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Abstract

The ratio of two probability densities is called the importance and its estimation
has gathered a great deal of attention these days since the importance can be used
for various data processing purposes. In this paper, we propose a new importance
estimation method using Gaussian mixture models (GMMs). Our method is an
extension of the Kullback-Leibler importance estimation procedure (KLIEP), an
importance estimation method using linear or kernel models. An advantage of
GMMs is that covariance matrices can also be learned through an iterative esti-
mation procedure, so the proposed method—which we call the Gaussian mixture
KLIEP (GM-KLIEP)—is expected to work well when the true importance function
has high correlation. Through experiments, we show the validity of the proposed
approach.
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1 Introduction

Recently, the problem of estimating the ratio of two probability density functions
(a.k.a. the importance) has received a great deal of attention since it can be used for
various data processing purposes.

Covariate shift adaptation would be a typical example [1]. Covariate shift is a situation
in supervised learning where the training and test input distributions are different while
the conditional distribution of output remains unchanged [2]. In many real-world appli-
cations such as robot control [3], bioinformatics [4], spam filtering [5], natural language
processing [6], brain-computer interfacing [7], and speaker identification [8], covariate shift
adaptation has been shown to be useful. Covariate shift is also naturally induced in se-
lective sampling or active learning scenarios and adaptation improves the generalization
performance [9, 10, 11, 12].

Another example in which the importance is useful is outlier detection [13]. The outlier
detection task addressed in that paper is to identify irregular samples (i.e., outliers) in
an evaluation dataset based on a model dataset that only contains regular samples (i.e.,
inliers). If the density ratio of two datasets is considered, the importance values for
regular samples are close to one, while those for outliers tend to be significantly deviated
from one. Thus the values of the importance could be used as an index of the degree of
outlyingness. A similar idea can also be applied to change detection in time series [14].

A naive approach to approximating the importance function is to estimate training
and test probability densities separately and then take the ratio of the estimated densities.
However, density estimation itself is a difficult problem and taking the ratio of estimated
densities can magnify the estimation error. In order to avoid density estimation, the
Kullback-Leibler Importance Estimation Procedure (KLIEP) was proposed [15]. KLIEP
does not involve density estimation but directly models the importance function. The pa-
rameters in the importance model is learned so that the Kullback-Leibler divergence from
the true test distribution to the estimated test distribution is minimized without going
through density estimation. KLIEP was shown to be useful in covariate shift adaptation
[15] and outlier detection [13]. A typical implementation of KLIEP employs a spherical
Gaussian kernel model and the Gaussian width is chosen by cross validation. This means
that when the true importance function is correlated, the performance of KLIEP could
be degraded (see Figs.1-(b) and 1-(c)).

To cope with this problem, we propose to use a Gaussian mixture model in the KLIEP
algorithm and learn the covariance matrix of the Gaussian components at the same time.
This will allow us to learn the importance function more adaptively even when the true
importance function contains high correlation (see Fig.1-(d)). We develop an iterative
estimation procedure for learning the parameters in the Gaussian mixture model. The
effectiveness of the proposed method—which we call the Gaussian mixture KLIEP (GM-
KLIEP)—is shown through experiments.

The rest of this paper is structured as follows. In Section 2, the importance esti-
mation problem is formulated and the original KLIEP method is reviewed. Then the
proposed method, GM-KLIEP, is introduced in Section 3 and its experimental perfor-
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mance is investigated in Section 4. Finally, we conclude in Section 5 with a summary of
our contributions.

2 Background

In this section, we formulate the importance estimation problem and briefly review the
KLIEP method.

2.1 Problem Formulation

Let D ∈ Rd be the data domain and suppose we are given i.i.d. training samples {xtr
i }ntr

i=1

from a training data distribution with density ptr(x) and i.i.d. test samples {xte
j }nte

j=1 from
a test data distribution with density pte(x). We assume that ptr(x) > 0 for all x ∈ D.
The goal of this paper is to develop a method of estimating the importance w(x) from
{xtr

i }ntr
i=1 and {xte

j }nte
j=1:

w(x) =
pte(x)

ptr(x)
.

Our key restriction is that we avoid estimating densities pte(x) and ptr(x) when estimating
the importance w(x).

