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Abstract. Direct policy search is a promising reinforcement learning
framework in particular for controlling in continuous, high-dimensional
systems such as anthropomorphic robots. Policy search often requires a
large number of samples for obtaining a stable policy update estimator
due to its high flexibility. However, this is prohibitive when the sampling
cost is expensive. In this paper, we extend an EM-based policy search
method so that previously collected samples can be efficiently reused.
The usefulness of the proposed method, called Reward-weighted Regres-
sion with sample Reuse (R3), is demonstrated through a robot learning
experiment.

1 Introduction

Model-free reinforcement learning is an important tool for solving real-world
Markov decision problems online. However, due to its high flexibility, many data
samples are usually required for obtaining good control policies. In practice,
the cost of collecting rollout data is often prohibitively expensive and too time-
consuming for real-world problems where thousands of trials would require weeks
or months of experiments. For example, when a robot learns how to hit a ball
in baseball or tennis, we need to let the robot hit a ball hundreds of times for
obtaining a reliable policy-improvement direction; then this policy update steps
need to be repeated many times for finally obtaining a good policy. As a result,
robot engineers need to spend a lot of time and effort to “nurse” the vulnerable
robot through frequent mechanical maintenance. As in many other real-world
reinforcement learning problems, it is therefore highly important to reduce the
number of training samples generated by the physical system and instead re-use
them efficiently in future updates.

A lot of efforts have been made to reuse previously collected samples, in
particular in the context of value function approximation. A basic technique for
sample reuse is to use importance sampling [16] for which the bias is canceled
out asymptotically. However, a naive use of importance sampling significantly
increases the variance of the estimator and, therefore, it becomes highly unsta-
ble. To mitigate this problem, the per-decision importance-weighting technique
has been introduced for variance reduction [10]. This technique cleverly makes
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use of a property of Markov decision processes and eliminates irrelevant terms in
the importance sampling identity. However, the obtained estimator still tends to
be unstable and, thus, the importance-sampling paradigm has not been in active
use for real-world reinforcement learning tasks yet. For more stable and efficient
variance reduction, an adaptive importance sampling scheme has recently been
proposed [4]. This formulates the off-policy value function approximation prob-
lem as covariate shift adaptation, which is a statistical learning paradigm under
non-stationarity: a ‘flattening’ parameter is introduced to the importance weight
for trading the variance reduction with a slight bias increase—the bias-variance
trade-off is optimally controlled based on importance-weighted cross-validation
[15].

Due to the above efforts, reinforcement learning methods based on value
function approximation can successfully reuse previously collected samples in
a stable manner. However, it is not easy to deal with continuous actions in
the value function based policy iteration framework; the direct policy search
approach is more suitable for learning control policies with continuous actions,
e.g., the policy gradient method [18, 17], the natural policy gradient method [5, 9],
and the policy search by expectation-maximization [2, 8]. Reusing data samples
is even more urgent in policy search approaches as small policy updating steps
can result into under-utilization of the data. While plain importance sampling
techniques have also been applied in the direct policy search, they were shown
to be unstable [13, 7]. For stabilization purposes, heuristic techniques are often
used in practice, e.g., samples with smaller importance weights are not used for
learning [6]. However, to the best of our knowledge, systematic treatment of
instability issues in the policy search with sample reuse is still an open research
topic.

The purpose of this paper is to propose a new framework for systemati-
cally addressing this problem. In particular, we combine the policy search by
expectation-maximization [2, 8] with the covariate shift adaptation paradigm,
and develop an efficient data-reuse algorithm for direct policy learning. The
effectiveness of the proposed method, called Reward-weighted Regression with
sample Reuse (R3), is demonstrated by robot-control experiments.

2 Policy Search Framework

We consider the standard reinforcement learning framework in which an agent
interacts with a Markov decision process. In this section, we review how
Markov decision problems can be solved using the policy search by expectation-
maximization [2]; for Gaussian models, this results in the reward-weighted re-
gression (RWR) algorithm [8].

