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ABSTRACT

In this paper, we propose a novel semi-supervised speaker
identification method that can alleviate the influence of non-
stationarity such as session dependent variation, the recording
environment change, and physical condition/emotion. We as-
sume that the utterance variation follows thecovariate shift
model, where only the utterance sample distribution changes
in the training and test phases. Our method consists of
weighted versions of kernel logistic regression and cross-
validation and is theoretically shown to have the capability of
alleviating the influence of covariate shift. We experimentally
show through text-independent speaker identification simula-
tions that the proposed method is promising in dealing with
variations in session dependent utterance variation.

Index Terms— Speaker identification, covariate shift,
semi-supervised learning, kernel logistic regression, impor-
tance estimation.

1. INTRODUCTION

Speaker identification methods are widely used in various
real-world situations such as access control of information
service systems and speaker detection in speech dialog and
speaker indexing problems with large audio archives. Re-
cently, the speaker identification and indexing problems in
meetings attracted a great deal of attention.

Standard methods of text-independent speaker identifica-
tion includes theGaussian mixture model (GMM)[1] or ker-
nel methods such as thesupport vector machine (SVM)[2].
In these supervised learning methods, it is implicitly assumed
that training and test data follow the same distribution. How-
ever, the training and test distributions are not necessarily the
same in practice since the utterance features vary over time
due to session dependent variation, the recording environment
change, and physical condition/emotion.

To alleviate the influence of session dependent variation,
it is common to use speech samples recorded in several dif-
ferent sessions [3]. However, gathering many speech samples
and labeling the speaker ID to the collected data are expensive
both in time and cost and therefore not realistic in practice.

A more practical setup would besemi-supervised learn-
ing, where unlabeled samples are additionally given from the
test environment. In semi-supervised learning, it is required
that the training and test distributions are related to each other
in some sense; otherwise we may not be able to learn any-
thing about the test distribution from the training samples. A
popular modeling is calledcovariate shift[4], where the in-
put distributions are different in the training and test phases
but the conditional distribution of labels remains unchanged.

In this paper, we formulate the semi-supervised speaker
identification problem in the covariate shift framework and
propose a method that can cope with utterance variation.
Under covariate shift, standard maximum likelihood esti-
mation is no longer consistent—the influence of covariate
shift can be asymptotically canceled by weighting the log-
likelihood terms according to theimportance[4]: w(X) =
pte(X)/ptr(X), wherepte(X) andptr(X) are test and training
input densities. The importance weightw(X) is unknown in
practice and needs to be estimated from data. For weight es-
timation, we utilize theKullback-Leibler importance estima-
tion procedure (KLIEP)[5] due to its superior performance.
The regularized kernel logistic regression model contains two
tuning parameters: the kernel width and the regularization pa-
rameter [3]. Usually these tuning parameters are optimized
based oncross validation (CV). However, CV is no longer
unbiased due to covariate shift and therefore is not reliable
as a model selection method. To cope with this problem, we
use an importance-weighted version of CV (IWCV) [6] for
unbiased model selection. The validity of our approach is ex-
perimentally shown through text-independent speaker identi-
fication simulations.

2. PROBLEM FORMULATION

In this section, we formulate the speaker identification prob-
lem based on the kernel logistic regression (KLR) model.

Text-independent Speaker Identification: An utterance
sampleX pronounced by a speaker is expressed as a set of
N mel-frequency cepstrum coefficient (MFCC)[7] vectors of



d dimensions:

X = [x1, . . . ,xN ] ∈ Rd×N .

For training, we are givenn labeled utterance samples

Z = {(Xi, yi)}n
i=1,

whereyi ∈ {1, . . . , K} denotes the index of the speaker who
pronouncedXi. The goal of speaker identification is to pre-
dict the speaker index of a test utterance sampleX based on
the training samples. We predict the speaker indexc of the
test sampleX following theBayes decision rule:

max
c

p(y = c |X).

