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Abstract. Accurately evaluating statistical independence among ran-
dom variables is a key component of Independent Component Analysis
(ICA). In this paper, we employ a squared-loss variant of mutual in-
formation as an independence measure and give its estimation method.
Our basic idea is to estimate the ratio of probability densities directly
without going through density estimation, by which a hard task of den-
sity estimation can be avoided. In this density-ratio approach, a natural
cross-validation procedure is available for model selection. Thanks to
this, all tuning parameters such as the kernel width or the regularization
parameter can be objectively optimized. This is a highly useful property
in unsupervised learning problems such as ICA. Based on this novel inde-
pendence measure, we develop a new ICA algorithm named Least-squares
Independent Component Analysis (LICA).
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1 Introduction

The purpose of Independent Component Analysis (ICA) [1] is to obtain a trans-
formation matrix that separates mixed signals into statistically-independent
sources signals. A direct approach to ICA is to find a transformation matrix
such that independence among separated signals is maximized under some in-
dependence measure such as mutual information (MI).

Various approaches to computing the independence measures from samples
have been studied so far. A naive approach is to estimate probability densities
based on parametric or non-parametric density estimation. However, finding
an appropriate parametric model is not easy without strong prior knowledge
and non-parametric estimation is not accurate in high-dimensional problems.
Thus this naive approach is not so useful in practice. Another approach is to
approximate the negative entropy based on the Gram-Charlier expansion [6,
7, 3] or the Edgeworth expansion [5]. An advantage of this approach is that a
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Table 1. Summary of existing and proposed ICA methods.

Model selection Distribution

Fast ICA (FICA) [2] Not Necessary Not Free

Natural-gradient ICA (NICA) [3] Not Necessary Not Free

Kernel ICA (KICA) [4] Not Available Free

Edgeworth-expansion ICA (EICA) [5] Not Necessary Nearly normal

Least-squares ICA (LICA) [proposed] Available Free

hard task of density estimation is not directly involved. However, these expansion
techniques are based on the assumption that the target density is close to normal
and violation of this assumption can cause large approximation error.

The above approaches are based on the probability densities of signals. An-
other line of research that does not explicitly involve probability densities em-
ploys non-linear correlation—signals are statistically independent if and only if
all non-linear correlations among the signals vanish. Following this line, com-
putationally efficient algorithms have been developed based on the fourth-order
statistics [8, 2]. However, these methods ignore higher-order correlation and thus
could be inaccurate depending on the target distribution. To cope with this prob-
lem, the kernel trick has been applied in ICA [4], which allows us to evaluate
all non-linear correlations efficiently. However, its practical performance depends
on the choice of kernels (more specifically, the Gaussian kernel width) and there
seems no theoretically-justified method to determine the kernel width. This is a
critical problem in unsupervised learning problem such as ICA.

In this paper, we use a squared-loss variant of MI as an independence measure
and give a novel method for estimating it. Our key idea is to estimate the ratio of
probability densities contained in squared-loss MI (SMI) directly without going
through density estimation. This allows us to avoid a hard task of density esti-
mation. Another practically important advantage of this density-ratio approach
is that a natural cross-validation (CV) procedure is available for model selec-
tion. Thus all tuning parameters such as the kernel width or the regularization
parameter can be objectively optimized through CV.

From an algorithmic point of view, the density-ratio approach analytically
provides a non-parametric estimate of SMI; furthermore its derivative can also
be computed analytically and these useful properties are utilized in deriving
a new ICA algorithm—the proposed method is named Least-squares Indepen-
dent Component Analysis (LICA). Characteristics of existing and proposed ICA
methods are summarized in Tab. 1, highlighting the advantage of the proposed
LICA approach.

2 SMI Estimation for ICA

In this section, we formulate the ICA problem and introduce our independence
measure, SMI. Then we give an estimation method of SMI and based on it we
derive an ICA algorithm.
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2.1 Problem Formulation

Suppose there is a d-dimensional random signal

x = (x(1), . . . , x(d))⊤

drawn from a distribution with density p(x), where {x(m)}d
m=1 are statistically

independent of each other. Thus, p(x) can be factorized as

p(x) =
d∏

m=1

pm(x(m)).