2.1 Markov Decision Problems

Let us consider a Markov decision problem specified by (S,A, PT, PI, R, γ), where
S is a set of (continuous) states, A is a set of (continuous) actions, PT(s′|s, a)
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(∈ (0, 1]) is the transition probability-density from state s to next state s′ when
action a is taken, PI(s) (∈ (0, 1]) is the probability of initial states, R(s, a, s′)
(≥ 0) is an immediate reward for transition from s to s′ by taking action a, and
γ (∈ (0, 1]) is the discount factor for future rewards. Let π(a|s; θ) (∈ (0, 1]) be a
stochastic policy with parameter θ, which represents the conditional probability
density of taking action a given state s. Let us denote a trajectory of the agent
by d ≡ (s1, a1, s2, a2, . . . , sN , aN , sN+1), where N is the length of the trajectory.
Let R(d) be the return (i.e., the sum of discounted rewards) along trajectory d:

R(d) ≡
N∑

n=1

γn−1R(sn, an, sn+1).

Let P (d; θ) be the probability of occurring trajectory d under PI(s1),
PT(sn+1|sn, an), and π(an|sn; θ):

P (d; θ) ≡ PI(s1)
N∏

n=1

π(an|sn; θ)PT(sn+1|sn, an). (1)

The expected return is denoted by J(θ):

J(θ) ≡
∫

R(d)P (d; θ)dd.

The goal of the policy search is to learn the optimal policy parameter θ∗ that
maximizes the expected return J(θ):

θ∗ ≡ arg max
θ

J(θ). (2)

2.2 EM-based Policy Search

Naively maximizing J(θ) is hard since J(θ) usually contains high non-linearity.
The basic idea of the policy search by expectation-maximization is to itera-
tively update the policy parameter θ by maximizing a lower bound of the target
cost function [3]. More precisely, let θL be the current policy parameter, where
the subscript L indicates the iteration number. Then the use of Jensen’s in-
equality allows us to obtain a lower bound of the normalized expected return
log(J(θ)/J(θL)) as

log
J(θ)
J(θL)

= log
∫

R(d)P (d; θ)
J(θL)

dd = log
∫

R(d)P (d; θL)
J(θL)

P (d;θ)
P (d;θL)

dd

≥
∫

R(d)P (d; θL)
J(θL)

log
P (d;θ)
P (d; θL)

dd ≡ JL(θ).

Note that R(d)P (d; θL)/J(θL) is treated as a probability density function in
applying Jensen’s inequality; this is why R(d) is assumed to be non-negative
and the expected return is normalized.
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Fig. 2. The policy parameter θ is updated iteratively by maximizing lower bounds.

The expectation-maximization (EM) approach iteratively updates the pa-
rameter θ by maximizing the lower bound JL(θ):

θL+1 ≡ arg max
θ

JL(θ). (3)

Since JL(θL) = 0, the lower bound JL(θ) is tight (i.e., the lower bound touches
the target function) at θL. Thus monotone non-decrease of the (un)normalized
expected return is guaranteed (Fig.1):

J(θL+1) ≥ J(θL).

This update is iterated until convergence (see Fig.2).

2.3 Reward-weighted Regression

Let us employ the Gaussian policy model defined as

π(a|s;θ) =
1

σ
√

2π
exp

(
− (a − k⊤ϕ(s))2

2σ2

)
, (4)
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where k = (k1, k2, . . . , kb))⊤ and σ are policy parameters, b is the number of basis
functions, and ϕ(s) = (ϕ1(s), ϕ2(s), . . . ,ϕb(s))⊤ are fixed basis functions. This
model allows us to deal with one-dimensional action a and multi-dimensional
state vector s—multi-dimensional action vectors may be handled by concate-
nating one-dimensional models. The maximizer θL+1 of the lower bound JL(θ)
satisfies the following equation:

∂

∂θ
JL(θ)

∣∣∣∣∣
θ=θL+1

=
∫

R(d)P (d; θL)
J(θL)

∂

∂θ
log P (d; θ)

∣∣∣∣∣
θ=θL+1

dd

=
∫

R(d)P (d; θL)
J(θL)

N∑
n=1

∂

∂θ
log π(an|sn; θ)

∣∣∣∣∣
θ=θL+1

dd = 0. (5)

A useful property of the Gaussian policy model is that the log-derivative of
the policy model with respect to the parameters can be analytically computed
as

∂

∂k
log π(a|s; θ) =

a − k⊤ϕ(s)
σ2

ϕ(s),

∂

∂σ
log π(a|s; θ) =

(a − k⊤ϕ(s))2 − σ2

σ3
.

