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Abstract
In statistical pattern recognition, it is important to avoid density estimation since
density estimation is often more difficult than pattern recognition itself. Following
this idea—known as Vapnik’s principle, a statistical data processing framework
that employs the ratio of two probability density functions has been developed
recently and is gathering a lot of attention in the machine learning and data mining
communities. The purpose of this paper is to introduce to the computer vision
community recent advances in density ratio estimation methods and their usage in
various statistical data processing tasks such as non-stationarity adaptation, outlier
detection, feature selection, and independent component analysis.
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1 Introduction

Avoiding density estimation is a key to success in statistical pattern recognition since
density estimation is often more difficult than pattern recognition itself. This is sometimes
referred to as Vapnik’s principle [1] and the support vector machine would be a successful
example of this principle—instead of estimating the data generation model, it directly
models the decision boundary which is sufficient for pattern recognition. Following this
spirit, a new general framework of statistical data processing has been developed recently
in the machine learning and data mining communities [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17]. The purpose of this article is to introduce the new framework to the
computer vision community.

The key idea of the new framework is not to estimate probability densities, but to
estimate the ratio of two probability densities. We first give a comprehensive review
of methods for estimating the density ratio, including the kernel density estimator [18],
kernel mean matching [4], logistic regression [19, 20, 6], the Kullback-Leibler importance
estimation procedure [9, 10], least-squares importance fitting [11], and unconstrained
least-squares importance fitting [11]. Note that “importance” refers to the density ratio,
derived from importance sampling [21]. The use of the kernel density estimator results
in a two-step procedure of first estimating the two densities and then plugging them into
the density ratio, while recently developed methods are one-shot and directly estimate
the density ratio without going through density estimation. Such direct density-ratio
estimation methods were shown to be more accurate than the naive two-step approach
through extensive experiments [9, 11].

Following the review of the density-ratio estimation methods, we explain how these
methods could be used for solving various statistical data processing tasks such as non-
stationarity adaptation [22, 2, 3, 5, 14], outlier detection [23, 24, 25, 7], and conditional
density estimation [26, 27, 28, 16]. Furthermore, mutual information—which plays a cen-
tral role in information theory [29]—can also be estimated via density ratio estimation.
Since mutual information is a measure of statistical independence between random vari-
ables [30, 31], density ratio estimation can be used also for variable selection [32, 8, 12],
dimensionality reduction [33], and independent component analysis [34, 13].

These machine learning and data mining tasks would be crucial in computer vision
applications. For example, in object recognition, non-stationarity is conceivable since
training images are often collected in a controlled environment such as a studio while
test images will be gathered in various scenes; outlier images tend to be included due
to measurement noise or occlusions. Furthermore, reducing dimensionality of the images
would be indispensable for enhancing recognition accuracy.

This paper is an extended version of an earlier conference paper presented at Meeting
on Image Recognition and Understanding 2008 (MIRU2008) [35].
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2 Density Ratio Estimation

In this section, we formulate the problem of density ratio estimation and give a compre-
hensive review of density-ratio estimation methods.

2.1 Formulation

Let D (⊂ Rd) be the data domain and suppose we are given independent and identically
distributed (i.i.d.) samples {xi}ni=1 from a distribution with density q(x) and i.i.d. samples
{x′

j}n
′

j=1 from another distribution with density q′(x). We assume that the first density
q(x) is strictly positive over the domain D, i.e.,

q(x) > 0 for all x ∈ D.
The problem we address in this article is to estimate the density ratio

r(x) :=
q′(x)

q(x)

from samples {xi}ni=1 and {x′
j}n

′
j=1.

2.2 Kernel Density Estimator

The kernel density estimator (KDE) is a non-parametric technique to estimate a proba-
bility density function p(x) from its i.i.d. samples {xi}ni=1. For the Gaussian kernel

Kσ(x,x
′) := exp

(
−||x− x′||2

2σ2

)
, (1)

KDE is expressed as

p̂(x) =
1

n(2πσ2)d/2

n∑
i=1

Kσ(x,xi).

The performance of KDE depends on the choice of the kernel width σ. The kernel
width σ can be optimized by likelihood cross-validation (LCV) as follows [18]: First, divide
the samples {xi}ni=1 into k disjoint subsets {Xj}kj=1. Then obtain a density estimate p̂Xℓ

(x)
from {Xj}j ̸=ℓ and compute its log-likelihood for Xℓ:

1

|Xℓ|
∑
x∈Xℓ

log p̂Xℓ
(x).

