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Abstract

Appropriately designing sampling policies is
highly important for obtaining better control poli-
cies in reinforcement learning. In this paper, we
first show that theleast-squares policy iteration
(LSPI) framework allows us to employ statistical
active learning methods for linear regression. Then
we propose a design method of good sampling poli-
cies for efficient exploration, which is particularly
useful when the sampling cost of immediate re-
wards is high. We demonstrate the usefulness of
the proposed method, namactive policy iteration
(API), through simulations with a batting robot.

Introduction

signed to find the input distributidrthat minimizes the vari-
ance of the least-squares estimator. Since the expected ap-
proximation error of the value function is expressed as the
sum of the (squared) bias and variance, the bias needs to be
zero for justifying the use of the traditional AL scheme. To
this end, we need to assume that the linear model used for
approximating the value function e®rrectly specifiedi.e., if

the parameters are learned optimally, the true value function
can be perfectly approximated.

However, such a correct model assumption may not be ful-
filled in practical RL tasks since the profile of value func-
tions may be highly complicated. To cope with this problem,
an importance-sampling based AL method has been devel-
oped recentlfSugiyama, 2006 This AL algorithm is valid
even when the model is misspecified, i.e., even when the true
value function is not included in the model—which would

In practical reinforcement learning (RL), it is often expen- be a usual case in practice—a good input distribution can be

sive to obtain immediate reward samples while state-actiof€Signed. .

trajectory samples are readily available. For example, let us N this paper, we develop a new exploration scheme for
consider a robot-arm control task of hitting a ball by a bat-SP! based on the importance-sampling based AL idea. The
and drive the ball as far as possible (see Figure 5). Let us ugg©oposed method combined with LSP! is caleive policy

the carry distance of the ball as the immediate reward. In thi¢€ration (AP1). Through batting-robot simulations, the use-
setting, obtaining state-action trajectory samples of the robdt!Iness of APl is demonstrated.

arm is easy and relatively cheap since we just need to con-

trol the robot arm and record its state and action trajectorie? Formulation of RL Problem

over time. On the other hand, explicitly computing the carry ) ) ) .

of the ball from the state-action samples is hard due to fricIn this section, we review how Markov decision problems
tion and elasticity of links, air resistance, and unpredictabldMDPs) can be solved using policy iteration based on value
disturbances such a current of air. Thus, in practice, we mafpnctions.

have to put the robot in a large place, let the robot really hit

the ball, and measure the carry of the ball manually. Th“?\/IDPs: Let us consider an MDP specified by

gathering immediate reward samples is much more expensiv(%- A, Pr.R,~), where S is a set of statesA is a set

than the state-action trajectory samples. of actions,Pr(s'|s,a) (€ [0,1]) is the conditional probabil-

_ When the sampling cost of immediate rewards is highj, gensity of the agent's transition from statéo next state
it is important to design the sampling policy appropriately .i'\vhen action: is taken,R(s, a, s') (€ R) is a reward for

so that a good control policy can be obtained from a Sma'fransition froms to s by taking actions, and-y (€ (0, 1]) is

number of samples. In this paper, we first show that thena giscount factor for future rewards Letals) (€ [0,1))
least-squares policy iteration (LSPI) framewbagoudakis  e" 5 stochastic policy which is the conditional probability

and Parr, 200Ballows us to use statistical active learn- densi ; ; ; ;

. ' : i ) ensity of taking actioru given states. The state-action

ing (AL) methods for linear regressidCohn et al, 1996; value functionQ™ (s, a) (€ R) for policy = is the expected

Sugiyama, 2006
In the LSPI framework, the state-action value function is  ‘when approximating the state-action value function, the input

approximated by fitting a linear model with least-squares esdistribution corresponds to the stationary distribution of states and

timation. A traditional AL schemgCohnet al., 1994 is de-  actions.



discounted sum of rewards the agent will receive when taking For N-step transitions, we ideally want to learn the param-

actiona in states and following policyr thereafter, i.e., eters@ so that the squared Bellman residdal@) is mini-
- mized[Lagoudakis and Parr, 20p3
Qﬂ—(sﬂa)z ]};43 Zvn71R<Sn;an;Sn+l) S1 = S,a1 _a‘|a 9* = argmin G(@),
TET =1 6
whereE, p, denotes the expectation ovgs,,, a,}52, fol- - 1 & T 9
lowing 7(a,|5,) AN Pr(sn11|5n, an ). GO=E |5 > (0T 9(sn,an) = R(sn,an))?| ,