2.2 Kullback-Leibler Importance Estimation Procedure

Kullback-Leibler Importance Estimation Procedure (KLIEP) allows one to directly esti-
mate w(x) without going through density estimation [15]. In KLIEP, the following linear
importance model is used:

ŵ(x) =
b∑

l=1

αlφl(x), (1)

where {αl}bl=1 are parameters, b is the number of parameters, and φl(x) is a basis function.
In the original KLIEP paper [15], the Gaussian kernel was chosen as the basis functions

φl(x) = exp

(
−∥x− cl∥2

2τ 2

)
,

where τ 2 is the Gaussian width and cl is a template point randomly chosen from the test
set {xi}nte

i=1. Using the model ŵ(x), one can estimate the test data density pte(x) as

p̂te(x) = ŵ(x)ptr(x).
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Based on this, {αl}bl=1 is determined so that the Kullback-Leibler divergence from pte(x)
to p̂te(x) minimized:

KL[pte(x)∥p̂te(x)] =
∫

pte(x) ln
pte(x)

ptr(x)ŵ(x)
dx

=

∫
pte(x) ln

pte(x)

ptr(x)
dx−

∫
pte(x) ln ŵ(x)dx.

The first term in the above equation is independent of {αl}bl=1, so it can be ignored. Let
us define the second term as J :

J =

∫
pte(x) ln ŵ(x)dx ≈ 1

nte

nte∑
j=1

ln ŵ(xte
j ),

where the expectation over the test distribution is approximated by the test sample av-
erage. Since p̂te(x) is a probability density, the following equation should hold:

1 =

∫
p̂te(x)dx =

∫
ptr(x)ŵ(x)dx ≈ 1

ntr

ntr∑
i=1

ŵ(xtr
i ),

where the expectation over the training distribution is approximated by the training
sample average. Then the KLIEP optimization problem is given as follows:

max
{αl}bl=1

[
nte∑
j=1

ln

(
b∑

l=1

αlφl(x
te
j )

)]

s.t.
ntr∑
i=1

b∑
l=1

αlφl(x
tr
i ) = ntr and α1, . . . , αb ≥ 0.

2.3 Model Selection by Likelihood Cross Validation

The choice of the Gaussian width τ in KLIEP heavily affects the performance of impor-
tance estimation. Since KLIEP is based on the maximization of the score J , it is natural
to determine τ so that J is maximized.

The expectation over pte(x) involved in J can be numerically approximated by like-
lihood cross validation (LCV) as follows [15]: First divide the test samples {xte

j }nte
j=1 into

K disjoint subsets {X te
i }Ki=1 of approximately the same size. Then obtain an importance

estimate ŵk(x) from {X te
j }j ̸=k (i.e., without X te

k ) and approximate the score J using X te
k

as

Ĵk =
1

|X te
k |

∑
x∈X te

k

ln ŵk(x).
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This procedure is repeated for k = 1, . . . , K and the average of Ĵk over all k is used as an
estimate of J :

Ĵ =
1

K

K∑
k=1

Ĵk.

For model selection, Ĵ is computed for all model candidates (the Gaussian width τ in the

current setting) and choose the one that maximizes Ĵ .

3 KLIEP with Gaussian Mixture Models

In this section, we propose our new method, the Gaussian mixture KLIEP (GM-KLIEP).
Instead of the linear model (1), we use a Gaussian mixture model as an importance

model:

w(x) =
b∑

l=1

πlN(x|µl,Σl),

where πl are mixing coefficients, N(x|µl,Σl) is the Gaussian density with mean vector
µl and covariance matrix Σl, and b is the number of mixture components. Then the
GM-KLIEP optimization problem becomes

max
{πl,µl,Σl}bl=1

[
nte∑
j=1

ln

(
b∑

l=1

πlN(xte
j |µl,Σl)

)]

s.t.
ntr∑
i=1

b∑
l=1

πlN(xtr
i |µl,Σl) = ntr and π1, . . . , πb ≥ 0.

Here, we employ the following iterative estimation procedure for optimization (see
Appendix for its derivation):

Initialization step: Initialize the means µk, the covariances Σk, and the mixing coeffi-
cients πk.