Repeat this procedure for ℓ = 1, 2, . . . , k and choose the value of σ such that the average of
the above hold-out log-likelihood over all ℓ is maximized. Note that the average hold-out
log-likelihood is an almost unbiased estimate of the negative Kullback-Leibler divergence
[36] from p(x) to p̂(x), up to an irrelevant constant.

KDE can be used for density ratio estimation by first obtaining density estimators
q̂(x) and q̂′(x) separately from {xi}ni=1 and {x′

j}n
′

j=1, and then estimating the density
ratio by plugging into the ratio as r̂(x) = q̂′(x)/q̂(x). However, a potential limitation of
this naive approach is that KDE is not accurate in high-dimensional problems [1, 18].
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2.3 Kernel Mean Matching

Kernel mean matching (KMM) allows us to directly obtain an estimate of the density-
ratio values without going through density estimation [4]. The basic idea of KMM is to
find r̂(x) such that the mean discrepancy between nonlinearly transformed samples drawn
from q(x) and q′(x) is minimized in a universal reproducing kernel Hilbert space [37]. The
Gaussian kernel (1) is an example of kernels that induce a universal reproducing kernel
Hilbert space and it has been shown [4] that the solution of the following optimization
problem agrees with the true density ratio:

min
r(x)

∣∣∣∣∣∣∣∣∫ Kσ(x, ·)q′(x)dx−
∫
Kσ(x, ·)r(x)q(x)dx

∣∣∣∣∣∣∣∣2
H

subject to

∫
r(x)q(x)dx = 1 and r(x) ≥ 0,

where ∥ · ∥H denotes the norm in the Gaussian reproducing kernel Hilbert space and
Kσ(x,x

′) is the Gaussian kernel (1).
An empirical version of the above problem is reduced to the following convex quadratic

program:

min
{ri}ni=1

[
1

2

n∑
i,i′=1

riri′Kσ(xi,xi′)−
n∑

i=1

riκi

]

subject to

∣∣∣∣∣ 1n
n∑

i=1

ri − 1

∣∣∣∣∣ ≤ ϵ and 0 ≤ r1, r2, . . . , rn ≤ B,

where

κi =
n

n′

n′∑
j=1

Kσ(xi,x
′
j).

B (≥ 0) and ϵ (≥ 0) are tuning parameters that control the regularization effects. The
solution {r̂i}ni=1 is an estimate of the density ratio at {xi}ni=1.

Since KMM does not involve density estimation, it is expected to work well even in
high-dimensional cases. However, the performance depends on the choice of the tuning
parameters B, ϵ, and σ, and they cannot be simply optimized, e.g., by cross-validation
(CV) since estimates of the density ratio are available only at {xi}ni=1. A popular heuristic
is to use the median distance between samples as the Gaussian width σ [38, 33], although
there seems no strong justification for this heuristic. For the choice of ϵ, a theoretical
result given in the reference [4] could be used as guidance. However, it is still hard to
determine the best value of ϵ in practice.

2.4 Logistic Regression

Another approach to directly estimating the density ratio is to use a probabilistic classifier.
Let us assign a selector variable η = −1 to samples drawn from q(x) and η = 1 to samples
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drawn from q′(x), i.e., the two densities are written as

q(x) = p(x|η = −1),
q′(x) = p(x|η = 1).

Note that η is regarded as a random variable.
An application of the Bayes theorem yields that the density ratio can be expressed in

terms of η as follows [19, 20, 6]:

r(x) =
p(η = −1)
p(η = 1)

p(η = 1|x)
p(η = −1|x)

.

The ratio p(η = −1)/p(η = 1) may be simply approximated by the ratio of the numbers
of samples:

p(η = −1)
p(η = 1)

≈ n

n′ .

The conditional probability p(η|x) could be approximated by discriminating {xi}ni=1 from
{x′

j}n
′

j=1 using a logistic regression (LogReg) classifier, where η plays the role of a class
variable. Below we briefly explain the LogReg method.

