
Least Absolute Policy Iteration
for Robust Value Function Approximation

Masashi Sugiyama, Hirotaka Hachiya, Hisashi Kashima, and Tetsuro Morimura

Abstract— Least-squares policy iteration is a useful reinforce-
ment learning method in robotics due to its computational
efficiency. However, it tends to be sensitive to outliers in
observed rewards. In this paper, we propose an alternative
method that employs the absolute loss for enhancing robustness
and reliability. The proposed method is formulated as a linear
programming problem which can be solved efficiently by
standard optimization software, so the computational advantage
is not sacrificed for gaining robustness and reliability. We
demonstrate the usefulness of the proposed approach through
simulated robot-control tasks.

I. I NTRODUCTION

One of the popular reinforcement learning frameworks for
obtaining the optimal policy ispolicy iteration, which itera-
tively performs policy evaluation and improvement steps [1],
[2]. The computational cost of a naive implementation of
policy iteration is dominated by the number of states and
actions, so it is not scalable to real-world robotics problems
with large state/action spaces. To cope with this problem,
an alternative method calledleast squares policy iteration
(LSPI) has been proposed [3]. In LSPI, value functions of
policies are approximated using a linear architecture, so its
computational cost is governed by the number of parameters
in the linear model. Thus, if the number of parameters is kept
reasonably small, LSPI is applicable to large-scale robot-
control tasks.

A basic idea of LSPI is to learn the parameters of the
linear model so that thetemporal-difference (TD)error is
minimized under the squared loss. On the other hand, in
this paper, we propose minimizing the TD error under the
absolute loss (see Fig.1). This is just replacement of the loss
function, but we argue that this modification brings about
very useful advantages in practical robotics problems. More
specifically, the rationale behind the use of the absolute loss
lies in robustnessand reliability:

Robustness: In many robotics applications, immediate
rewards are obtained through physical measurement such
as distance sensors or computer vision. Due to intrinsic
measurement noise or recognition error, the obtained rewards
are often deviated from the true value; in particular, the
rewards occasionally containoutliers, which are significantly
different from regular values.

A demo movie is available from ‘http://sugiyama-www.cs.
titech.ac.jp/˜sugi/2009/LAPIvsLSPI.mp4 ’.

MS and HH are with Department of Computer Science, Tokyo
Institute of Technology, Japan, and HK and TM are with IBM Research,
Tokyo Research Laboratory, Japan.sugi@cs.titech.ac.jp
hachiya@sg.cs.titech.ac.jp hkashima@jp.ibm.com
tetsuro@jp.ibm.com

Residual minimization under the squared loss amounts to
obtaining themean:

argmin
c

[
m∑

i=1

(xi − c)2
]

= mean({xi}mi=1) =
1
m

m∑
i=1

xi.

If one of the values, sayxj , is very large, the mean would
be strongly affected by this. Thusall the values{xi}mi=1 are
responsible for the mean and therefore even asingleoutlier
observation can significantly damage the learned result.

On the other hand, residual minimization under the abso-
lute loss amounts to obtaining themedian.

argmin
c

[
2n+1∑
i=1

|xi − c|

]
= median({xi}2n+1

i=1) = xn,

wherex1 ≤ x2 ≤ · · · ≤ x2n+1. The median is influenced not
by themagnitudeof the values{xi}2n+1

i=1 , but only by their
order. Thus, as long as the order is kept the same, the median
is not affected by outliers—in fact, the median is known to
be the most robust estimator in the light ofbreakdown-point
analysis[4], [5].

Therefore, the use of the absolute loss would remedy the
problem of robustness in policy iteration.

Reliability: In practical robot-control tasks, we often want
to attain a stable performance, rather than to achieve a
“dream” performance with very low chance; for example, in
the acquisition of a humanoid gait, we may want the robot
to walk forward in a stable manner with high probability of
success, rather than to rush very fast in a chance level.