Then the maximizer θL+1 = (k⊤
L+1, σL+1)⊤ can be analytically obtained as

kL+1 =
( ∫

R(d)P (d; θL)
N∑

n=1

ϕ(sn)ϕ(sn)⊤
)−1

×
( ∫

R(d)P (d; θL)
N∑

n=1

anϕ(sn)
)
,

σ2
L+1 =

(
N

∫
R(d)P (d; θL)

)−1

×
( ∫

R(d)P (d; θL)
N∑

n=1

(an − kL+1
⊤ϕ(sn))2

)
.

The EM-based policy search for Gaussian models is called reward-weighted re-
gression [8].

2.4 Learning from Episodic Data Samples

Suppose a dataset consisting of M episodes with N steps is available for each
RWR iteration, where each episodic sample is generated as follows. Initially, the
agent starts from a randomly selected state s1 following the initial-state proba-
bility density PI(s1) and chooses an action based on the policy π(an|sn; θL) at
the L-th iteration. Then the agent makes a transition following PT(sn+1|sn, an)
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and receives a reward rn (= R(sn, an, sn+1)). This transition is repeated N times
for M episodes—hence, the training data DL gathered at the L-th iteration is
expressed as DL ≡ {dL

m}M
m=1, where each episodic sample dL

m is given by

dL
m ≡ {(sL

m,n, aL
m,n, rL

m,n, sL
m,n+1)}N

n=1.

Then the RWR solution θL+1 ≡ (k⊤
L+1, σL+1)⊤ can be approximated using the

L-th training data DL as θ̂L+1 ≡ (k̂
⊤
L+1, σ̂L+1)⊤, where

k̂L+1 =
( M∑

m=1

R(dL
m)

N∑
n=1

ϕ(sL
m,n)ϕ(sL

m,n)⊤
)−1

×
( M∑

m=1

R(dL
m)

N∑
n=1

aL
m,nϕ(sL

m,n)
)
,

σ̂2
L+1 =

(
N

M∑
m=1

R(dL
m)

)−1( M∑
m=1

R(dL
m)

N∑
n=1

(aL
m,n − k̂

⊤
L+1ϕ(sL

m,n))2
)
.

(6)

2.5 Importance Sampling

When the cost for gathering rollout samples is high, the number M of episodes
should be kept small. As a result, the next policy parameter θ̂L+1 suggested
by RWR may not be sufficiently accurate. In order to improve the estimation
accuracy, we could reuse the samples collected at the previous iterations {Dl}L

l=1.
If the policies remain unchanged by the RWR updates, just using Eq.(6) gives

an efficient estimator1 θ̂
NIW

L+1 ≡ (k̂
NIW

L+1
⊤, σ̂NIW

L+1 )⊤, where

k̂
NIW

L+1 =
( L∑

l=1

M∑
m=1

R(dl
m)

N∑
n=1

ϕ(sl
m,n)ϕ(sl

m,n)⊤
)−1

×
( L∑

l=1

M∑
m=1

R(dl
m)

N∑
n=1

al
m,nϕ(sl

m,n)
)
,

(σ̂NIW
L+1 )2 =

(
N

L∑
l=1

M∑
m=1

R(dl
m)

)−1

×
( L∑

l=1

M∑
m=1

R(dl
m)

N∑
n=1

(
al

m,n − k̂
NIW

L+1
⊤ϕ(sl

m,n)
)2)

.

