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ABSTRACT A more practical setup would teemi-supervised learn-

In this paper, we propose a novel semi-supervised speakg}g’ where unlabeled samples are additionally given from the

identification method that can alleviate the influence of non{€St €nvironment. In semi-supervised learning, it is required

stationarity such as session dependent variation, the recordiHéat the tralnlng. and test' distributions are related to each other
environment change, and physical condition/emotion. We adll SOMe sense; otherwise we may not be able to learn any-
sume that the utterance variation follows t@variate shift thing about the test distribution from the training samples. A

model, where only the utterance sample distribution change®®Pular modeling is calledovariate shiff4], where the in-
in the training and test phases. Our method consists dut d|str|but|9ps are.d|f.fere.nt in the training gnd test phases
weighted versions of kernel logistic regression and crosst-’m the conditional distribution of labels remains unchanged.
validation and is theoretically shown to have the capability of ~ In this paper, we formulate the semi-supervised speaker
alleviating the influence of covariate shift. We experimentallyidentification problem in the covariate shift framework and
show through text-independent speaker identification simulalropose a method that can cope with utterance variation.
tions that the proposed method is promising in dea”ng WitHJnder covariate Shift, standard maximum likelihood esti-
variations in session dependent utterance variation. mation is no longer consistent—the influence of covariate
. . . ... shift can be asymptotically canceled by weighting the log-
"?dex Te_r ms— Sp(_eaker |dent|f|c§1t|qn, covarl_ate ?h'“* likelihood terms according to thienportance[4]: w(X) =
ts:r:r;;s(:sriﬁ:\;;ggllearmng, kernel logistic regression, Imporg_?te(X)/ptr(X),Wherf{pte(X) andptr(X) are tgst and traini.ng
input densities. The importance weightX) is unknown in
practice and needs to be estimated from data. For weight es-
1. INTRODUCTION timation, we utilize thekullback-Leibler importance estima-
tion procedure (KLIEP)5] due to its superior performance.
Speaker identification methods are widely used in varioughe regularized kernel logistic regression model contains two
real-world situations such as access control of informatiofyning parameters: the kernel width and the regularization pa-
service systems and speaker detection in speech dialog afgeter [3]. Usually these tuning parameters are optimized
speaker indexing problems with large audio archives. Repased orcross validation (CV)However, CV is no longer
cently, the speaker identification and indexing problems ifnbiased due to covariate shift and therefore is not reliable
meetings attracted a great deal of attention. as a model selection method. To cope with this problem, we
Standard methods of text-independent speaker identificrse an importance-weighted version of CV (IWCV) [6] for
tion includes the&saussian mixture model (GMM)] or ker- ynhiased model selection. The validity of our approach is ex-

nel methods such as ttseipport vector machine (SVNB].  perimentally shown through text-independent speaker identi-
In these supervised learning methods, it is implicitly assumegcation simulations.

that training and test data follow the same distribution. How-

ever, the training and test distributions are not necessarily the

same in practice since the utterance features vary over time 2. PROBLEM FORMULATION
due to session dependent variation, the recording environment

change, and physical condition/emotion. In this section, we formulate the speaker identification prob-

To alleviate the influence of session dependent variationgm, pased on the kernel logistic regression (KLR) model.
it is common to use speech samples recorded in several dif-

ferent sessions [3]. However, gathering many speech sampl@sxt-independent Speaker Identification: An utterance
and labeling the speaker ID to the collected data are expensigampleX pronounced by a speaker is expressed as a set of
both in time and cost and therefore not realistic in practice. N mel-frequency cepstrum coefficient (MFJT) vectors of



d dimensions: explicitly take into accountnodel misspecificatiowithin the
covariate shift framework.

— dxX N
X=[zy,...,ay] R ' Kernel Logistic Regression [3, 8]: We employ maximum

likelihood estimation for learning the parametér The neg-

ative regularized log-likelihood functioR’%(V; Z) for the
n kernel logistic regression model is given b

zZ= {(Xivyi)}iZIa 9 9 g y

For training, we are given labeled utterance samples

wherey; € {1,..., K} denotes the index of the speaker who P(I;Og(V; Z)=— Z log P(y; | X5 V) + gtr(VKVT),
pronouncedX;. The goal of speaker identification is to pre- i=1

dict the speaker index of a test utterance sampleased on
the training samples. We predict the speaker index the
test sampl&X following the Bayes decision rule

where gtr(VKVT) is a regularizer introduced for avoiding

overfitting andK = [K(X;, X;)]};—; is the kernel Gram ma-

trix. P°%5(V; Z) is a convex function with respect % and

max p(y = ¢ | X). therefore its unique minimizer can be obtained by, e.g., the
¢ Newton method.