On the other hand, we do not want to be too conservative
when training robots—if we are afraid of unrealistic failure
too much, no practically useful control policies can be
obtained. For example, any robots can be broken in principle
if activated for long time. However, if we fear this fact
too much, we may end up in a control policy that does
not activate the robots at all—obviously this is non-sense
in practice.

Since the squared-loss solution is not robust against out-
liers, it is sensitive to rare events with either positively or
negatively very large immediate rewards. Consequently, the
squared loss prefers an extraordinarily successful motion
even if the success probability is very low; similarly it
dislikes an unrealistic trouble even if such a terrible event
may not happen in practice. On the other hand, the absolute-
loss solution is not easily affected by such rare events due
to robustness. Therefore, the use of the absolute loss would

−3 −2 −1 0 1 2 3
0

1

2

3

4

5
Absolute loss
Squared loss

Fig. 1. The absolute and squared loss functions for reducing the temporal-
difference error.

produce a reliable control policy even in the presence of such
extreme events.

As shown above, the use of the absolute loss in value
function approximation would bring about robustness and
reliability, which are preferable properties in real-world
robotics problems. This modification is very simple, but to
the best of our knowledge, such an idea has never been
incorporated in value function approximation.

Another important advantage of the proposed approach is
that scalability to massive data is not sacrificed for enhancing
robustness and reliability. Indeed, the absolute-loss solution
can be obtained by solving alinear programmingproblem;
this can be carried out very efficiently using a standard
optimization software. We demonstrate the usefulness of the
absolute-loss approach through robotics simulations.

Related Work: In the seminal paper [6], theα-value
criterion was introduced as an alternative to the expected
discounted reward. This criterion is essentially identical to
thevalue-at-riskof the discounted reward, which is a popular
risk measure in finance [7]. However, the resulted opti-
mization problem is not convex and therefore it is difficult
to obtain a good solution efficiently. Asoft risk aversion
method[8], emphasizes actions whose rewards are less than
expected. Although the idea of this approach is intuitive, it
is rather heuristic and does not have a clear interpretation
as risk minimization. In the paper [9], an approach that
optimizes a linear combination of the mean and the vari-
ance of discounted rewards was proposed. This approach is
based on themean-variance model, which is also a popular
modeling in finance [10]. The assumption behind the mean-
variance model is that the discounted rewards follow the
Gaussian distribution, which may not be true in practice.
On the other hand, the method proposed in this paper has
a clear interpretation asmedian risk minimization and no
strong assumption is imposed. Furthermore, the resulting
optimization problem is a linear program, which is convex
and can be solved efficiently using a standard optimization
software.

In the area of optimal control,robust control theorywas
used to design stable controllers [11], [12], [13]. Although

this approach is also sometimes referred to asrobust re-
inforcement learning, its aim is different from the current
paper—robust control aims at enhancing robustness against
uncertainties in the environment, while our goal is to enhance
robustness againstoutliers.

II. PROBLEM FORMULATION

In this section, we formulate the reinforcement learning
problem using a Markov decision process (MDP) and briefly
review the core ideas of policy iteration and value function
approximation.

A. Markov Decision Process

Let us consider an MDP specified by

(S,A, PT, R, γ),

whereS is a set of states,A is a set of actions,PT(s′|s, a) (∈
[0, 1]) is the conditional transition probability-density from
states to next states′ when actiona is taken,R(s, a, s′)
(∈ R) is a reward for transition froms to s′ by taking action
a, andγ ∈ (0, 1] is the discount factor for future rewards.

Let π(a|s) ∈ [0, 1] be a stochastic policy which is the
conditional probability density of taking actiona given state
s. The state-action value functionQ(s, a) ∈ R for policy
π is the expected discounted sum of rewards the agent will
receive when taking actiona in states and following policy
π thereafter, i.e.,

Q(s, a) ≡ E
π,PT

[∞∑
n=1

γn−1R(sn, an, sn+1)
∣∣∣ s1 = s, a1 = a

]
,

whereEπ,PT denotes the expectation over{sn, an}∞n=1 fol-
lowing π(an|sn) and PT(sn+1|sn, an). The goal of rein-
forcement learning is to obtain the policy that maximizes
the discounted sum of future rewards.