1

The goal of RL is to obtain the policy which maximizesthe ~ ¥(s,a) = ¢(s,a) =y E E [¢(s',a)].
discounted sum of future rewards; the optimal policy can be Pr(s'|s,a) m(a’|s")
expressed as*(als) = 0(a — argmax, Q*(s,a’)), where  Ep  denotes the expectation over the joint probability
§(-) is Dirac’s delta function an@* (s, a) = max. Q" (s,a)  density function Py (s1,a1, 82, a2, - ..,SN,aN,SN+1) =
is thsopnmalstate-actlon value function. PI(Sl)ngl Pr(Sps1|Sn, an)(an|sy), where Pi(s) de-

Q" (s, a) can be expressed as the following recurrent formygtes the initial-state probability density function.
called theBellman equationVs € S,Va € A,

Q"(s,a) = R(s,a) +v E E [Q"(s',d)], Value Function Learning from Samples: Suppose that
Pr(s’|s,a) m(a’|s") roll-out data samples consisting df episodes withV steps
whereR(s,a) = Epy(s/js,a) [R(s,a,s')] is the expected re- are available as training data. The agent initially starts from a
ward when the agent takes actioin states, Ep,. ;5. de-  randomly selected stase following the initial-state probabil-
notes the conditional expectation©fover Pr.(s'|s, a) given ity density Pi(s) and chooses an action based osaanpling

s anda, andE,(, |, denotes the conditional expectation of Policy(a,|s,). Then the agent makes a transition following
o' overr(a'|s') givens'. the transition probabilityPr (s,,+1/$n, a) and receives a re-
wardr, (= R(sn, an, Sn+1)). This is repeated foN steps—

Policy Iteration: Computing the value functio®™ (s, a) thus the training datas@” is expressed as

is calledpolicy evaluation Using Q™ (s,a), we may find a DT = {d; M
better policyr’(a|s) by ‘softmax’ update: o o g o a . . |
. where each episodic sam consists of a set of 4-tuple
' (als) oc exp(Q™ (s, a)/T), elements as
wherer (> 0) determines the randomness of the new policy i = {(

7 7 7 N
7'; or by e-greedy update: )

b
Sm,n’ a’m,’rw rm;n? 5m7n+1 n=1"

We use two types of policies which have different pur-
poses: thesampling policyr(a|s) for collecting data sam-

les and thevaluation polic for computing the value
wherel(c) is the indicator functioni(if ¢ is true and) other- P policyr(als) Puting

wise), p, is the uniform probability density over actions, and UNCtioNQ”™ . Minimizing theimportance-weighte@mpirical
¢ (€ (0,1]) determines how deterministic the new policy general|zat|on errofz(0), we can obtain @onsistenestima-
is. Updatingr based onQ™ (s, a) is calledpolicy improve- for of 6~ as follows:

ment Repeating policy evaluation and policy improvement, g
we may find the optimal policyt*(a|s). This entire process
is calledpolicy iteration[Sutton and Barto, 1998

™ (als) = epu(a) + (1~ ) (a = arg max Q" (s,a)),

a

= argmin G(6),
o

M N
~ 1 ~ _ _ _
CO)=177 D D (OTB(5], v, D7) =17, )],

Least-squares Framework for Value Function Approxi- m=1n=1

mation: Although policy iteration is useful, it is often com- - D) = " ro

putationally intractable since the number of state-action pairéb(s’a’ ) = é(s:0) Dis,a)l 5 ,T(QH;IS,) [#(s", )],
8'€D(s,a)

|S| x |A] is very large;|S| or |.4] becomes infinite when
the state space or action space is continuous. To overcomghereD, , is a set of 4-tuple elements containing state

this problem, we approximate the state-action value functiomnd actiona in the training dataD, S° : denotes the

Q™ (s, a) using the following linear model: PG

summation oves’ in the setD, ., and

B
@ﬂ(& a; 0) = Z 9b¢b(57 a) = 0T¢(57 CL), 7 Hg’:l ﬂ—(a::L,’rL' ‘5’%,”’)
b=1

w;‘;l N N -, = ~
7 Hn’:l ﬂ-(a’:rn,n’ ‘Sﬂﬂ’L,n/)