The superscript ‘NIW’ stands for ‘No Importance Weight’. However, since poli-
cies are updated in each RWR iteration, {Dl}L

l=1 generally follow different dis-
tributions for different policies and, therefore, the naive use of Eq.(6) will result
in a biased estimator.
1 As the number of episodes goes to infinity, the estimated parameter converges to the

optimal value and its variance achieves the Cramér-Rao lower bound [11].
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Importance sampling can be used for coping with this problem. The basic idea
of importance sampling is to weight the samples drawn from a different distribu-
tion to match the target distribution. More specifically, from i.i.d. (independent
and identically distributed) samples {dm}M

m=1 following P (d; θl), the expectation
of some function g(d) over another probability density function P (d; θL) can be
consistently estimated by the importance-weighted average:

1
M

M∑
m=1

g(dm)
P (dm; θL)
P (dm; θl)

M→∞−→ E
P (d;θl)

[
g(d)

P (d;θL)
P (d; θl)

]
=

∫
g(d)

P (d; θL)
P (d; θl)

P (d; θl)dd = E
P (d;θL)

[g(d)] .

The ratio of two densities P (d; θL)/P (d; θl) is called the importance weight for
d.

This importance sampling technique can be employed in RWR for obtaining
a consistent estimator θ̂

IW

L+1 ≡ (k̂
IW

L+1
⊤, σ̂IW

L+1)
⊤, where

k̂
IW

L+1 =
( L∑

l=1

M∑
m=1

R(dl
m)wL,l(dl

m)
N∑

n=1

ϕ(sl
m,n)ϕ(sl

m,n)
⊤)−1

×
( L∑

l=1

M∑
m=1

R(dl
m)wL,l(dl

m)
N∑

n=1

al
m,nϕ(sl

m,n)
)
,

(σ̂IW
L+1)

2 =
(
N

L∑
l=1

M∑
m=1

R(dl
m)wL,l(dl

m)
)−1

×
( L∑

l=1

M∑
m=1

R(dl
m)wL,l(dl

m)
N∑

n=1

(
al

m,n−k̂
IW

L+1
⊤ϕ(sl

m,n)
)2)

.

Here, wL,l(d) denotes the importance weight defined by

wL,l(d) ≡ P (d; θL)
P (d;θl)

.

The superscript ‘IW’ abbreviates ‘Importance Weight’. According to Eq.(1),
the two probability densities P (d; θL) and P (d;θl) both contain PI(s1) and
{PT(sn+1|sn, an)}N

n=1. Since they cancel out in the importance weight, we can
compute the importance weight without the knowledge of PI(s) and PT(s′|s, a)
as

wL,l(d) =
∏N

n=1 π(a,n|sn; θL)∏N
n=1 π(an|sn; θl)

.

Although the importance-weighted estimator is guaranteed to be consistent,
it is not efficient even asymptotically. Therefore, the importance-weighted esti-
mator tends to be unstable when the number of samples is rather small. The
purpose of this paper is to propose a new framework for systematically address-
ing instability problems in the direct policy search.
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3 Adaptive Importance Weight for Stable Policy Search

In this section, we propose a new policy search method called Reward-weighted
Regression with sample Reuse (R3) for efficient sample reuse.

3.1 Bias-Variance Trade-off and Adaptive Importance Weight

Let us consider the expected squared error of an estimator θ̂ of an unknown
parameter θ, which can be decomposed into the squared bias and variance:

E[(θ̂ − θ)2]︸ ︷︷ ︸
Expected squared error

= (Eθ̂ − θ)2︸ ︷︷ ︸
Squared bias

+ E[(Eθ̂ − θ̂)2]︸ ︷︷ ︸
Variance

,

where E is the expectation over θ̂. When data samples {Dl}L
l=1 follow different

distributions, the NIW estimator is biased even asymptotically. On the other
hand, the IW estimator is asymptotically unbiased [14]. Thus, IW would gen-
erally have a smaller bias than NIW. However, IW has a larger variance than
NIW, so there is the trade-off between the bias and variance.