For approximating the class-posterior probability, we use

p(y = c |X;V) =
exp fvc(X)∑K
l=1 exp fvl

(X)
,

whereV = [v1, . . . ,vK ]⊤ ∈ RK×n is the parameter,⊤ de-
notes the transpose, andfvl

is a discriminant function cor-
responding to speakerl. This form is known as thesoftmax
function and widely used in multiclass logistic regression. We
use the following kernel regression model as the discriminant
functionfvl

:

fvl
(X) =

n∑
i=1

vl,iK(X, Xi) l = 1, . . . , K,

wherevl = (vl,1, . . . , vl,n)⊤ ∈ Rn are parameters corre-
sponding to speakerl andK(X, X′) is a kernel function. In
this paper, we use thesequence kernel[2] as the kernel func-
tion since it allows us to handle features with different size;
for two utterance samplesX = [x1, . . . ,xN ] ∈ Rd×N and
X′ = [x′

1, . . . ,x
′
N ′ ] ∈ Rd×N ′

(generallyN ̸= N ′), the se-
quence kernel is defined as

K(X,X′) =
1

NN ′

N∑
i=1

N ′∑
i′=1

exp
(
−∥xi − x′

i′∥2

2σ2

)
.

Note that kernel logistic regression is a modeling assump-
tion; thus the true class-conditional probability may not be
exactly realized by the kernel logistic regression model. This
implies that there exists somemodel error, i.e., even when the
parameter is chosen optimally, there remains an approxima-
tion error. This setup is not of course preferable, but more
or less there exists a model error in practice since it is not
generally possible to prepare an exactly correct model. Tradi-
tional machine learning theories often assume that the model
at hand is correct (i.e., no model error exists). However, this
is not realistic and not useful in practice, so in this paper we

explicitly take into accountmodel misspecificationwithin the
covariate shift framework.

Kernel Logistic Regression [3, 8]: We employ maximum
likelihood estimation for learning the parameterV. The neg-
ative regularized log-likelihood functionP log

δ (V;Z) for the
kernel logistic regression model is given by

P log
δ (V;Z) = −

n∑
i=1

log P (yi |Xi; V) +
δ

2
tr(VKV⊤),

where δ
2 tr(VKV⊤) is a regularizer introduced for avoiding

overfitting andK = [K(Xi, Xj)]ni,j=1 is the kernel Gram ma-

trix. P log
δ (V;Z) is a convex function with respect toV and

therefore its unique minimizer can be obtained by, e.g., the
Newton method.

Model Selection in KLR: KLR includes two tuning
parameters—the Gaussian widthσ and the regularization pa-
rameterδ. One of the popular approaches to model selection
is cross validation (CV).

Let us divide the training setZ = {(Xi, yi)}n
i=1 into k

disjoint non-empty subsets{Zi}k
i=1 of (approximately) the

same size. Let̂y(X;Zj) be an estimate of a speaker of a test
utterance sampleX obtained from{Zi}i ̸=j (i.e., withoutZj).
Then thek-fold CV (kCV) score is given by

R̂Z
kCV =

1
k

k∑
j=1

1
|Zj |

∑
(x,y)∈Zj

I(y = ŷ(X;Zj)),

where|Zj | denotes the number of samples in the subsetZj

andI(·) denotes the indicator function.

KLR, CV, and Covariate Shift: The use of KLR and CV
could be theoretically justified when the training utterance
features and the test utterance features independently follow
the sameprobability distribution with densityp(X) and the
class labely follows thecommonconditional probability dis-
tribution p(y |X) in the training and test phases. Indeed, if
these conditions are fulfilled, KLR is shown to beconsistent,
i.e., the learned parameter converges to the optimal value:

lim
n→∞

V̂ = V∗,

whereV̂ is the parameter learned by KLR andV∗ is the op-
timal parameter that minimizes the expected prediction error
for test samples:

V∗ = argmin
V

∫∫
I(y = ŷ(X;V))p(y |X)p(X)dydX.

ŷ(X; V) is an estimate of speaker of an utterance featureX
for parameterV. Also, whenp(X) andp(y |X) are common
in the training and test phases, kCV is (almost)unbiased:

EZ

[
R̂Z

kCV − RZ
]
≈ 0,



whereEZ is the expectation over the training setZ andRZ

is the expected prediction error defined by

RZ =
∫∫

I(y = ŷ(X;Z))p(y |X)p(X)dydX.