Computing the value functionQ(s, a) is called policy
evaluationsince this corresponds to evaluating the value of
policy π. Using Q(s, a), we can find a better policy as

π(a|s)← δ(a− argmax
a′

Q(s, a′)),

where δ(·) is the delta function. This is calledpolicy im-
provement. It is known that repeating policy evaluation and
policy improvement leads to the optimal policy [1]. This
entire process is calledpolicy iteration.

B. Value Function Approximation

Although policy iteration is guaranteed to produce the
optimal policy, it is computationally intractable when the
number of state-action pairs|S| × |A| is very large;|S| or
|A| becomes infinity when the state space or action space is
continuous. To overcome this problem, the state-action value
function Q(s, a) may be approximated using the following
linear model:

Q̂(s, a) ≡
B∑

b=1

θbϕb(s, a) = θ⊤ϕ(s, a),

where

ϕ(s, a) = (ϕ1(s, a), ϕ2(s, a), . . . , ϕB(s, a))⊤

are the fixed basis functions,⊤ denotes the transpose,B is
the number of basis functions, and

θ = (θ1, θ2, . . . , θB)⊤

are model parameters. Note thatB is usually chosen to be
much smaller than|S| × |A|.

Suppose we have anN -step data sample, i.e., the agent
initially starts from a randomly selected states1 following
the initial-state probability densityPI(s1) and chooses an
action based on the current policyπ(an|sn). Then the agent
makes a transition followingPT(sn+1|sn, an) and receives
an immediate rewardrn (= R(sn, an, sn+1))—thus the
training datasetD is expressed as

D ≡ {(sn, an, rn, sn+1)}Nn=1.

The temporal-difference (TD)error for then-th sample is
defined by

θ⊤ψ̂(sn, an)− rn, (1)

whereψ̂(s, a) is aB-dimensional column vector defined by

ψ̂(s, a) ≡ ϕ(s, a)− γ

|D(s,a)|
∑

s′∈D(s,a)

E
π(a′|s′)

[ϕ(s′, a′)] .

D(s,a) is a set of 4-tuple elements containing states and
action a in the training dataD,

∑
s′∈D(s,a)

denotes the
summation overs′ in the setD(s,a), and Eπ(a′|s′) denotes
the conditional expectation with respect toa′ over π(a′|s′)
given s′.

The issue we would like to address in this paper is the
choice of the loss function when evaluating the TD error
(1); more specifically, we argue that the use of the absolute
loss is more advantageous than the squared loss. We note
that our results could be easily extended to various settings—
for example, multiple sequences of episodic training samples
can be employed without essentially changing the frame-
work. Theoff-policy scenarios where the sampling policy is
different from the evaluation policy can also be incorporated
by applyingimportance-weightingtechniques [1], [14], [15].
However, we do not go into the detail of such generalization
for keeping the presentation of the current paper simple.

III. L OSSFUNCTIONS FORTD-ERRORM INIMIZATION

In this section, we first review a squared-loss method for
TD-error minimization and then introduce an absolute-loss
method.

A. Least Squares Policy Iteration (LSPI)

A standard choice of the loss function for minimizing the
residual error would be the squared loss [1], [16], [3]. The
least-squares TD-error solution̂θ is defined by

θ̂LS ≡ argmin
θ

[
1
2

N∑
n=1

(
θ⊤ψ̂(sn, an)− rn

)2
]
.

Fig. 2. Illustrative MDP problem.

The solutionθ̂LS can be analytically computed as

θ̂LS =
(N∑

n=1

ψ̂(sn, an)ψ̂(sn, an)⊤
)−1 N∑

n=1

rnψ̂(sn, an).