Step1: Evaluate the responsibility values γkj and βki using the current parameters:

γkj =
πkN(xte

j |µk,Σk)∑b
l=1 πlN(xte

j |µl,Σl)
,

βki =
nte

ntr

πkN(xtr
i |µk,Σk).
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Step2: Re-estimate the parameters using the current responsibility values:

µnew
k = (1− η)µold

k + η

∑nte

j=1 γkjx
te
j −

∑ntr

i=1 βkix
tr
i∑nte

j=1 γkj −
∑ntr

i=1 βki

,

Σnew
k = (1− η)Σold

k + η

(∑nte

j=1 γkj(x
te
j − µold

k )(xte
i − µold

k )⊤∑nte

j=1 γkj −
∑ntr

i=1 βki

−
∑ntr

i=1 βki(x
tr
i − µold

k )(xtr
i − µold

k )⊤∑nte

j=1 γkj −
∑ntr

i=1 βki

)
+ δI,

πnew
k =

ntr

∑nte

j=1 γkj

nte

∑ntr

i=1N(xtr
i |µold

k ,Σold
k )

,

where 0 < η ≤ 1 is a step parameter for stabilizing the algorithm, δ is the regular-
ization parameter, and I is the identity matrix.

Evaluation step: Evaluate the log-likelihood:

ln p(x|µ,Σ, π) =
nte∑
j=1

ln

(
b∑

l=1

πnew
l N(xte

j |µnew
l ,Σnew

l )

)
.

Repeat the Step1 and Step2 until the log-likelihood converges.

Practically, we may use the k-means clustering algorithm for parameter initialization
[16] and LCV is used for tuning the number of mixtures b.

4 Experiments

In this section, we compare the performance of GM-KLIEP with the original KLIEP. In
these experiments, we set η = 0.1 and δ = 10−10 and choose the number of mixtures by
5-fold LCV from

b ∈ {1, 2, 3, 4, 5}.

4.1 Illustrative Example

Let us consider a toy two-dimensional importance estimation problem, where the true
training and test density functions are defined as

ptr(x) = N

(
x
∣∣∣ [1

1

]
,

[
10 0
0 10

])
,

pte(x) = N

(
x
∣∣∣ [0

0

]
,

[
1.5 1
1 2.5

])
.
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(c) KLIEP (d) GM-KLIEP

Figure 1: Samples and contour plots of the true importance function, the estimated
importance function by KLIEP, and an estimated importance function by GM-KLIEP in
the illustrative example.

In KLIEP, we set b = 100 and use the spherical Gaussian kernel as the basis function;
the kernel width is chosen based on 5-fold LCV. In GM-KLIEP, we use the k-means
clustering algorithm for parameter initialization [16], and choose the number of mixtures.

We draw ntr = 100 training samples and nte = 1000 test samples following the above
densities, which are depicted in Fig.1-(a). Figures 1-(b), 1-(c), and 1-(d) are the contour
plots of the true importance function, the importance function estimated by KLIEP, and
an importance function estimated by GM-KLIEP, respectively. The results show that
GM-KLIEP can capture the correlated profile of the true importance function better
than the original KLIEP. The result of KLIEP seems to be rather overfitted due to high
flexibility of the kernel model.

Next, we vary the number of training samples as ntr = 50, 60, . . . , 150 and quanti-
tatively compare the performance of KLIEP and GM-KLIEP. We run the experiments
100 times for each ntr, and evaluate the quality of an importance estimate ŵ(x) by the
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Figure 2: NMSEs averaged over 100 trials (log scale) in the illustrative examples.

normalized mean squared error (NMSE) [15]:

NMSE =
1

ntr

ntr∑
i=1

(
w(xtr

i )− ŵ(xtr
i )
)2

,

where Σntr
i=1ŵ(x

tr
i ) and Σntr

i=1w(x
tr
i ) are normalized to be one, respectively.

NMSEs averaged over 100 trials are plotted in Figs.2-(a) and 2-(b), showing that the
errors of both methods tend to decrease as the number of training samples grows. GM-
KLIEP tends to outperform the plain KLIEP, especially when the number of training
samples is small; indeed, GM-KLIEP is shown to be significantly better than KLIEP by
the t-test at the significance level 5%.

4.2 Application to Inlier-based Outlier Detection

Finally, we compare the performance of the original KLIEP with the proposed GM-KLIEP
in inlier-based outlier detection.

The datasets provided by IDA [17] are used for performance evaluation; we exclude
the ‘splice’ dataset since it is discrete. The datasets are binary classification and each one
consists of positive/negative and training/test samples. We use all positive test samples
as inliers and the first 5% of negative test samples as outliers in the “evaluation” set; we
use positive training samples as inliers in the “model” set. Thus, the positive samples
are treated as inliers and the negative samples are treated as outliers. We assign the
evaluation set to ptr(x) and the model set to pte(x). Thus if the importance value is
small, the sample is more plausible to be an outlier.