In order to appropriately control the bias-variance trade-off, we introduce
an adaptive importance weighting technique [14]. For a flattening parameter ν
(∈ [0, 1]), the importance weight wL,l(d) is ‘flattened’ as wν

L,l(d) (wL,l(d) to the

power of ν). Then we have θ̂
AIW

L+1 ≡ (k̂
AIW

L+1
⊤, σ̂AIW

L+1 )⊤, where

k̂
AIW

L+1 =
( L∑

l=1

M∑
m=1

R(dl
m)wν

L,l(d
l
m)

N∑
n=1

ϕ(sl
m,n)ϕ(sl

m,n)
⊤)−1

×
( L∑

l=1

M∑
m=1

R(dl
m)wν

L,l(d
l
m)

N∑
n=1

al
m,nϕ(sl

m,n)
)
,

(σ̂AIW
L+1 )2 =

(
N

L∑
l=1

M∑
m=1

R(dl
m)wν

L,l(d
l
m)

)−1

×
( L∑

l=1

M∑
m=1

R(dl
m)wν

L,l(d
l
m)

N∑
n=1

(
al

m,n − k̂
AIW

L+1
⊤ϕ(sl

m,n)
)2)

.

(7)

‘AIW’ stands for ‘Adaptive Importance Weight’. When ν = 0, AIW is reduced
to NIW. On the other hand, when ν = 1, AIW is reduced to IW. In practice, an
intermediate ν often produces a better estimator since the bias-variance trade-off
can be better controlled.

In the above AIW method, the flattening parameter value ν can be different
for each Dl. However, for simplicity, we employ a single common value ν.

3.2 Flattening Parameter Selection

The performance of AIW depends on the choice of the flattening parameter ν,
which allows us to control the bias-variance trade-off. Here, we show how the
value of the flattening parameter can be optimally chosen using samples.
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The goal of the policy search is to find the optimal policy that maximizes
the expected return J(θ). Therefore, the optimal flattening parameter value ν∗

L

at the L-th iteration is given by

ν∗
L ≡ arg max

ν
J(θ̂

AIW

L+1 (ν)). (8)

Directly obtaining ν∗
L requires to compute the expected return J(θ̂

AIW

L+1 (ν)) for
each candidate of ν. To this end, we need to collect data samples following
π(a|s; θ̂

AIW

L+1 (ν)) for each ν, which is prohibitively expensive. In order to reuse
samples generated by previous policies, we propose to use a variation of cross-
validation called importance-weighted cross-validation (IWCV) [15].

The basic idea of IWCV is to split the training dataset D1:L = {Dl}L
l=1 into

an ‘estimation part’ and a ‘validation part’. Then the parameter θ̂
AIW

L+1 (ν) is

learned from the estimation part and its expected return J(θ̂
AIW

(ν)) is approx-
imated using the validation part. Below, we explain in more detail how we apply
IWCV to the selection of the flattening parameter ν in the current context. For
simplicity, we assume that M is divisible by K, i.e., M/K is an integer.

Let us randomly divide the training dataset D1:L = {Dl}L
l=1 into K (we

use K = 5 in the experiments) disjoint subsets {D1:L
k }K

k=1 of the same size,

where each D1:L
k contains M/K episodic samples from every Dl. Let θ̂

AIW

L+1,k(ν)
be the policy parameter learned from {D1:L

k′ }k′ ̸=k (i.e., without D1:L
k ) by AIW.

We estimate the expected return of θ̂
AIW

L+1,k(ν) using D1:L
k as

Ĵk
IWCV(θ̂

AIW

L+1,k(ν)) ≡ 1
η

∑
dl∈D1:L

k

R(dl)wL,l(dl),

where dl denotes an episodic sample from Dl and η is a normalization constant.
An ordinary choice of η would be η = LM/K, but we use a ‘stable’ variant
η ≡

∑
dl∈D1:L

k
wL,l(dl) [10].

The above procedure is repeated for all k = 1, 2, . . . , K and the average score
is computed:

ĴIWCV(θ̂
AIW

L+1 (ν)) ≡ 1
K

K∑
k=1

Ĵk
IWCV(θ̂

AIW

L+1,k(ν)).

This is the K-fold IWCV estimate of J(θ̂
AIW

L+1 (ν)), which is shown to be unbiased
[15].

We compute this K-fold IWCV score for each candidate value of the flatten-
ing parameter ν and choose the one that maximizes the IWCV score:

ν̂IWCV ≡ arg max
ν

ĴIWCV(θ̂
AIW

L+1 (ν)).

