iteration (SRPI) with Active Learn-
ing: SRPI is a policy-iteration framework which allows us
to reuse previously-collected samples efficiently[Hachiyaet
al., 2008]. Let us denote the evaluation policy at thel-th iter-
ation byπl and the maximum number of iterations byL.

In ordinary policy-iteration methods, new data samples
Dπl are collected following the new policyπl during the pol-
icy evaluation step. Thus, previously-collected data samples
{Dπ1 ,Dπ2 , ...,Dπl−1} are not used:

π1
E:{Dπ1}→ Q̂π1 I→ π2

E:{Dπ2}→ Q̂π2 I→ π3
E:{Dπ3}→ · · · I→ πL+1,
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Figure 2: The mean and stan-
dard deviation of the true
generalization error over 100
trials.
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Figure 3: The mean and stan-
dard deviation of the esti-
mated generalization errorJ
over 100 trials.

where ‘E : {D}’ indicates policy evaluation using the data
sampleD and ‘I’ denotes policy improvement. On the
other hand, in SRPI, all previously-collected data samples are
reused for performing policy evaluation as:

π1
E:{Dπ1}→ Q̂π1 I→ π2

E:{Dπ1 ,Dπ2}→ Q̂π2

I→ π3
E:{Dπ1 ,Dπ2 ,Dπ3}→ · · · I→ πL+1,

where appropriate importance weights are applied to each set
of previously-collected samples in the policy evaluation step.

Here, we apply the active learning technique proposed in
the previous section to the SRPI framework. More specifi-
cally, we optimize the sampling policy at each iteration. Then
the iteration process becomes

π1
E:{Dπ̃1}→ Q̂π1 I→ π2

E:{Dπ̃1 ,Dπ̃2}→ Q̂π2

I→ π3
E:{Dπ̃1 ,Dπ̃2 ,Dπ̃3}→ · · · I→ πL+1.

Thus, we do not gather samples following the current evalua-
tion policyπl, but following the sampling policỹπl optimized
based on the active learning method given in the previous sec-
tion. We call this frameworkactive policy iteration(API).

Numerical Examples: Here we illustrate how the API
method behaves using the same 10-state chain-walk problem
(see Figure 1). The initial evaluation policyπ1 is set to be
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Figure 4: The mean performance over150 trials in the 10-
state chain-walk experiment. The dotted lines denote the per-
formance when fixed sampling policies are used and the solid
line denotes the performance when the sampling policies are
optimized by the proposed AL method. The error bars are
omitted for clear visibility; but they were all reasonably small.

uniform and policies are updated in thel-th iteration using the
ϵ-greedy rule withϵ = 2−l. In the sampling-policy selection
step of thel-th iteration, we prepare the two sampling-policy
candidates{π̃(l)

k }2
k=1 with (ϵ1, α1, µ1) = (0.4, ‘R’ , 0.8),

(ϵ2, α2, µ2) = (0.4, ‘L’ , 0.8). The numberM of episodes and
the numberN of steps are both set to5, andJ-value calcula-
tion is repeated 5 times for active learning. The performance
of the learned policyπL+1 is measured by the discounted
sum of immediate rewards for test samples{rπL+1

m,n }50
m,n=1 (50

episodes with50 steps collected followingπL+1):

Performance=
1
50

50∑
m=1

50∑
n=1

γn−1rπL+1
m,n ,

where the discount factorγ is set to0.9.
We compare the performance of fixed sampling policies

{π̃k}2
k=1 and active learning of choosing the best sampling

policy from {π̃k}2
k=1. The results are depicted in Figure 4,

showing that the proposed method works very well. Actu-
ally, the proposed method outperforms the best fixed strategy
(k = 2); this can happen since the optimal sampling policy is
not alwaysk = 2 and it varies in each trial depending on ran-
domness of the training dataset. Thus, the results show that
the proposed active learning scheme canadaptivelychoose a
good policy based on the training dataset at hand.