Where¢(saa) = ((bl(S?a’)v(bQ(S?a’)a s 7¢B(Saa))—r are H i H

the fixed linearly independent basis functiofisdenotes the !S f:alled themportance welghFSuttonAand Barto, 1_998_ It
transpose,B is the number of basis functions, ad = IS important to note that consistency éftan be maintained
(61,0, ... ,05)T are model parameters. Note thiats usu- ~ €ven if wy, v is replaced by theper-decision importance

ally chosen to be much smaller thg#] x |.A|. weightw [Precupet al, 200d, which is more efficient

T
m,n



to calculate. can be analytically expressed with the matri- Now we would like to estimate the generalization error

cesL(e REBXMN) X (¢ RMNXB) W (e RMNXMN) and R LA .

the vectorr™ (e RMN*1) as GO)=E | > (0 ©(sn,an;D") = R(sp, an))?
i n=1

o~ ~ o~ ~ —~T . _ —~T _x .

0=Lr", L=(X WX)''X W, fromD". Its expectation can be decomposed as

rTrN(mfl)+n = Trﬂ;L,rm XN(m—l)—&-n,b = wb(s;,n7aﬂm,n;pw>7 Eé(a) =B+V+ 07

T if (m,n) = (m/,n’) h _ i ‘noise’

W N (1) tm Nt 1) 4y = 4 ) '), where E.s denotes the expectation over ‘noise

N( 1)+n,N( 1)+ {0 if (mvn) 7& (m’,n’). {e;ﬁn,n Q{V:I\{,nzl' B, V, and C are thebias term vari-
ance termandmodel errordefined by

1 N R R N2

N Z {(E% 0 —0") " (sn,an; D )}

n=1

3 Efficient Exploration with Active Learning

The accuracy of the estimated value function depends on B = IIDE
the training samples collected following the sampling policy T
7(als). In this section, we propose a new method for de- 1M R o \2
signing a good sampling policy based on a statistical active V =E E |— Z {(9 -E 0) (s, an;D”)} 1 ,
learning methodSugiyama, 2006 Prer [N er

Preliminaries: Here we consider the case where collecting = IEEW
state-action trajectory samples is easy and cheap, but gather- k BB .
ing immediate reward samples is hard and expensive (exanfhere the matrbU (€ R”* ") is defined as
ples include the batting robot explained in the introduction). 1 . P s

In such a case, immediate reward samples cannot be used for U,;; = E | — Z Vi (Spy an; Dﬂ)wj(sn, G DW) .
designing the sampling policy, but only state-action trajectory ~ n=1

N ~
% Z(O*T;/;(Sman;@?r) - R(Snva7l))2] 7

n=1

samples are available. Note that the variance terii can be expressed as
The goal of active learning in the current setup is to deter- 5 anT
mine the sampling policy so that the expected generalization V=0"tr(ULL ).

error is minimized. The generalization error is not accessible

in practice since the expected reward functit(s, a) and the  Estimation of Generalization Error for AL:  The model
transition probabilityPr(s’|s, a) are unknown, so the gener- errorC'is constant and can be safely ignored in generalization
alization error needs to be estimated from samples. A diferror estimation. So we only need to estimate the bias f&rm
ficulty of estimating the generalization error in the contextand the variance teri. However,B includes the unknown
of active learning is that its estimation needs to be carriedptimal paramete®™ and therefore it may not be possible to
out only from state-action trajectory sampheithout using  estimateB without using reward samples; similarly, it may
immediate reward samples; thus standard techniques such ast be possible to estimate the ‘noise’ varianceincluded
cross-validation[Hachiyaet al, 2009 cannot be employed in the variance tern’ without using reward samples.

since it requires both state-action and immediate reward sam- It is known that the bias term® is small enough to be ne-
ples. Below, we explain how the generalization error couldglected when the model &pproximately correciSugiyama,

be estimated under the active learning setup. 2006, i.e., 0" T4 (s, a) approximately agrees with the true
function R(s, a). Then we have

Decomposition of Generalization Error:  The information EG(0) — C — B tr(UiiT),
we are allowed to use for estimating the generalization error €7
is a set of roll-out samplesithoutimmediate rewards: which does not require immediate reward samples for its
P - B o computation. Sincg p, included inU is not accessible, we
D' ={dptm=1r Ay ={(570 Gns Smns1) Hret- replacelU by its consistent estimatd:
. .. . . M N
Let us define the deviation of immediate rewards from the~ 1 ~ 5 =W, = 5 =AT =
mean as UEMNZ Z¢(S:H,TL7 a’:;L,n;D )'(/)(S:;L,n’ a:;z,n;D ) w:;b,’rb'
T o7 T 7 m=1n=1
6WL,n = Tm,n - R(Sm,n’ amm)'