The LogReg classifier employs a parametric model of the following form for expressing
the conditional probability p(η|x):

p̂(η|x) = 1

1 + exp (−η
∑m

ℓ=1 ζℓϕℓ(x))
,

where m is the number of basis functions and {ϕℓ(x)}mℓ=1 are fixed basis functions. The
parameter ζ is learned so that the negative regularized log-likelihood is minimized:

ζ̂ = argmin
ζ

[
n∑

i=1

log

(
1 + exp

(
m∑
ℓ=1

ζℓϕℓ(xi)

))

+
n′∑
j=1

log

(
1 + exp

(
−

m∑
ℓ=1

ζℓϕℓ(x
′
j)

))
+ λζ⊤ζ

]
.

Since the above objective function is convex, the global optimal solution can be obtained
by a standard nonlinear optimization technique such as the gradient method or Newton’s
method [39]. Then a density-ratio estimator is given by

r̂(x) =
n

n′ exp

(
m∑
ℓ=1

ζ̂ℓϕℓ(x)

)
. (2)

An advantage of the LogReg method is that model selection (i.e., the choice of the
basis functions {ϕℓ(x)}mℓ=1 as well as the regularization parameter λ) is possible by stan-
dard cross-validation since the learning problem involved above is a standard supervised
classification problem.

When multi-class logistic-regression classifiers are used, density ratios among multiple
densities can be estimated simultaneously [40].
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2.5 Kullback-Leibler Importance Estimation Procedure

The Kullback-Leibler importance estimation procedure (KLIEP) [9] also directly gives
an estimator of the density-ratio function without going through density estimation by
matching the two distributions in terms of the Kullback-Leibler divergence [36].

Let us model the density ratio r(x) by the following linear model:

r̂(x) =
b∑

ℓ=1

αℓφℓ(x), (3)

where {αℓ}bℓ=1 are parameters to be learned from data samples and {φℓ(x)}bℓ=1 are basis
functions such that

φℓ(x) ≥ 0 for all x ∈ D and for ℓ = 1, 2, . . . , b.

Note that b and {φℓ(x)}bℓ=1 could be dependent on the samples {xi}ni=1 and {x′
j}n

′
j=1,

so kernel models are also allowed. We explain how the basis functions {φℓ(x)}bℓ=1 are
designed later.

An estimator of the density q′(x) is given by using the density-ratio model r̂(x) as

q̂′(x) = r̂(x)q(x).

In KLIEP, the parameters {αℓ}bℓ=1 are determined so that the Kullback-Leibler divergence
from q′(x) to q̂′(x) is minimized:

KL[q′(x)∥q̂′(x)] =
∫
D
q′(x) log

q′(x)

r̂(x)q(x)
dx

=

∫
D
q′(x) log

q′(x)

q(x)
dx−

∫
D
q′(x) log r̂(x)dx. (4)

The first term is a constant, so it can be safely ignored. Since q̂′(x) is a probability density
function, it should satisfy

1 =

∫
D
q̂′(x)dx =

∫
D
r̂(x)q(x)dx. (5)

The KLIEP optimization problem is given by replacing the expectations in Eqs.(4) and
(5) with empirical averages:

max
{αℓ}bℓ=1

[
n′∑
j=1

log

(
b∑

ℓ=1

αℓφℓ(x
′
j)

)]

subject to
1

n

b∑
ℓ=1

αℓ

n∑
i=1

φℓ(xi) = 1 and α1, α2, . . . , αb ≥ 0.
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Input: m = {φℓ(x)}bℓ=1, {xi}ni=1, and {x′
j}n

′
j=1

Output: r̂(x)

Aj,ℓ ←− φℓ(x
′
j) for j = 1, 2, . . . , n′ and ℓ = 1, 2, . . . , b;

ξℓ ←− 1
n

∑n
i=1 φℓ(xi) for ℓ = 1, 2, . . . , b;

Initialize α = (α1, α2, . . . , αb)
⊤ (> 0b) and ε (0 < ε≪ 1);

Repeat until convergence
α←− α+ εA⊤(1n′ ./Aα); % Gradient ascent
α←− α+ (1− ξ⊤α)ξ/(ξ⊤ξ); % Constraint satisfaction
α←− max(0b,α); % Constraint satisfaction
α←− α/(ξ⊤α); % Constraint satisfaction

end

r̂(x)←−
∑b

ℓ=1 αℓφℓ(x);

Figure 1: Pseudo code of KLIEP. 0b denotes the b-dimensional vector with all zeros, and
1n′ denotes the n′-dimensional vector with all ones. ‘./’ indicates the element-wise division
and ⊤ denotes the transpose. Inequalities and the ‘max’ operation for vectors are applied
in the element-wise manner.