5 Experiments
Finally, we evaluate our proposed method using a ball-batting
robot illustrated in Figure 5, which consists of two links and
two joints. The goal of the ball-batting task is to control the
robot arm so that it drives the ball as far as possible. The state
spaceS is continuous and consists of the anglesφ1[rad] (∈
[0, π/4]) andφ2[rad] (∈ [−π/4, π/4]) and the angular ve-
locitiesφ̇1[rad/s] andφ̇2[rad/s]. Thus a states (∈ S) is de-
scribed by a four-dimensional vector:s = (φ1, φ̇1, φ2, φ̇2)⊤.
The action spaceA is discrete and contains two elements:
A = {a(i)}2

i=1 = {(50,−35)⊤, (−50, 10)⊤}, where thei-th
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Figure 5: A ball-batting robot.
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Figure 6: The mean performance over100 trials in the ball-
batting experiment. The dotted lines denote the performance
when fixed sampling policies are used and the solid line de-
notes the performance when the sampling policies are opti-
mized by the proposed AL method. The error bars are omit-
ted for clear visibility.

element(i = 1, 2) of each vector corresponds to the torque
[N · m] added to jointi.

We use the Open Dynamics Engine (‘http://ode.org/’) for
physical calculations including the update of the angles and
angular velocities, and collision detection between the robot
arm, ball, and pin. The simulation time-step is set to7.5[ms]
and the next state is observed after10 time-steps; the action
chosen in the current state is kept taken for10 time steps.
To make the experiments realistic, we add noise to actions:
if action (f1, f2)⊤ is taken, the actual torques applied to the
joints aref1 + δ1 andf2 + δ2, whereδi(i = 1, 2) follows the
standard normal distribution independently.

The immediate reward is defined as the horizontal carry of
the ball; this reward is given only when the robot arm collides
with the ball for the first time at the states′ after taking action
a at the current states.

We use the110 basis functions defined as

ϕ2(i−1)+j =


I(a = a(j))exp(−∥ s− cj ∥2/(2σ2))

for 1 ≤ i ≤ 54, 1 ≤ j ≤ 2,
I(a = a(j)) for i = 55, 1 ≤ j ≤ 2,

where σ is set to 3π/2 and cj (j = 1, 2, . . . , 54) are
located on the regular grid{−π/4, 0} × {−π, 0, π} ×
{−π/4, 0, π/4} × {−π, 0, π}. We setM = 20 andN = 12
and the initial state is always set tos = (π/4, 0, 0, 0)⊤. The
initial evaluation policy is set to theϵ-greedy version of the

base policy withϵ = 0.5; the base policy is defined by the
greedy update using the ‘constant’̂Q function with θ̂i =
0.5 (1≤ i≤B). Policies are updated in thel-th iteration using
the ϵ-greedy rule withϵ = 2−(1+l). The set of sampling-
policy candidates{π(l)

k }3
k=1 in the l-th iteration is defined

as (ϵ1, α1, µ1) = (0.1, (50,−35)⊤, 0.7), (ϵ2, α2, µ2) =
(0.4, ∗, 0.0), and (ϵ3, α3, µ3) = (0.1, (−50, 10)⊤, 0.25),
where the symbol ‘∗’ means “don’t care” since the value
of µ is zero. The discount factorγ is set to 0.95 and
the performance of the learned policyπL+1 is measured by
the discounted sum of immediate rewards for test samples
{rπL+1

m,n }20,12
m=1,n=1 (20 episodes with12 steps collected follow-

ing πL+1):

Performance=
M∑

m=1

N∑
n=1

rπL+1
m,n .

The results are depicted in Figure 6, showing that the pro-
posed method works very well and it is comparable to or
slightly better than the best fixed strategy (k = 2). Based on
the experimental evaluation, we conclude that the proposed
sampling-policy design method, API, is useful in improving
the RL performance.

6 Conclusions
When we cannot collect many training samples, it is impor-
tant to choose the most ‘informative’ samples for efficiently
learning the value function. In this paper, we proposed a
new data sampling strategy based on a statistical active learn-
ing method. The proposed procedure calledactive policy
iteration (API)—which effectively combines the framework
of sample-reuse policy iteration with active sampling-policy
selection—was shown to perform very well in simulations
with chain-walk and ball-batting robot control.
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