Consequently, we have the following generalization error es-
Note thate”, ,, could be regarded as additive noise in least-timator: T
squares function fitting. By definitior, ,, has mean zero J=tr(ULL ),

and the variance may depend ef , anda, ,,, i.e,, het-  which can be computed only fro@" and thus can be em-
eroscedasticioise. However, since estimating the variance ofyo e in the AL scenarios. If it is possible to gattBF

8 ; - h |
€m,n Without using reward samples is not possible, we assumEmltiple times, the abové may be computed multiple times
that the variance does not dependsjn,, anday, ,—letus  and its averagd may be used as a generalization error esti-
denote the common variance by. mator.



Designing Sampling Policies: Based on the generalization 0.1 “~.--"\_ .-~} _--~ PR P AN
error estimator derived above, we give an algorithm for de- & = &
signing a good sampling policy, which fully makes use of the0 3 — = o TOR 00
roll-out samples without immediate rewards. Rl P S L S R e

1. Prepards candidates of sampling policy7, } &< ;. Figu-ré 1. 10-state chain walk. Filled/unfilled arrows indicate
I isodi | thout di - ds f the transitions when taking action ‘R'/'L’ and solid/dashed
2. Co ect episodic samples wit Olﬁ'%TT(e late rewards 10fines indicate the success/failed transitions.

each sampling-policy candidatéD "}, . Table 1: The parameters of sampling policy candidates
{7}, for the 10-state chain-walk simulation.

(k[ 1[2]3[4]5][6[7]8][9[10]

3. EstimatelJ using all sample$5ﬂ}§:1 :

K M N
_ 1 S . ¢~ 10.1]0.2]0.3[0.4]0.5[0.6/0.7]0.8] 0.9/ 1.0
U:KMNZZZWSJ,W%Z‘W{D Fe=1) | RIRIR|R|RIL|L|LC|LC|L
k=1m=1n=1 11 ||0.5[0.4[0.3[0.2/0.1/0.1{0.2/0.3/ 0.4|0.5

X (s 53 1D HL ) Tw
First, we prepare a deterministic ‘base’ policy, e.g., ‘LLL-
LLRRRRR’, where the-th letter denotes the action taken at
s, Letm, be the &-greedy’ version of the base policy, i.e.,
the intended action can be successfully chosen with proba-

4. Estimate the generalization error for edgch

Jp = tr(ﬁim . T),

I (X T WX ) I Tk bility 1 — ¢/2 and the other action is chosen with probability
B ( ) - €/2. We user ; as the evaluation policy. 10 candidates of
X N 1)y = Un(55 s i {D HS), the sampling-policy{7;. } 12, are constructed as follows: with

_ probability (1 — ux), the agent chooses an action following
3 _Jwgk, if (myn)=(m',n"), 7 _ with probability 11;,, the agent takes actian,. The set-
WN m—1)+n,N(m’'—1)+n'— : ! ooy LGk A .
(m=D4n.Nm =410 if (m,n)#(m’,n’).  tings of the sampling-policy parametefs,, o, ux } 12, are
summarized in Table 1.
5. (If possible) repeat 2. to 4. several times and calculate FO €ach sampling policy, we calculate thevalue 5 times
the average for eadhn {J,,}X .. and take the average. The.numbers_o.f .eplsddmd steps
k=1 - N are settd 0 andb, respectively; the initial-state probability
6. Determine the sampling polic§ar, = argming, J. Pi(s) is set to be uniform. This experiment is repeatéd
times and we evaluate the mean and standard deviation of the
- true generalization error and its estimate.
8. Learn the value function by LSPI usidgst. The results are depicted in Figure 2 (the true generalization
error) and Figure 3 (its estimate) as functions of the indek

Numerical Examples: Here we illustrate how the pro- the sampling policies. We are interested in choosirgyich

posed method behaves in the 10-state chain-walk envirofhat the true generalization error is minimized. The results
ment shown in Figure 1. The MDP consists of 10 states show that the proposed generalization error estimator overall
{s0}10 = {1,2,...,10} and 2 actions4 = {a(¥}2_, = captures the trend of the true generalization error well. Thus

{'L','R’}. The immediate reward functioR(s, a, ') is de- ;EgreC%rggs.iedageonoeéilggtim err;)l_rcestimator would be useful
fined byR(s,a, s’) = 0.3x(7—|s'—7|). The transition prob- ngag pling policy.