Note that the above IWCV scheme can be used also for choosing the type and
number of basis functions {ϕi(s)}b

i=1 in the Gaussian policy model (4).
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3.3 Numerical Examples

Here, we illustrate how the proposed method behaves using a one-dimensional
ball-balancing simulation illustrated in Fig.3. The goal is to control the angle
of the plate so that the ball is kept in the middle of the plate. The action
space A consists of the angle α (∈ (−π/4, π/4)) [rad] of the plate which is one-
dimensional and continuous. The state space S is also continuous and a state
vector s = (x, ẋ)⊤ consists of the distance x [m] between the centers of mass of
the ball and the plate, and the velocity ẋ [m/s] of the ball. The distance x and
velocity ẋ can be modeled using the following equations:

xt+1 = xt + ẋt+1∆t,

ẋt+1 = ẋt + ∆t
(
− f

m
ẋt − 9.8 sin(at)

)
,

where f = 0.5 is the friction coefficient, m = 3 [kg] is the mass of the ball, at

[rad] is the action chosen at time t, and ∆t = 0.05 [s] is the duration of a time
step. We assume that if an action at is chosen, the plate angle will be adjusted
with a single time-step (this simulation is for illustration purposes; more realistic
experiments will be shown in the next section). The reward function R(s, a, s′)
is a quadratic function defined as

R′(s, a, s′) = −s′⊤
(

1 0
0 0.5

)
s′ − 0.1a2.

This reward function indicates that the agent will receive the maximum reward
(i.e., zero) when the ball stops at the center of the plate (s = 0). However,
the above reward function takes negative values and therefore violates the non-
negativity assumption imposed in the derivation of the EM algorithm (see Sec-
tion 2). To cope with this problem, when the policy search is carried out, we
convert the return R(d) as

R′(d) = − 1
0.00001 + R(d)

. (9)

We use the Gaussian policy model with ϕ(s) = s. The discount factor was set
to γ = 0.95.

First, let us illustrate how the flattening parameter ν influences the policy-
parameter update. For this purpose, we compute θ̂

AIW

L+1 (ν) only from DL−1. The

target policy parameter θ̂L = (k̂
⊤
L , σ̂L)⊤ is fixed to k̂L = (0.5, 0.5)⊤ and σ̂L =

0.2. The sample-generation policy parameter θ̂L−1 is chosen randomly as k̂L−1 =
k̂L−(β1, β2)⊤ and σ̂L−1 = σ̂L, where β1 and β2 independently follow the uniform

distribution on [0, 0.2]. Fig.4(a) depicts the true expected return J(θ̂
AIW

L+1 (ν))
averaged over 20 trials as a function of the flattening parameter ν for M = 5
and 20.

The graph overall shows that when the number M of episodes is larger,
the average expected return is also larger. However, the performance of NIW
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αxɺ x

Fig. 3. Illustration of one-dimensional ball-balancing simulation. The goal is to control
the angle α of the plate so that the ball is kept in the middle of plate.

(ν = 0) is not improved significantly when M is increased. The reason for this
phenomenon is that increasing the number of samples does not contribute to
reducing the estimation bias in NIW. The amount of variance reduction in NIW
is limited as the variance is relatively small even when M is not large. On the
other hand, the performance of IW (ν = 1) is significantly improved as M is
increased. This is because IW tends to have a large variance when M is small and
increasing M highly contributes to reducing the variance. The graph also shows
that neither NIW nor IW is the best in this simulation—intermediate values
of ν (say, 0.2 ≤ ν ≤ 0.4) perform better than NIW and IW. Thus, given that
ν is chosen optimally, AIW can outperform IW and NIW. Note that, although
the amount of performance improvement by AIW over IW seems subtle in this
one-step experiment, accumulation of this small gain through iterations actually
causes big performance improvement (Fig.6).

Next, we illustrate how IWCV behaves. Fig.4(b) depicts the expected return

ĴIWCV(θ̂
AIW

L+1 (ν)) estimated by 5-fold IWCV, averaged over 20 trials as a function
of the flattening parameter ν. The graphs show that IWCV roughly captures the
trend of the true expected return for both cases (M = 5 and 20). Note that the
orders of magnitude of the values in Fig.4(a) and in Fig.4(b) are different due
to the importance weights. However, this does not cause a problem in model
selection as long as relative profiles of the curves are similar.