The value-function approximation method based on the
above least-squares formulation is calledleast squares TDQ
(LSTDQ)and the policy iteration method based on LSTDQ
is called least squares policy iteration (LSPI)[3].

B. Least Absolute Policy Iteration (LAPI)

As explained in the introduction, LSPI suffers from ex-
cessive sensitivity to outliers and less reliability. Here, we
introduce an alternative approach to value function approxi-
mation, which we refer to asleast absolute TDQ (LATDQ)—
we propose employing the absolute loss instead of the
squared loss (Fig. 1):

θ̂LA ≡ argmin
θ

[
N∑

n=1

∣∣∣θ⊤ψ̂(sn, an)− rn

∣∣∣]. (2)

This minimization problem looks cumbersome due to the
absolute value operator which is non-differentiable, but the
following mathematical trick mitigates this issue.

Proposition 1: [17]

|x| =min
b

b subject to − b ≤ x ≤ b. (3)

Since Eq.(3) is a linear programming problem, it can
be solved very efficiently using a standard optimization
software. Using this proposition, the minimization problem
(2) is reduced to the following linear programming problem:

min
θ,{bn}N

n=1

N∑
n=1

bn

subject to −bn ≤ θ⊤ψ̂(sn, an)− rn ≤ bn, ∀n.

The number of constraints isN in the above linear
program. WhenN is large, we may employ sophisticated
optimization techniques such ascolumn generation[18] for
efficiently solving the linear programming problem.

We refer to the policy iteration method based on LATDQ
as least absolute policy iteration (LAPI).

Bar

1s t link

2nd link

End e!ector

1s t joint

2nd joint

Fig. 3. Illustration of the acrobot. The goal is to swing up the end effector
by only controlling the second joint.

C. Numerical Examples of LATDQ

For illustration purposes, let us consider the 4-state MDP
problem described in Fig. 2. The agent is initially located at
states(0) and the actions allowed to take is moving to the
left or right states. If the left-movement action is chosen, the
agent always receives small positive reward+0.1 at s(L). On
the other hand, if the right-movement action is chosen, the
agent receives negative reward−1 with probability 0.9999
at s(R1) or it receives very large positive reward+20000
with probability 0.0001 at s(R2). The mean and median
rewards for left movement are both+0.1, while the mean
and median rewards for right movement are+1.0001 and
−1, respectively.

If Q(s(0), ‘Left’) andQ(s(0), ‘Right’) are approximated by
LSTDQ, it returns the mean rewards, i.e.,+0.1 and+1.0001,
respectively. Thus LSTDQ prefers right movement, which
is a ‘gambling’ policy that negative reward−1 is almost
always obtained ats(R1), but there is a chance to obtain very
high reward+20000 with a very small probability ats(R2).
On the other hand, ifQ(s(0), ‘Left’) and Q(s(0), ‘Right’)
are approximated by LATDQ, it returns the median rewards,
i.e., +0.1 and −1, respectively. Thus LATDQ prefers left
movement, which is a stable policy that the agent can always
receive small positive reward+0.1 at s(L).

If all the rewards in Fig. 2 are negated, the value functions
are also negated and we obtain a different interpretation:
LSTDQ is afraid of the risk of receiving very large negative
reward−20000 at s(R2) with a very low probability, and
consequently it ends up in a very conservative policy that
the agent always receives negative reward−0.1 at s(L). On
the other hand, LATDQ tries to receive positive reward+1
at s(R1) without being afraid of visitings(R2) too much.

As illustrated above, LATDQ tends to provide qualitatively
different solutions from LSTDQ. We argue that the robust
and reliable behavior of LATDQ would be more preferable
in practical robotics tasks, as discussed in the introduction.
In the next section, we experimentally show the usefulness
of the proposed method in robot-control tasks.