Input: M = {m | m = {φℓ(x)}bℓ=1}, {xi}ni=1, and {x′
j}n

′
j=1

Output: r̂(x)

Split {x′
j}n

′
j=1 into k disjoint subsets {X ′

j}kj=1;
for each model m ∈M

for each split t = 1, 2, . . . , k
r̂t(x)←− KLIEP(m, {xi}ni=1, {X ′

j}j ̸=t);

L̂t(m)←− 1
|X ′

t |
∑

x∈X ′
t
log r̂t(x);

end

L̂(m)←− 1
k

∑k
t=1 L̂t(m);

end

m̂←− argmaxm∈M L̂(m);
r̂(x)←− KLIEP(m̂, {xi}ni=1, {x′

j}n
′

j=1);

Figure 2: Pseudo code of likelihood cross-validation for KLIEP.
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This is a convex optimization problem and the global solution—which tends to be sparse
[41]—can be obtained, e.g., by simply performing gradient ascent and feasibility satisfac-
tion iteratively. A pseudo code is summarized in Figure 1.

The performance of KLIEP depends on the choice of the basis functions {φℓ(x)}bℓ=1.
As explained below, the use of Gaussian basis functions would be reasonable:

r̂(x) =
n′∑
ℓ=1

αℓKσ(x,x
′
ℓ),

whereKσ(x,x
′) is the Gaussian kernel with kernel width σ (see Eq.(1)). By definition, the

density ratio r(x) tends to take large values if q(x) is small and q′(x) is large; conversely,
r(x) tends to be small (i.e., close to zero) if q(x) is large and q′(x) is small. When a
function is approximated by a Gaussian kernel model, many kernels may be needed in the
region where the output of the target function is large; on the other hand, only a small
number of kernels would be enough in the region where the output of the target function
is close to zero. Following this heuristic, many kernels are allocated in the region where
q′(x) has large values, which can be achieved by setting the Gaussian centers at {x′

j}n
′

j=1.
Model selection of KLIEP is possible based on a variant of likelihood cross-validation.

A pseudo code is summarized in Figure 2. A MATLABR⃝ implementation of the entire
KLIEP algorithm is available from

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/KLIEP/

Properties of KLIEP-type algorithms have been theoretically investigated in the ref-
erences [42, 19, 20, 10]. Note that the density-ratio model of KLIEP is the linear model
(3), while that of LogReg is the log-linear model (2). A variant of KLIEP for log-linear
models has been studied in the reference [15].

2.6 Least-squares Importance Fitting

KLIEP employed the Kullback-Leibler divergence for measuring the discrepancy between
two densities. Least-squares importance fitting (LSIF) [11] uses the squared loss for
density-ratio function fitting. The density ratio r(x) is again modeled by the linear
model (3).

The parameters α = (α1, α2, . . . , αb)
⊤ in the model r̂(x) are determined so that the

following squared error J0 is minimized:

J0(α) =
1

2

∫
(r̂(x)− r(x))2 q(x)dx

=
1

2

∫
r̂(x)2q(x)dx−

∫
r̂(x)q′(x)dx+

1

2

∫
r(x)q′(x)dx,

where the last term is a constant and therefore can be safely ignored. Let us denote the
first two terms by J :

J(α) =
1

2

∫
r̂(x)2q(x)dx−

∫
r̂(x)q′(x)dx.
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Approximating the expectations in J by empirical averages, we obtain

Ĵ(α) =
1

2n

n∑
i=1

r̂(xi)
2 − 1

n′

n′∑
j=1

r̂(x′
j)

=
1

2

b∑
ℓ,ℓ′=1

αℓαℓ′Ĥℓ,ℓ′ −
b∑

ℓ=1

αℓĥℓ, (6)

where

Ĥℓ,ℓ′ :=
1

n

n∑
i=1

φℓ(xi)φℓ′(xi), (7)

ĥℓ :=
1

n′

n′∑
j=1

φℓ(x
′
j). (8)

Taking into account the non-negativity of the density-ratio function r(x), the optimization
problem is formulated as follows.