However, in practical speaker identification, speech fea-
tures are not stationary due to utterance variation, the record-
ing environment change, and speaker feeling. Thus, the train-
ing and test feature distributions are not necessarily the same.
Then the above good theoretical properties are no longer true.

If the training and test feature distributions share noth-
ing in common, we may not be able to learn anything about
the test distribution from the training samples. In this paper,
we explicitly deal with such changing environment via the
covariate shiftmodel [4]—the input distributions change be-
tween the training and test phases,ptr(X) ̸= pte(X), but the
conditional distributionp(y |X) remains unchanged.

3. IMPORTANCE WEIGHTING TECHNIQUES FOR
COVARIATE SHIFT ADAPTATION

In this section, we show how to cope with covariate shift.

Importance Sampling: In the absence of covariate shift, the
expectation over test samples can be computed by the expec-
tation over training samples since they are drawn from the
same distribution. However, under covariate shift, the dif-
ference of input distributions should be explicitly taken into
account. A basic technique for compensating for the distribu-
tion change isimportance sampling, i.e., the expectation over
training samples is weighted according to their importance in
the test distribution. Indeed, based on the importance weight

w(X) =
pte(X)
ptr(X)

,

the expectation of some functionF (X) over the probability
densitypte(X) can be computed by

Epte(X)[F (X)] = Eptr(X)[F (X)w(X)].

Importance Weighted Kernel Logistic Regression: If the
importance sampling technique is applied in KLR, we have
the following importance weighted KLR (IWKLR):

P̃ log
δ (V;Z)=−

n∑
i=1

w(Xi) log P (yi |Xi; V) +
δ

2
tr(VKV⊤).

IWKLR is consistent even under covariate shift [4]:

lim
n→∞

Ṽ = V∗,

whereṼ is the parameter learned by IWKLR andV∗ is the
optimal parameter given by

V∗ = argmin
V

∫∫
I(y = ŷ(X;V))p(y |X)pte(X)dydX.

Note thatP̃ log
δ (V;Z) is still convex and thus the global solu-

tion can be obtained by the Newton method.

Importance Weighted Cross Validation: IWKLR includes
the Gaussian widthσ and the regularization parameterδ as
tuning parameters. Here, we introduceimportant weighted
cross validation (IWCV)[6] for model selection: thek-fold
IWCV (kIWCV) score is given by

R̃Z
kIWCV =

1
k

k∑
j=1

1
|Zj |

∑
(X,y)∈Zj

w(X)I(y = ŷ(X;Zj)).

Even under covariate shift, kIWCV is almost unbiased [6]:

EZ

[
R̃Z

kIWCV − RZ
]
≈ 0,

whereRZ is the expected prediction error defined by

RZ =
∫∫

I(y = ŷ(X;Z))p(y |X)pte(X)dydX.

Importance Weight Estimation: As shown above, the im-
portance weightw(X) plays a central role in covariate shift
adaptation. However, the importance weight is usually un-
known, so it needs to be estimated from samples. Here, we
assume that in addition to the training input samplesX tr =
{Xtr

i }ntr
i=1 drawn independently fromptr(X), we are given un-

labeled test samplesX te = {Xte
i }nte

i=1 drawn independently
from pte(X) (i.e., the semi-supervised setup).

Under the semi-supervised setup, the importance weight
may be simply estimated by estimatingptr(X) and pte(X)
from training and test samples and then taking their ratio.
However, density estimation is known to be a hard problem
and taking the ratio of estimated quantities tends to magnify
the estimation error. Thus such a two-shot process may not be
reliable in practice. Below, we introduce a method called the
Kullback Leibler Importance Estimation Procedure (KLIEP)
[5], which allows us to directly learn the importance weight
function without going through density estimation.

Let us model the importance functionw(X) by the fol-
lowing linear model:

ŵ(X) =
b∑

l=1

αlφ(X,Cl),

where{αl}b
l=1 are parameters to be learned from data sam-

ples,{Cl}b
l=1 are template points randomly chosen from the

test input set{Xte
i }nte

i=1, andφ(X,X′) is a basis function cho-
sen as

φ(X,X′) =
1

NN ′

N∑
i=1

N ′∑
i′=1

exp
(
−∥xi − xi′∥2

2τ2

)
.