IV. EXPERIMENTAL EVALUATION

In this section, we apply LAPI to simulated robot-control
problems and evaluate its practical performance.

A. Acrobot Swing-up

Here, we use anacrobot illustrated in Fig. 3. The acrobot
is an under-actuated system and consists of two links, two
joints, and an end effector. The length of each link is0.3 [m],
and the diameter of each joint is0.15 [m]. The diameter of
the end effector is0.10 [m] and the height of the horizontal
bar is 1.2 [m]. The first joint connects the first link to
the horizontal bar and isnot controllable. The second joint
connects the first link to the second link and is controllable.
The end effector is attached to the tip of the second link.
The control command (action) we can choose is applying
positive torque+30 [N ·m], no torque0 [N ·m], or negative
torque−30 [N ·m] to the second joint. Note that the acrobot
moves only within a plane orthogonal to the horizontal bar.

The goal is to acquire a control policy such that the end
effector is swung up as high as possible. The state space
consists of the angleθi [rad] and angular velocitẏθi [rad/s]
of the first and second joints (i = 1, 2). The immediate
reward is given according to the heighth of the center
of the end effector—ifh > 1.3, h itself is given as the
reward; otherwise−0.01 is given as the reward. Note that
0.55 ≤ h ≤ 1.85 in the current setting.

Here, we suppose that the length of the links is unknown;
thus the heighth cannot be directly computed from state
information. The height of the end effector is supposed to be
estimated from an image taken by a camera—the end effector
is detected in the image and then its vertical coordinate is
computed. Due to recognition error, the estimated height is
highly noisy and could contain outliers.

In each policy iteration step,10 episodic training samples
of length 200 are gathered, and the performance of the
obtained policy is evaluated using100 episodic test samples
of length200. The policies are updated in asoft-maxmanner:

π(a|s)← exp(Q(s, a)/η)∑
a′∈A exp(Q(s, a′)/η)

, (4)

where η = 10 − t + 1 with t being the iteration number.
The discounted factor is set toγ = 1, i.e., no discount.
As basis functions for value function approximation, we use
the Gaussian kernel with standard deviationπ—the Gaussian
centers are located on all combinations of

θ1, θ2 ∈ {−π,−π
2 , 0, π

2 , π},
(θ̇1, θ̇2) ∈ {(−π,−π), (0, 0), (π, π)}.

The above75 (= 5 × 5 × 3) Gaussian kernels are defined
for each of the three actions; thus225 (= 75 × 3) kernels
are used in total. In our implementation, the matrix inverse
included in LSPI is computed by MATLABR⃝, and the
linear programming problem included in LAPI is solved by
CPLEX R⃝.

We consider two noise environments; one is no noise and
the other is Laplacian noise with variance1. Note that the tail

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1
Gaussian density
Laplacian density

Fig. 4. Probability density functions of Gaussian and Laplacian distribu-
tions.

1 2 3 4 5 6 7
11.8

12

12.2

12.4

12.6

12.8

13

Iteration

S
um

 o
f r

ew
ar

ds

LAPI
LSPI

(a) No noise

1 2 3 4 5 6 7
11.8

12

12.2

12.4

12.6

12.8

13

Iteration

S
um

 o
f r

ew
ar

ds

LAPI
LSPI

(b) Laplacian noise

Fig. 5. The sum of future rewards averaged over20 runs for the acrobot
swinging-up simulation.

of the Laplacian density is heavier than that of the Gaussian
density (see Fig. 4), implying that a small number of outliers
tend to be included in the Laplacian noise environment. For
each noise environment, the experiment is repeated20 times
with different random seed and the average sum of future
rewards obtained by LAPI and LSPI are summarized in
Fig. 5. In the noise-less case (see Fig. 5(a)), both LAPI
and LSPI improve the performance over iterations in a
comparable way. On the other hand, in the noisy case (see
Fig. 5(b)), the performance of LSPI is not improved much
due to outliers, while LAPI still produces a good control
policy.