min
{αℓ}bℓ=1

[
1

2

b∑
ℓ,ℓ′=1

αℓαℓ′Ĥℓ,ℓ′ −
b∑

ℓ=1

αℓĥℓ + λ
b∑

ℓ=1

αℓ

]
subject to αℓ ≥ 0 for ℓ = 1, 2, . . . , b, (9)

where a penalty term λ
∑b

ℓ=1 αℓ is included for regularization purposes with λ (≥ 0)
being a regularization parameter. Eq.(9) is a convex quadratic programming problem and
therefore the unique global optimal solution can be computed efficiently by a standard
optimization package. Basis functions may be designed in the same way as KLIEP (i.e.,
Gaussian basis functions; see Section 2.5).

Model selection of the Gaussian width σ and the regularization parameter λ is possible
by a variant of cross-validation: First, {xi}ni=1 and {x′

j}n
′

j=1 are divided into k disjoint
subsets {Xi}ki=1 and {X ′

j}kj=1, respectively. Then a density-ratio estimate r̂ℓ(x) is obtained
using {Xi}i̸=ℓ and {X ′

j}j ̸=ℓ, and the cost J is approximated using the hold-out samples Xℓ

and X ′
ℓ as

Ĵℓ :=
1

2|Xℓ|
∑
x∈Xℓ

r̂ℓ(x)
2 − 1

|X ′
ℓ |
∑
x′∈X ′

ℓ

r̂ℓ(x
′).

This procedure is repeated for ℓ = 1, 2, . . . , k and its average Ĵ is used as an estimate of
J :

Ĵ :=
1

k

k∑
ℓ=1

Ĵℓ.

The LSIF solution α̂ is shown to be piecewise linear with respect to the regularization
parameter λ [11]. Therefore, the regularization path (i.e., solutions for all λ) can be
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Input: Ĥ and ĥ % see Eqs.(7) and (8) for the definition
Output: entire regularization path α̂(λ) for λ ≥ 0

τ ←− 0; k ←− argmaxi{ĥi | i = 1, 2, . . . , b};
λτ ←− ĥk; Â ←− {1, 2, . . . , b}\{k};
α̂(λτ )←− 0b; % the vector with all zeros
While λτ > 0

Ê ←− O|Â|×b
; % the matrix with all zeros

For i = 1, 2, . . . , |Â|
Êi,ji ←− 1; % Â = {j1, j2, . . . , j|Â| | j1 < j2 < · · · < j|Â|}

end

Ĝ←−

(
Ĥ −Ê⊤

−Ê O|Â|×|Â|

)
;

u←− Ĝ−1

(
ĥ

0|Â|

)
; v ←− Ĝ−1

(
1b
0|Â|

)
;

If v ≤ 0
b+|Â| % the final interval

λτ+1 ←− 0; α̂(λτ+1)←− (u1, u2, . . . , ub)
⊤;

else % an intermediate interval

k ←− argmaxi{ui/vi | vi > 0, i = 1, 2, . . . , b+ |Â|};
λτ+1 ←− max{0, uk/vk};
α̂(λτ+1)←− (u1, u2, . . . , ub)

⊤ − λτ+1(v1, v2, . . . , vb)
⊤;

If 1 ≤ k ≤ b

Â ←− Â ∪ {k};
else

Â ←− Â\{jk−b};
end

end
τ ←− τ + 1;

end

α̂(λ)←−

{
0b if λ ≥ λ0
λτ+1−λ
λτ+1−λτ

α̂(λτ ) +
λ−λτ

λτ+1−λτ
α̂(λτ+1) if λτ+1 ≤ λ ≤ λτ

Figure 3: Pseudo code for computing the entire regularization path of LSIF. The compu-
tation of Ĝ−1 is sometimes unstable. For stabilization purposes, small positive diagonals
may be added to Ĥ .
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computed efficiently based on the parametric optimization technique [43, 44, 45]. A pseudo
code of the regularization path tracking algorithm for LSIF is described in Figure 3. This
implies that a quadratic programming solver is no longer needed for obtaining the LSIF
solution—just computing matrix inverses is enough. This highly contributes to saving the
computation time. Furthermore, the regularization path algorithm is computationally
very efficient when the solution is sparse, i.e., most of the elements are zero since the
number of change points tends to be small for sparse solutions.