For approximating the class-posterior probability, we useModel Selection in KLR: KLR includes two tuning
parameters—the Gaussian widtland the regularization pa-

_ o exp fo (X) rameterd. One of the popular approaches to model selection
ply=clX;V) = 77— : e
Zfil exp fu, (X) is cross validation (CV)
Let us divide the training sef = {(X;,y;)}", into k
whereV = [vy,...,vk]T € REX" is the parameter] de-  disjoint non-empty subset§Z;}}_, of (approximately) the

notes the transpose, arfg, is a discriminant function cor- same size. Lef(X; Z;) be an estimate of a speaker of a test
responding to speakér This form is known as theoftmax  utterance samplE obtained from{ Z;},.; (i.e., withoutZ;).
function and widely used in multiclass logistic regression. Wel hen thek-fold CV (kCV) score is given by

use the following kernel regression model as the discriminant

k
function f,, = 1 .
Jo Ricy = %27_ I(y =y(X; Z5)),

Fu(X) = Z;Ul*iK(X’Xi) t=1,.... K where|Z;| denotes the number of samples in the sulBet

andI(-) denotes the indicator function.

wherev; = (v1,...,u,)" € R™ are parameters corre- KLR, CV, and Covariate Shift: The use of KLR and CV
sponding to speakdrand (X, X') is a kernel function. In  could be theoretically justified when the training utterance
this paper, we use theequence kerng2] as the kernel func-  features and the test utterance features independently follow
tion since it allows us to handle features with different sizeithe sameprobability distribution with density(X) and the

for two utterance sample$ = [z1,...,zx] € RN and  class labey follows thecommorconditional probability dis-
X' = [x),..., @] € RN (generallyN # N'), the se- tribution p(y | X) in the training and test phases. Indeed, if
guence kernel is defined as these conditions are fulfilled, KLR is shown to bensistent
i.e., the learned parameter converges to the optimal value:
N N’
1 —|lx; — 2|2 ~
AN ? 1 : _ *
KX, X" = NN/Z:ZeXp (202 . nILIEoV_V ,

Note that kernel logistic regression is a modeling assum whereV is the parameter leamed by KLR aid is the op-

tion; thus the true class-conditional probability may not betimaI parameter.that minimizes the expected prediction error
. . X for test samples:

exactly realized by the kernel logistic regression model. This

implies that there exists someodel error i.e., even when the ) ] R

parameter is chosen optimally, there remains an approxima- ¥ — arguun // I(y = y(X; V))ply [ X)p(X)dydX.

tion error. This setup is not of course preferable, but more

or less there exists a model error in practice since it is no§(X; V) is an estimate of speaker of an utterance feakre

generally possible to prepare an exactly correct model. Tradfor parameteV. Also, whenp(X) andp(y | X) are common

tional machine learning theories often assume that the mod#l the training and test phases, kCV is (almastpiased

at hand is correct (i.e., no model error exists). However, this

is not realistic and not useful in practice, so in this paper we Eg [szcv - RZ} ~ 0,



whereE = is the expectation over the training s&tand R* Note tha‘fﬁé"g(v; Z) is still convex and thus the global solu-
is the expected prediction error defined by tion can be obtained by the Newton method.

~ Importance Weighted Cross Validation: IWKLR includes
- // Hy = 9% 2))p(y | X)p(X)dydX. the Gaussian widtlr and the regularization parameigias
tunlng parameters. Here, we introduoeportant weighted
r0ss validation (IWCV]6] for model selection: thé:-fold
CV (kKIWCV) score is given by

However, in practical speaker identification, speech fea
tures are not stationary due to utterance variation, the recor
ing environment change, and speaker feeling. Thus, the train-
ing and test feature distributions are not necessarily the same. ) )
Then the above good theoretical properties are no longer true. = = _ (X 7.

If the training and test feature distributions share noth- RMWCV k Z j Z WXy = 5(X: 25).
ing in common, we may not be able to learn anything about
the test distribution from the training samples. In this papergyen under covariate shift, KIWCV is almost unbiased [6]:
we explicitly deal with such changing environment via the
covariate shiftmodel [4]—the input distributions change be- o {EZ RZ} ~ 0
tween the training and test phasgs,(X) # p:.(X), but the Hwev ’

conditional distributiorp(y | X) remains unchanged. ) o ]
whereR? is the expected prediction error defined by

3. IMPORTANCE WEIGHTING TECHNIQUES FOR
COVARIATE SHIFT ADAPTATION RZ _ / / Iy = 5(X: 2)ply | X)pee (X)dydX.

In this section, we show how to cope with covariate shift.