We cannot directly observe the source signal x, but a linearly mixed signal y:

y = Ax,

where A is a d × d invertible matrix called the mixing matrix. The goal of ICA
is, given mixed signal samples {yi}n

i=1, to obtain a demixing matrix W that
recovers the original source signal x—we denote the demixed signal by z:

z = Wy.

The ideal solution is given by W = A−1, but we can only recover it up to
permutation and scaling of components of x due to non-identifiability of the
ICA setup [1].

A direct approach to ICA is to determine W so that components of z are as
independent as possible. Here, we adopt SMI as the independence measure:

Is(Z(1), . . . , Z(d)) :=
1
2

∫ (
q(z)
r(z)

− 1
)2

r(z)dz, (1)

where q(z) denotes the joint density of z and r(z) denotes the product of
marginal densities {qm(z(m))}d

m=1:

r(z) =
d∏

m=1

qm(z(m)).

Since Is vanishes if and only if q(z) = r(z), the degree of independence among
{z(m)}d

m=1 may be measured by SMI. Note that Eq.(1) corresponds to the f-
divergence from q(x) to r(z) with the squared loss, while ordinary MI corre-
sponds to the f -divergence with the log loss. Thus SMI could be regarded as a
natural generalization of ordinary MI.

Based on the independence detection property of SMI, we try to find the
demixing matrix W that minimizes SMI estimated from the demixed samples:

{zi | zi = (z(1)
i , . . . , z

(d)
i )⊤ := Wyi}n

i=1.

Our key constraint when estimating SMI is that we want to avoid density esti-
mation. Below, we show how this could be accomplished.
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2.2 SMI Inference via Density Ratio Estimation

Using convex duality [9], we can express SMI as

Is(Z(1), . . . , Z(d)) = sup
g

[∫ (
g(z)q(z) − 1

2
g(z)2r(z)

)
dz − 1

2

]
, (2)

where supg is taken over all measurable functions. Thus computing Is is reduced
to solving the following optimization problem:

inf
g

[∫ (1
2
g(z)2r(z) − g(z)q(z)

)
dz

]
. (3)

We can confirm that the optimal solution g∗ of the problem (3) is given as

g∗(z) =
q(z)
r(z)

. (4)

Thus, solving the problem (3) amounts to inferring the density ratio (4).
However, directly solving the problem (3) is not possible due to the following

two reasons. The first reason is that finding the minimizer over all measurable
functions is not tractable in practice since the search space is too vast. To over-
come this problem, we restrict the search space to some linear subspace G:

G = {α⊤φ(z) | α = (α1, . . . , αb)⊤ ∈ Rb}, (5)

where α is a parameter to be learned from samples, ⊤ denotes the transpose of
a matrix or a vector, and φ(z) is basis function such that

φ(z) = (φ1(z), . . . , φb(z))⊤ ≥ 0b for all x.

0b denotes the b-dimensional vector with all zeros. Note that φ(z) could be de-
pendent on the samples {zi}n

i=1, i.e., kernel models are also allowed. We explain
how the basis functions φ(z) are chosen in Section 2.3.

The second reason why directly solving the problem (3) is not possible is
that the true probability densities q(z) and r(z) contained in the density ratio
(4) are unavailable. To cope with this problem, we approximate them by their
empirical distributions—then the optimization problem is reduced to

α̂ := argmin
α∈Rb

[
1
2
α⊤Ĥα − ĥ⊤α +

1
2
λα⊤α

]
, (6)

where we included λα⊤α (λ > 0) for regularization purposes and

Ĥ :=
1
nd

n∑
i1,...,id=1

φ(z(1)
i1

, . . . , z
(d)
id

)φ(z(1)
i1

, . . . , z
(d)
id

)⊤, ĥ :=
1
n

n∑
i=1

φ(z(1)
i , . . . , z

(d)
i ).