Fig.5 depicts the expected return obtained by NIW (ν = 0), IW (ν = 1), and
AIW+IWCV (ν ∈ {0, 0.1, 0.2, . . . , 1} is selected in each trial using 5-fold IWCV)
averaged over 20 trials as a function of the number M of episodes. This result
indicates that the performance of NIW (ν = 0) does not improve significantly
when M is increased, implying that the estimation bias in NIW is crucial. On
the other hand, the performance of IW (ν = 1) is highly improved when M
is increased. Thus, consistency of IW would be useful in this simulation. The
proposed method, AIW+IWCV, tends to outperform both NIW and IW.

Finally, we illustrate how R3 behaves in three different scenarios; through
RWR iterations, ν is fixed to 0 (NIW), ν is fixed to 1 (IW), and ν is chosen by
IWCV (R3). Starting from a randomly-chosen initial policy-parameter θ̂1, we let
the agent collect samples DL following the current policy π(a|s; θ̂L), and then
the policy parameter is updated using all samples {Dl}L

l=1. This is repeated over
iterations. Fig.6 depicts the return averaged over 20 trials as a function of the
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Fig. 4. True expected return J(θ̂
AIW

L+1 (ν)) and 5-fold IWCV estimate ĴIWCV(θ̂
AIW

L+1 (ν))
averaged over 20 trials as a function of the flattening parameter ν in one-dimensional
ball-balancing task.
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Fig. 5. Expected return obtained by NIW (ν = 0), IW (ν = 1), and AIW (ν is chosen
by IWCV) averaged over 20 trials as a function of the number of episodes in one-
dimensional ball-balancing task.
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Fig. 6. The performance of policies learned in three scenarios: ν = 0 (NIW), ν = 1
(IW), and ν is chosen by IWCV (R3) in one-dimensional ball-balancing task. The
performance is measured by the expected return averaged over 20 trials.
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number of RWR iterations; the number of episodes is M = 5 or 20, while the
number of steps is fixed to N = 20.

The graphs show that R3 tends to outperform the non-adaptive schemes.
When ν is fixed to 0 (NIW), the performance of policy is stable for both cases.
However, performance improvement is much slower than that for R3. On the
other hand, when ν is fixed to 1 (IW), the behavior depends on the number of
samples; it works as well as NIW for M = 20, but the performance is poor and
is not improved over iterations for M = 5 due to the high estimation variance.

Our original motivation to introduce R3 was to reduce the number of samples
for saving the sampling cost. When the sampling cost is high, it is preferable to
keep M small, e.g., M = 5. In this case, the IW methods (ν = 1) performs very
poorly due to the huge estimation variance. On the other hand, the proposed
R3 method is stable even in the small sample case and its performance tends to
be better than the naive RWR method (ν = 0).

4 Applications

In this section, we evaluate the performance of our proposed method R3 in a more
complicated environment, i.e., a physically realistic ball-balancing task using a
Barrett WAMTM robot-arm simulator.

The 7 degree-of-freedom Barrett WAMTM arm is mounted on the ceiling
upside down and has a circular tray attached at the end-effector (see Fig.7). The
goal is to control the robot so that the ball is always brought to the middle of the
tray, similarly to the toy ball-balancing task in the previous section. However,
unlike before, the angle of the tray cannot be directly controlled here as this is
not feasible in a realistic scenario. Thus, achieving the goal is much harder.

The initial pose of the robot is set so that the tray is slightly tilted and
the ball is rolling on the tray (see Fig.7). To simplify the problem, we control
only two degrees of freedom: the wrist angle αroll and the elbow angle αpitch;
all the remaining joints are fixed. Control of the wrist and elbow angles roughly
corresponds to changing the roll and pitch of the tray, but not directly.