ability Pr(s’|s, a) is indicated by the numbers attached to the . L . .
arrows in Figure 1; for examplér(s?[s(M),‘R") = 0.9 and 4 Active Learning in Policy Iteration

PT(s(1)|s(1>, ‘R’) = 0.1. Thus the agent can successfully In Section 3, we have shown .that the L!nknown _gen'eraliza.tion
move to the intended direction with probabilin (indicated ~ €ror could be accurately estimated without using immediate
by solid arrows in the figure) and the action fails with prob- "éward samples in one-step policy evaluation. In this section,
ability 0.1 (indicated by dashed arrows in the figure). TheWe extend the idea to the full policy-iteration setup.

discount factory is set t00.9. We use the 12 basis functions

7. Collect training samples with immediate rewarf§Ar .

&(s,a) defined as Sample-reuse Policy Iteration (SRPI) with Active Learn-
, ing: SRPI is a policy-iteration framework which allows us
I(a = aP)exp(—(s — ¢;)?/(20?)) to reuse previously-collected samples efficiefifiachiyaet
Paii—1)+j(s,a) = for1<i<5,1<j<2,  al, 2009. Let us denote the evaluation policy at thé iter-
Ila=aY) fori=6,1<j<2, ation bys; and the maximum number of iterations by
In ordinary policy-iteration methods, new data samples
wherec; =1,c3 = 3,¢3 =5,¢4 =7, c5 =9, ando = 3.0. D™ are collected following the new policy; during the pol-

For illustration purposes, we evaluate the selection of samicy evaluation step. Thus, previously-collected data samples
pling policies only in one-step policy evaluation; evaluation {p™ D™ ... D™-1} are not used:
over iteration will be addressed in the next section. Sampling BAD™) A 1  B(D™) A 1 B{DT) 1
policies and evaluation policies are constructed as followsm;  — Q™ —m — Q™ — @3 — > Ty,
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.k . 1ol |k = 2(fixed)
3 o “} F06 S o — A
o . B k< IS
| |- g
0.05 l .I__l__.l__l. I 04 5 16t
o S .
2 4 6 8 10 02 4 6 8 10 ] 15t P g °
(@) ‘RRRRRLLLLL (@) ‘RRRRRLLLLL £ .
0.4] ! SE_’ 14,
0.3 08
§ o2 [* § 06 13 1 é é 4‘1 é
| ) Iteration S
01 I I“-{ 04 Figure 4: The mean performance ou&i0 trials in the 10-
'I'-I-'{" o state chain-walk experiment. The dotted lines denote the per-
2 ¢4 6 8 10 2 ¢4 6 8 0 formance when fixed sampling policies are used and the solid
(b) ‘RRRLLLRRRR (b) ‘RRRLLLRRRR line denotes the performance when the sampling policies are
08 12 optimized by the proposed AL method. The error bars are
o : omitted for clear visibility; but they were all reasonably small.
0.8
Al {II Fos uniform and policies are updated in thth iteration using the
02 Ill‘{{ 04 e-greedy rule withe = 2. In the sampling-policy selection
02 step of the-th iteration, we prepare the two sampling-policy
R 4 3 8 10 2 4 6 8 10 ; ~()2 ; _ D
(©) 'LLLLLRRRRR (¢) LLLLLRRRRR! candidates{, ' }7_, with (e1,a1,p1) = (04,'R’,0.8),

(€2, a2, 12) = (0.4,'L’ ,0.8). The numbei\ of episodes and
Figure 2: The mean and starFigure 3: The mean and stan- the numberV of steps are both set f and./-value calcula-
dard deviation of the truedard deviation of the esti- tionisrepeated 5 times for active learning. The performance

generalization error over 106nated generalization errak of the learned policyr, ., is measured b)é tPe discounted
over 100 trials. sum of immediate rewards for test sample$".* }20, _; (50

trials. . . ,
episodes witts0 steps collected following . 1):

where E : {D} indicates policy evaluation using the data 1 30 50

sampleD and T denotes policy improvement. On the Performance= — > ) "y lrTrn,

other hand, in SRPI, all previously-collected data samples are 50 o

reused for performing policy evaluation as: where the discount factoris set t00.9.