Differentiating the objective function (6) with respect to α and equating it to
zero, we can obtain an analytic-form solution as

α̂ = (Ĥ + λIb)−1ĥ,
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where Ib is the b-dimensional identity matrix. Thus, the solution can be com-
puted very efficiently just by solving a system of linear equations. Using the
solution α̂, we can approximate SMI as

Îs = −1
2
− 1

2
α̂⊤Ĥα̂ + ĥ⊤α̂. (7)

Ordinary MI can also be estimated similarly using the density ratio [10].
However, the use of SMI is more advantageous due to the analytic-form solution.

2.3 Design of Basis Functions and Model Selection

As basis functions, we propose using a Gaussian kernel model:

φℓ(z) = exp
(
−∥z − vℓ∥2

2σ2

)
=

d∏
m=1

exp

(
−

(z(m) − v
(m)
ℓ )2

2σ2

)
, (8)

where {vℓ | vℓ = (v(1)
ℓ , . . . , v

(d)
ℓ )⊤}b

ℓ=1 are Gaussian centers randomly chosen
from {zi}n

i=1—more precisely, we set vℓ = zc(ℓ), where {c(ℓ)}b
ℓ=1 are randomly

chosen from {1, . . . , n} without replacement. An advantage of the Gaussian ker-
nel lies in the factorizability in Eq.(8), contributing to reducing the computation
of the matrix Ĥ significantly:

Ĥℓ,ℓ′ =
1
nd

d∏
m=1

[
n∑

i=1

exp

(
−

(z(m)
i − v

(m)
ℓ )2 + (z(m)

i − v
(m)
ℓ′ )2

2σ2

)]
.

In the experiments, we fix the number of basis functions at

b = min(100, n),

and choose the Gaussian width σ and the regularization parameter λ by CV
with grid search as follows. First, the samples {zi}n

i=1 are divided into K dis-
joint subsets {Zk}K

k=1 of (approximately) the same size (we use K = 5 in the
experiments). Then an estimator α̂Zk

is obtained using {Zj}j ̸=k (i.e., without
Zk) and the approximation error for the hold-out samples Zk is computed:

J
(K-CV)
Zk

=
1
2
α̂⊤

Zk
Ĥα̂Zk

− ĥ⊤α̂Zk
,

where |Zk| denotes the number of sample pairs in the set Zk. This procedure is
repeated for k = 1, . . . ,K and its average J (K-CV) is outputted:

J (K-CV) =
1
K

K∑
k=1

J
(K-CV)
Zk

.

For model selection, we compute J (K-CV) for all model candidates (the Gaussian
width σ and the regularization parameter λ in the current setting) and choose
the model that minimizes J (K-CV). We can show that J (K-CV) is an almost
unbiased estimate of the objective function in Eq.(3), where the ‘almost’-ness
comes from the fact that the number of samples is reduced in the CV procedure
due to data splitting.



6 Taiji Suzuki and Masashi Sugiyama

2.4 The LICA Algorithm

Finally, we show how the above SMI estimation idea could be employed in the
context of ICA.

Here, we use a simple gradient technique for obtaining a minimizer of the
estimated SMI. The update rule of the demixing matrix W is given by

W ←− W − ε
∂Îs

∂W
, (9)

where ε (> 0) is the step size. We can show that the gradient is given by

∂Îs

∂Wℓ,ℓ′
=

∂ĥ⊤

∂Wℓ,ℓ′
(−β̂ + 2α̂) + α̂⊤ ∂Ĥ

∂Wℓ,ℓ′
(β̂ − 3

2
α̂), (10)

where

∂ĥk

∂Wℓ,ℓ′
=

1
nσ2

n∑
i=1

(z(ℓ)
i − v

(ℓ)
k )(u(ℓ′)

k − y
(ℓ′)
i ) exp

(
−∥zi − vk∥2

2σ2

)
,

∂Ĥk,k′

∂Wℓ,ℓ′
=

1
nd−1

d∏
m=1,m ̸=ℓ

[
n∑

i=1

exp

(
−

(z(m)
i − v

(m)
k )2 + (z(m)

i − v
(m)
k′ )2

2σ2

)]