We design two separate control subsystems, each of which is in charge of roll
and pitch control. Each subsystem has its own policy parameter θ∗, state space
S∗, and action space A∗; ‘*’ corresponds to ‘roll’ or ‘pitch’. The state space S∗ is
continuous and consists of (x∗, ẋ∗, α∗), where x∗ [m] is the distance between the
centers of mass of the ball and the tray along each axis, ẋ∗ [m/s] is the velocity
of the ball, and α∗ [rad] is the joint angle. The action space A∗ is continuous
and corresponds to the target angle of the joint a∗ [rad]. The reward function is
defined as

R∗(s, a, s′) = −(x′
∗)

2 − (ẋ′
∗)

2 − a2
∗.

Since this reward function is negative, the return is converted to a non-negative
one by Eq.(9) when the policy search is carried out.

We explain how the control system is designed in more detail. As described
in Fig.8, the control system has two feedback loops: joint-angle control using
a proportional and derivative (PD) controller and motion control using an R3



14 H. Hachiya, J. Peters, M. Sugiyama

rollxrollx
rollxɺrollxɺ

rollα
(a) The angle of wrist

pitchxpitchx
pitchxɺpitchxɺ pitchα

(b) The angle of elbow

Fig. 7. Ball-balancing task using a Barrett WAMTM arm simulator. Two joints of the
robots are controlled so as to keep the ball in the middle of the tray.
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Fig. 8. The architecture of the Barrett WAMTM robot-arm control system for ball
balancing. The control system has two feedback loops, i.e., joint angle control by a PD
controller and motion control by an R3 controller.
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Fig. 9. The performance of learned policies when ν = 0 (NIW), ν = 1 (IW), and ν
is chosen by IWCV (R3) in ball balancing using a simulated Barrett WAMTM arm
system. The performance is measured by the expected return averaged over 10 trials.
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controller. The PD controller outputs motor torque to achieve the desired joint
angle a∗ as

τ∗ = kp(α∗ − a∗) + kdα̇∗,

where kp = 20 is the proportional gain and kd = 1 is the derivative gain. On the
other hand, the R3 controller outputs the target joint angle obtained by current
policy π(a|s; θL); the policy parameter is learned by R3 using the Gaussian
policy model with linear basis function ϕ(s) = s.

We use the Simulation Laboratory (SL) simulator [12] for experiments, which
is known to be highly realistic. The initial policy parameters and state2 are ran-
domly set as k∗ = (δ∗, δ′∗, δ

′′
∗ )⊤, σ∗ = 0.2, and s∗ = (x∗, ẋ∗, α∗)⊤ = (κ∗, 0, 0.15)⊤,

where {δ∗, δ′∗, δ′′∗} and κ∗ are independently drawn the uniform distributions on
[0, 0.1] and [0.045, 0.075], respectively. The dataset collected in each iteration
consists of 5 episodes with 400 steps; the duration of an episode is 4 [s] in which3

the sampling cycle and the R3 control cycle are both 10 [ms]. We consider three
scenarios here: sample reuse with ν = 0 (fixed), ν = 1 (fixed), and the proposed
R3 (ν is chosen by IWCV from {0.0, 0.2, 0.4, . . . , 1.0}). The discount factor is
set to γ = 0.99. Fig.9 depicts the averaged return over 10 trials as a function
of the number of RWR iterations. The graph shows that R3 nicely improves the
performance. On the other hand, the performance using fixed ν = 0 or ν = 1 is
saturated after the 2nd or 3rd iteration.

Overall, the proposed R3 method is shown to be still promising in a complex
robot-control task.

5 Conclusions

In real-world reinforcement learning problems, reducing the number of training
samples is highly important as the sampling costs are often much higher than
the computational cost. In this paper, we proposed a new framework of the di-
rect policy search for efficient sample reuse. To overcome the instability problem
caused by importance sampling, we proposed to combine reward-weighted re-
gression with adaptive importance sampling techniques. The proposed method,
called R3, was shown to work well in experiments.

The proposed idea of using importance sampling techniques in the direct
policy search is applicable to other policy search methods such as the policy
gradient method [18, 17], the natural-policy gradient method [5, 9], and policy
search by dynamic programming [1]. We will develop these variants and evaluate
their performance in the future work.

2 The angle of elbow αpitch is offset by π/2.
3 The time cycle of PD control is 2 [ms]. Thus, PD control is applied 5 times in each

R3 control.
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