- E{D"} @m L EAD™ D™} Sr, We compare the performance of fixed sampling policies
! 2 {7 }2_, and active learning of choosing the best sampling
A e B X Toil, policy from {7 }2_,. The results are depicted in Figure 4,

showing that the proposed method works very well. Actu-
where appropriate importance weights are applied to each sgfly, the proposed method outperforms the best fixed strategy
of previously-collected samples in.the policy evaluation step(k = 2); this can happen since the optimal sampling policy is
Here, we apply the active learning technique proposed imot alwaysk = 2 and it varies in each trial depending on ran-
the previous section to the SRPI framework. More specifidomness of the training dataset. Thus, the results show that
cally, we optimize the sampling policy at each iteration. Thenthe proposed active learning scheme adaptivelychoose a

the iteration process becomes good policy based on the training dataset at hand.
E{D™1} A~ 1 E{D71, D72} ~ .
o o= QT = — 5 Experiments

RN i s DU NS Finally, we evaluate our proposed method using a ball-batting
) robot illustrated in Figure 5, which consists of two links and
Thus, we do not gather samples following the current evaluagyo joints. The goal of the ball-batting task is to control the
tion policy 7;, but following the sampling policy; optimized  robot arm so that it drives the ball as far as possible. The state
based on the active learning method given in the previous segpaces is continuous and consists of the anglggrad] (e
tion. We call this frameworlactive policy iteration(API). [0,7/4]) and go[rad] (€ [—7/4,7/4]) and the angular ve-
locities g, [rad/s] andga[rad/s]. Thus a state (€ S) is de-
Numerical Examples: Here we illustrate how the API scribed by a four-dimensional vecter= (1, ¢1, 2, $2) .
method behaves using the same 10-state chain-walk problefhe action spaced is discrete and contains two elements:
(see Figure 1). The initial evaluation poliay is set to be A = {aP}2_; = {(50,-35)", (=50,10) "}, where thei-th



Joint 1 base policy withe = 0.5; the base policy is defined by the
greedy update using the ‘constar function with 6§, =

(Object Settings) 0.5 (1<i< B). Policies are updated in tligh iteration using
ik 2 link 1: 0.65[m] (length), 11.5[kg] (mass) the e-greedy rule withe = 2=+, The set of sampling-
fink 3i’ﬁLT](ggﬁﬁgﬂoﬁlﬁjlg‘]g](r;f;“; ) policy candidates{x\"13_, in the I-th iteration is defined
: ball pin: 0.3[m] (height), 7.5[kg] (mass) as (61, aq, [Ll) = (01, (50, —35)T, 07), (62, a9, /JQ) =
' (0.4,%,0.0), and (e3,as3,u3) = (0.1,(—50,10)T,0.25),
g ! pin where the symbol«’ means “don’t care” since the value
1
(ﬁr] of u is zero. The discount factoy is set t00.95 and
dm

the performance of the learned poligy . ; is measured by

Figure 5: A ball-batting robot. the discounted sum of immediate rewards for test samples

[P Pr T —— {rmat bt -1 (20 episodes with 2 steps collected follow-
sl I;: ggﬁxeg; \\\\\\\\\\\\\\ iNg 7z 41):
mmk = 3(fixed)| L~ o M N

?707 —AL e . Performance= Y ~ > 7L
2 \_\,\-\' m=1n=1
3 6ol _‘,«\‘\' ] The results are depicted in Figure 6, showing that the pro-
§ e posed method works very well and it is comparable to or
8 50} o ] slightly better than the best fixed strategy- 2). Based on
& | f ettt mmeeaamm the experimental evaluation, we conclude that the proposed

S
o
T

sampling-policy design method, API, is useful in improving
the RL performance.

30
Iteration 6 Conclusions

Figure 6: The mean performance ou#X¥ trials in the ball- h t collect traini les. itis |
batting experiment. The dotted lines denote the performanci/ NN we cannot collect many training samples, it is impor-
tant to choose the most ‘informative’ samples for efficiently

when fixed sampling policies are used and the solid line de : : :

notes the performance when the sampling policies are Opt,_earmng the val_ue function. In this paper, we proposed a

mized by the proposed AL method. The error bars are omitN€W data sampling strategy based on a statistical active learn-

ted for clear visibility. ing method. The 'proposed_ procedurg calidive policy
iteration (API)—which effectively combines the framework

of sample-reuse policy iteration with active sampling-policy

element(s = 1,2) of each vector corresponds to the torqueselection—was shown to perform very well in simulations

[N - m] added to joint. with chain-walk and ball-batting robot control.

We use the Open Dynamics Engine (‘http://ode.org/") for
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