Importance Sampling: In the absence of covariate shift, the Importance Weight Estimation: As shown above, the im-
expectation over test samples can be computed by the expgaertance weightv(X) plays a central role in covariate shift
tation over training samples since they are drawn from th@daptation. However, the importance weight is usually un-
same distribution. However, under covariate shift, the dif-known, so it needs to be estimated from samples. Here, we
ference of input distributions should be explicitly taken intoassume that in addition to the training input sampt&s =
account. A basic technique for compensating for the distribu{X:" }**; drawn independently from,,.(X), we are given un-
tion change ismportance sampling.e., the expectation over labeled test sample¥® = {X!¢}< drawn independently
training samples is weighted according to their importance ifirom p..(X) (i.e., the semi-supervised setup).
the test distribution. Indeed, based on the importance weight Under the semi-supervised setup, the importance weight
may be simply estimated by estimatipg.(X) and p;.(X)

w(X) = pte(X), from training and test samples and then taking their ratio.
Per(X) However, density estimation is known to be a hard problem
the expectation of some functidfi(X) over the probability and tal_<ing _the ratio of estimated quantities tends to magnify
densityp;.(X) can be computed by theT estlmatmn error. Thus such_ a two-shot process may not be
reliable in practice. Below, we introduce a method called the
E,..x)[F(X)] = Ep,, x) [F(X)w(X)]. Kullback Leibler Importance Estimation Procedure (KLIEP)

[5], which allows us to directly learn the importance weight
Importance Weighted Kernel Logistic Regression:If the  function without going through density estimation.
importance sampling technique is applied in KLR, we have Let us model the importance functian(X) by the fol-

the followingimportance weighted KLR (IWKLR) lowing linear model:
~ n ) b
log 7. zy_ _ ) ) . g T R
PsE(V; 2)= i§:1w(X2)logP(yz|X“V)+ 2tr(VKV ). B(X) = Zaztp(X, ),

IWKLR is consistent even under covariate shift [4]:
~ where{a,;}?_, are parameters to be learned from data sam-
nh_{gov =V, ples,{C;}’_, are template points randomly chosen from the
_ test input se{X!°}7*<, andy(X, X’) is a basis function cho-
whereV is the parameter learned by IWKLR aM is the  senas
optimal parameter given by

ii (—m—wz /|12 )

= argmln // V))p(y | X)pre (X)dydX. p(X, X') =



We determine the coefficiediy }?_, by maximum like- Table 1. Identification rates in percent. IWKLR+IWCV

lihood estimation, which is formulated as refers to IWKLR witho andd chosen by 5-fold IWCV, and
- b KLR+CV refers to KLR witho andé chosen by 5-fold CV.
max lz log ( arp(Xte, Cl))] Values of chosen and are described in the bracket.
{ade, | P Test date| IWKLR+IWCV KLR+CV
ne b 1991/3 | 86.8(1.2,0.0001) 86.1(1.2,0.0001)
St Y me(XI,C) =ngy and a0 > 0. 1991/6 | 83.9(1.3,0.0001) 82.0(1.2,0.0001)
i=1 I=1 1991/9 | 92.0(1.2,0.0001) 91.6(1.2,0.0001)
This optimization problem is convex and thus the global so- ~ Average 87.6 86.6

lution may be obtained by simply performing gradient ascent

and feasibility satisfaction iteratively. Note that the solutionspeaker identification such as utterance variation, the record-
{a;}7_, tends to be sparse, which contributes to reducing thgng environment change, and physical condition/emotion.
computational cost in the test phase. Therefore, we conclude that IWKLR+IWCV is a novel

promising approach to handling session dependent variation.
4. EXPERIMENTS

. . , N 5. CONCLUSIONS
In this section, we report the results of speaker identification

in the light of covariate shift adaptation. In this paper, we proposed a novel semi-supervised speaker
Training and test samples were collected from 10 malgdentification method that can alleviate the influence of non-
speakers. The pronounced sentences are common to aihtionarity such as session dependent variation, the record-
speakers, but the test sentences are different from those fgig environment change, and physical condition/emotion. we
training. Moreover, the utterance samples for training wergonducted a text-independent speaker identification simula-
recorded in 1990/12, while the utterance samples for testingon and experimentally found that the covariate shift formu-

were recorded in 1991/3, 1991/6, and 1991/9, respectivel¥ation is useful in dealing with session dependent variations.
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