1 link

2 link

1 joint

2 joint

Body
Forward

direction

Fig. 6. Illustration of the four-legged robot. The goal is to let the robot
walk forward by controlling the leg joints.

A demo movie1 of the robot motion obtained by LAPI
and LSPI under the noisy environment shows the superior
performance of LAPI.

B. Four-legged Robot Walking

Next, we apply LAPI and LSPI to a four-legged robot
walking task (see Fig. 6).

The robot consists of a body and four legs, and each leg is
composed of two links and two joints. The first joint connects
the first link to the body, and the second joint connects the
first link to the second link. The control command (action)
we can choose is applying positive torque+100 [N ·m] or
negative torque−100 [N ·m] to the first joints and positive
torque+70 [N ·m] or negative torque−70 [N ·m] to the
second joints; we can apply different torques to the front and
hind joints, but the same torque to the left and right joints.
Thus, the number of possible actions is16 (= 2×2×2×2).

The goal is to acquire a control policy such that the robot
walks forward. The state space consists of the angleθi [rad]
of the i-th joint of the front legs (i = 1, 2), the angleηi [rad]
of the i-th joint of the hind legs (i = 1, 2), the heighth of
the body, and the forward-backward angleϕ of the body.
Note that the behavior of the left and right legs are identical
in the current setup, so the dimension of the state space is
6. We impose the following restriction on the joint angles:

− π
4 ≤ θ1, θ2 ≤ π

4 , 0 ≤ η1 ≤ π
4 , and − π

4 ≤ η2 ≤ 0.

Thus, the second joints of the front legs are bent backward
and the second joints of the hind legs are bent forward (see
Fig. 6 again).

The immediate reward given in each time step isd, where
d is the walking distance. Since the walking distance is not
easily computable from state information, we suppose it is
measured by a distance sensor. Thus the reward is highly
noisy and could contain outliers.

In each policy iteration step,20 episodic training samples
of length 50 are gathered, and the performance of the
obtained policy is evaluated using100 episodic test samples
of length50. The policies are updated bysoft-max(4) with

1‘http://sugiyama-www.cs.titech.ac.jp/˜sugi/2009/
LAPIvsLSPI.mp4 ’.

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Iteration

S
um

 o
f r

ew
ar

ds

LAPI
LSPI

(a) No noise

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Iteration

S
um

 o
f r

ew
ar

ds

LAPI
LSPI

(b) Laplacian noise

Fig. 7. The sum of future rewards averaged over20 runs for the four-legged
robot walking simulation.

η = 10−t+1, wheret is the iteration number. The discounted
factor is set toγ = 1, i.e., no discount. As basis functions
for value function approximation, we use the Gaussian kernel
with standard deviation1; the Gaussian centers are located
on all combinations of

θ1, η1 ∈ {−π
4 , 0, π

4 }, θ2 ∈ {0, π
4 },

η2 ∈ {−π
4 , 0}, h ∈ {1}, andϕ ∈ {0}.

The above36 (= 3 × 3 × 2 × 2 × 1 × 1) Gaussian kernels
are defined for each of the16 actions and therefore5761 (=
36×16) kernels are used in total. We again use MATLABR⃝

and CPLEXR⃝ for computing the solution of LSPI and LAPI.
We consider two noise environments; one is no noise and

the other is Laplacian noise with standard deviation0.5.
For each noise environment, the experiment is repeated20
times with different random seed and the average sum of
future rewards obtained by LAPI and LSPI are summarized
in Fig. 7. This shows that LAPI and LSPI are comparable in
the noise-less case, and LAPI tends to outperform LSPI in
the noisy case.

A demo movie2 of the robot motion obtained by LAPI and
LSPI under the noisy environment illustrates the usefulness
of LAPI.

2‘http://sugiyama-www.cs.titech.ac.jp/˜sugi/2009/
LAPIvsLSPI.mp4 ’.