In the evaluation of outlier detection performance, it is important to take into account
both the detection rate (the amount of true outliers an outlier detection algorithm can
find) and the detection accuracy (the amount of true inliers that an outlier detection
algorithm misjudges as outliers). Since there is a trade-off between the detection rate and
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Table 1: Mean AUC values (and their standard deviation in the bracket) over 20 trials in
the outlier detection experiments. If the performance of the two methods are significantly
different by the t-test at the significance level 5%, the better method is indicated by bold
face.

Datasets KLIEP GM-KLIEP
banana 53.5 (3.5) 76.3 (12.4)

brestcancer 71.1 (12.3) 62.7 (18.9)
diabetes 58.8 (9.5) 55.0 (6.6)
flaresolar 50.6 (7.9) 66.0 (18.6)
german 59.4 (8.1) 56.1 (8.7)
heart 71.6 (14.2) 70.7 (15.0)
image 60.6 (9.6) 80.5 (8.0)
thyroid 65.6 (13.2) 72.6 (14.6)
titanic 66.0 (5.0) 66.9 (15.5)
twonorm 92.3 (3.2) 89.6 (2.2)
waveform 87.5 (3.5) 88.1 (2.8)
Average 67.0 — 71.3 —

the detection accuracy, we decided to adopt the area under the ROC curve (AUC) as our
error metric.

The results are summarized in Tab.1, showing that GM-KLIEP compares favorably
with the plain KLIEP.

5 Conclusions

In this paper, we proposed a new importance estimation method using Gaussian mixture
models. Optimization of the proposed algorithm, GM-KLIEP, can be efficiently carried
out through the iterative estimation procedure. The usefulness of the proposed approach
was illustrated through experiments.
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Appendix

Here, we show the derivation of the iterative estimation procedure for GM-KLIEP given
in Section 3.
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The Lagrangian of the GM-KLIEP optimization problem (2) is given by

J(π,M,Σ) =
nte∑
j=1

ln

(
b∑

l=1

πlN(xte
j |µl,Σl)

)
+ λ

(
ntr∑
i=1

b∑
l=1

πlN(xtr
i |µl,Σl)− ntr

)
, (2)

where λ is the Lagrange multiplier.
Differentiating this with respect to πk and equating it to zero, we have

∂J(π,M,Σ)

∂πk

=
nte∑
j=1

N(xte
j |µk,Σk)∑b

l=1 πlN(xte
j |µl,Σl)

+ λ
ntr∑
i=1

N(xtr
i |µl,Σl) = 0.

Let us multiply this by πk:

λ

ntr∑
i=1

πkN(xtr
i |µl,Σl) = −

nte∑
j=1

γkj, (3)

where

γkj =
πkN(xte

j |µk,Σk)∑b
l=1 πlN(xte

j |µl,Σl)
.

Summing this up for all k = 1, . . . , b and solving this with respect to λ, we have

λ = −nte

ntr

.

Inserting this back into Eq.(3), we obtain

πk =
ntr

∑nte

j=1 γkj

nte

∑ntr

i=1 N(xtr
i |µk,Σk)

.

This gives the update equation for πk.
Differentiating Eq.(2) with respect to µk, we have

∂J(π,M,Σ)

∂µk

=
nte∑
j=1

γkjΣ
−1
k (xte

j − µk)−
ntr∑
i=1

βkiΣ
−1
k (xtr

i − µk),

where

βki =
nte

ntr

πkN(xtr
i |µk,Σk).

Equating this to zero and solving this with respect to µk, we have

µk =

∑nte

j=1 γkjx
te
j −

∑ntr

i=1 βkix
tr
i∑nte

j=1 γkj −
∑ntr

i=1 βki

.
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This gives the update equation for µk.
Finally, differentiating Eq.(2) with respect to Σk, we have

∂J(π,M,Σ)

∂Σk

=
nte∑
j=1

γkj

(
−1

2
(Σ−1

k −Σ−1
k (xte

j − µk)(x
te
j − µk)

⊤Σ−1
k )

)

−
ntr∑
i=1

βki

(
−1

2
(Σ−1

k −Σ−1
k (xtr

i − µk)(x
tr
i − µk)

⊤Σ−1
k )

)
.

Equating this to zero and solving this with respect to Σk, we have

Σk =

∑nte

j=1 γkj(x
te
j − µk)(x

te
i − µk)

⊤∑nte

j=1 γkj −
∑ntr

i=1 βki

−
∑ntr

i=1 βki(x
tr
i − µk)(x

tr
i − µk)

⊤∑nte

j=1 γkj −
∑ntr

i=1 βki

.

This gives the update equation for Σk.
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