×

[
1

nσ2

n∑
i=1

(
(z(ℓ)

i − v
(ℓ)
k )(u(ℓ′)

k − y
(ℓ′)
i ) + (z(ℓ)

i − v
(ℓ)
k′ )(u(ℓ′)

k′ − y
(ℓ′)
i )

)
× exp

(
−

(z(ℓ)
i − v

(ℓ)
k )2 + (z(ℓ)

i − v
(ℓ)
k′ )2

2σ2

)]
,

uℓ =yc(ℓ), yi = (y(1)
i , . . . , y

(d)
i )⊤, and β̂ = (Ĥ + λIb)−1Ĥα̂.

In ICA, scaling of components of z can be arbitrary. This implies that the
above gradient updating rule can lead to a solution with bad scaling, which is
not preferable from a numerical point of view. To avoid numerical instability, we
normalize W at each gradient iteration as

Wℓ,ℓ′ ←− Wℓ,ℓ′√∑d
m=1 W 2

ℓ,m

. (11)

The proposed ICA algorithm, which we call Least-squares Independent Com-
ponent Analysis (LICA), is summarised below.

1. Initialize demixing matrix W and normalize it by Eq.(11).
2. Optimize Gaussian width σ and regularization parameter λ by CV.
3. Compute gradient ∂ bIs

∂W by Eq.(10).
4. Choose step-size ε such that Îs (see Eq.(7)) is minimized (line-search).
5. Update W by Eq.(9).
6. Normalize W by Eq.(11).
7. Repeat 2.–6. until W converges.
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3 Numerical Examples

In this section, we illustrate how our algorithm behaves using the following three
2-dimensional datasets:

(a) Sub·Sub-Gaussians: p(x) = U(x(1);−0.5, 0.5)U(x(2);−0.5, 0.5),
(b) Super·Super-Gaussians: p(x) = L(x(1); 0, 1)L(x(2); 0, 1),
(c) Sub·Super-Gaussians: p(x) = U(x(1);−0.5, 0.5)L(x(2); 0, 1),

where U(x; a, b) (a, b ∈ R, a < b) denotes the uniform density on [a, b] and
L(x; µ, v) (µ ∈ R, v > 0) denotes the Laplacian density with mean µ and variance
v. Let the number of samples be n = 300 and we observe mixed samples {yi}n

i=1

through the following mixing matrix:

A =
(

cos(π/4) sin(π/4)
− sin(π/4) cos(π/4)

)
.

The observed samples are plotted in Figure 1.
Figure 2 depicts the value of estimated SMI (7) over iterations and Figure 3

depicts the elements of the demixing matrix W over iterations. The true inde-
pendent directions as well as the estimated independent directions are plotted
in Figure 1. The results show that estimated SMI decreases rapidly and good
solutions are obtained for all the datasets.

4 Conclusions

In this paper, we have proposed a new estimation method of a squared-loss vari-
ant of mutual information, and based on this, we developed an ICA algorithm.
The proposed ICA method, named least-squares ICA (LICA), has several prefer-
able properties, e.g., it is distribution-free and model selection by cross-validation
is available. Our future work includes development of efficient optimization al-
gorithm beyond gradient techniques.
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Fig. 1. Observed samples (black asterisks), true independent directions (red dotted
lines) and estimated independent directions (blue solid lines).
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Fig. 2. Estimated SMI bIs over iterations.
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Fig. 3. The elements of the demixing matrix W over iterations. The blue, green, red,
cyan lines correspond to W1,1, W1,2, W2,1, and W2,2, respectively. The black dotted
lines denote the true values.
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