We determine the coefficient{αl}b
l=1 by maximum like-

lihood estimation, which is formulated as

max
{αl}b

l=1

[
nte∑
i=1

log

(
b∑

l=1

αlφ(Xte
i ,Cl)

)]

s.t.
ntr∑
i=1

b∑
l=1

αlφ(Xtr
i , Cl) = ntr and α1, . . . , αb ≥ 0.

This optimization problem is convex and thus the global so-
lution may be obtained by simply performing gradient ascent
and feasibility satisfaction iteratively. Note that the solution
{α̂l}b

l=1 tends to be sparse, which contributes to reducing the
computational cost in the test phase.

4. EXPERIMENTS

In this section, we report the results of speaker identification
in the light of covariate shift adaptation.

Training and test samples were collected from 10 male
speakers. The pronounced sentences are common to all
speakers, but the test sentences are different from those for
training. Moreover, the utterance samples for training were
recorded in 1990/12, while the utterance samples for testing
were recorded in 1991/3, 1991/6, and 1991/9, respectively.
Since the recording time is different between training and test
utterance samples, the session dependent variation is expected
to be included. So this would be a challenging task. We used
three sentences for training and five sentences for the test,
where the average duration of the sentences is about 4[s].

The input utterance is sampled at 16kHz with close-
talking microphone. A feature vector consists of 26 com-
ponents: 12 MFCCs, the normalized log energy, and their
first derivatives. Feature vectors are derived at every 10[ms]
over the Hamming-windowed speech segment of 25.6[ms].
We divide each utterance sequence into 300[ms] disjoint seg-
ments, each of which corresponds to a set of features of size
Xi ∈ R26×30. We compute the speaker identification rate at
every 1.5[s] and judge the speaker ID at timet based on the
average posterior probability15

∑5
i=1 p(Yt−i |Xt−i; V).

We compare KLR and IWKLR in terms of speaker identi-
fication for 1991/3, 1991/6, and 1991/9 [9]. For KLR training,
we only use the 1990/12 dataset (inputsX tr and their labels),
where the Gaussian widthσ and the regularization parame-
ter δ are selected based on 5-fold CV. For IWKLR training,
we use unlabeled samplesX te1, X te2, andX te3 in addition
to the training inputsX tr and their labels. We first estimate
the importance weight from training and test data pairs (X tr,
X te1), (X tr, X te2), or (X tr, X te3) by KLIEP, and then use 5-
fold IWCV to decide the Gaussian widthσ and regularization
parameterδ.

Table 1 summarizes the speaker identification rates, show-
ing that IWKLR+IWCV outperforms KLR+CV for all ses-
sions. This result implies that importance weighting is useful
in coping with the influence of non-stationarity in practical

Table 1. Identification rates in percent. IWKLR+IWCV
refers to IWKLR withσ andδ chosen by 5-fold IWCV, and
KLR+CV refers to KLR withσ andδ chosen by 5-fold CV.
Values of chosenσ andδ are described in the bracket.

Test date IWKLR+IWCV KLR+CV
1991/3 86.8(1.2, 0.0001) 86.1 (1.2, 0.0001)
1991/6 83.9(1.3, 0.0001) 82.0 (1.2, 0.0001)
1991/9 92.0(1.2, 0.0001) 91.6 (1.2, 0.0001)
Average 87.6 86.6

speaker identification such as utterance variation, the record-
ing environment change, and physical condition/emotion.
Therefore, we conclude that IWKLR+IWCV is a novel
promising approach to handling session dependent variation.

5. CONCLUSIONS

In this paper, we proposed a novel semi-supervised speaker
identification method that can alleviate the influence of non-
stationarity such as session dependent variation, the record-
ing environment change, and physical condition/emotion. we
conducted a text-independent speaker identification simula-
tion and experimentally found that the covariate shift formu-
lation is useful in dealing with session dependent variations.
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