V. CONCLUSIONS

In this paper, we proposed using the absolute loss in
value function approximation for enhancing robustness and
reliability. The change of loss function resulted in a linear
programming formulation which can be solved efficiently
by a standard optimization software. We experimentally
investigated the usefulness of the proposed method, LAPI,
in simulated robot-control tasks and confirmed advantages
of LAPI; the good performance of the existing method,
LSPI, is maintained in the noise-less cases and higher
tolerance to outliers than LSPI is exhibited in the noisy
cases. Furthermore, the computation time of LAPI and LSPI
is comparable—meaning that the computational advantage
of LSPI is not sacrificed for improving robustness and
reliability.

REFERENCES

[1] R. S. Sutton and G. A. Barto,Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 1998.

[2] B. P. D. and J. Tsitsiklis,Neuro-Dynamic Programming. NH, USA:
Athena Scientific, 1996.

[3] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,”
Journal of Machine Learning Research, vol. 4, no. Dec, pp. 1107–
1149, 2003.

[4] P. J. Huber,Robust Statistics. New York: Wiley, 1981.
[5] P. J. Rousseeuw and A. M. Leroy,Robust Regression and Outlier

Detection. New York: Wiley, 1987.
[6] M. Herger, “Considering of risk in reinforcement learning,” inPro-

ceedings of the 11th International Conference on Machine Learning,
1994, pp. 105–111.

[7] R. T. Rockafellar and S. Uryasev, “Conditional value-at-risk for
general loss distributions,”Journal of Banking & Finance, vol. 26,
no. 7, pp. 1443–1472, 2002.

[8] O. Mihatsch and R. Neuneier, “Risk sensitive reinforcement learning,”
Machine Learning, vol. 49, no. 2-3, pp. 267–290, 2002.

[9] M. Sato, H. Kimura, and S. Kobayashi, “TD algorithm for the
variance of return and mean-variance reinforcement learning,”Journal
of Japanese Society of Artificial Intelligence, vol. 16, no. 3, pp. 353–
362, 2001.

[10] H. M. Markovitz, “Portfolio selection,”Journal of Finance, vol. 7,
no. 1, pp. 77–91, 1952.

[11] R. M. Kretchmar, P. M. Young, C. W. Anderson, D. C. Hittle, M. L.
Anderson, and C. C. Delnero, “Robust reinforcement learning control
with static and dynamic stability,”International Journal of Robust and
Nonlinear Control, vol. 11, no. 15, pp. 1469–1500, 2001.

[12] J. Morimoto and K. Doya, “Robust reinforcement learning,”Neural
Computation, vol. 17, no. 2, pp. 335–359, 2005.

[13] C. W. Anderson, P. M. Young, J. N. Buehner, M. R. Knight, H. A.
Bush, and D. C. Hittle, “Robust reinforcement learning control using
integral quadratic constraints for recurrent neural networks,”IEEE
Transactions on Neural Networks, vol. 18, no. 4, pp. 993–1002, 2007.

[14] D. Precup, R. S. Sutton, and S. Singh, “Eligibility traces for off-policy
policy evaluation,” inProceedings of the Seventeenth International
Conference on Machine Learning, Morgan Kaufmann, 2000, pp. 759–
766.

[15] H. Hachiya, T. Akiyama, M. Sugiyama, and J. Peters, “Adaptive
importance sampling for value function approximation in off-policy
reinforcement learning,”Neural Networks, 2009, to appear.

[16] D. Precup, R. S. Sutton, and S. Dasgupta, “Off-policy temporal-
difference learning with function approximation,” inProceedings of
International Conference on Machine Learning, 2001, pp. 417–424.

[17] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge:
Cambridge University Press, 2004.

[18] A. Demiriz, K. P. Bennett, and J. Shawe-Taylor, “Linear programming
boosting via column generation,”Machine Learning, vol. 46, no. 1/3,
p. 225, 2002.