An R implementation of the entire LSIF algorithm is available from

http://www.math.cm.is.nagoya-u.ac.jp/~kanamori/software/LSIF/

2.7 Unconstrained Least-squares Importance Fitting

LSIF combined with regularization path tracking is computationally very efficient. How-
ever, it sometimes suffers from a numerical problem and therefore is not practically re-
liable. To cope with this problem, an approximation method called unconstrained LSIF
(uLSIF) has been introduced [11].

The approximation idea is very simple: the non-negativity constraint in the optimiza-
tion problem (9) is dropped. This results in the following unconstrained optimization
problem.

min
{αℓ}bℓ=1

[
1

2

b∑
ℓ,ℓ′=1

αℓαℓ′Ĥℓ,ℓ′ −
b∑

ℓ=1

αℓĥℓ +
λ

2

b∑
ℓ=1

α2
ℓ

]
. (10)

In the above, a quadratic regularization term is included λ
∑b

ℓ=1 α
2
ℓ/2 instead of the linear

one since the linear penalty term does not work as a regularizer without the non-negativity
constraint. Eq.(10) is an unconstrained convex quadratic program, so the solution can be
analytically computed as

α̃ = (α̃1, α̃2, . . . , α̃b)
⊤ = (Ĥ + λIb)

−1ĥ,

where Ib is the b-dimensional identity matrix. Since the non-negativity constraint αℓ ≥ 0
is dropped, some of the learned parameters could be negative. To compensate for this
approximation error (see the reference [46] for theoretical error analysis), the solution is
modified as

α̂ℓ = max(0, α̃ℓ) for ℓ = 1, 2, . . . , b. (11)

An advantage of the above unconstrained formulation is that the solution can be computed
just by solving a system of linear equations. Therefore, the computation is fast and stable.
See the reference [47] for theoretical analysis of algorithmic stability.

Another, and more significant advantage of uLSIF is that the score of leave-one-out
cross-validation (LOOCV) can be computed analytically—thanks to this property, the
computational complexity for performing leave-one-out cross-validation is the same order
as just computing a single solution, which is explained below. In the current setting,
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two sets of samples {xi}ni=1 and {x′
j}n

′
j=1 are given, which generally have different sample

size. For explaining the idea in a simple manner, we assume that n < n′ and xi and x′
i

(i = 1, 2, . . . , n) are held out at the same time; {x′
j}n

′
j=n+1 are always used for density-ratio

estimation.
Let r̂(i)(x) be an estimate of the density ratio obtained without xi and x′

i. Then the
leave-one-out cross-validation score is expressed as

LOOCV =
1

n

n∑
i=1

[
1

2
(r̂(i)(xi))

2 − r̂(i)(x′
i)

]
. (12)

Our approach to efficiently computing the leave-one-out cross-validation score is to use the
Sherman-Woodbury-Morrison formula [48] for computing matrix inverses. A pseudo code
of uLSIF with LOOCV-based model selection is summarized in Figure 4. MATLABR⃝

and R implementations of the entire uLSIF algorithm are available from

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/uLSIF/

http://www.math.cm.is.nagoya-u.ac.jp/~kanamori/software/LSIF/

2.8 Discussions

Table 1 summarizes properties of the density-ratio estimation methods.
KDE is efficient in computation since no optimization is involved, and model selec-

tion is possible by likelihood cross-validation. However, KDE is not accurate in high-
dimensional problems [1, 18].

KMM may potentially overcome the weakness of KDE by directly estimating the
density ratio. However, there is no objective model selection method. Therefore, model
parameters such as the Gaussian width need to be determined by hand, which is highly
unreliable unless we have strong prior knowledge. Furthermore, the computation of KMM
is rather demanding since a quadratic programming problem has to be solved.

LogReg and KLIEP also do not involve density estimation, but different from KMM,
they give estimators the entire density-ratio function, not only the values of the density-
ratio function at samples. Therefore, the values of the density ratio at unseen points
can be estimated by LogReg and KLIEP. This feature is highly useful since it enables
us to employ cross-validation for model selection, which is a significant advantage over
KMM. However, LogReg and KLIEP are computationally rather expensive since non-
linear optimization problems have to be solved.

LSIF is qualitatively similar to LogReg and KLIEP, i.e., it can avoid density esti-
mation, model selection is possible, and non-linear optimization is involved. LSIF is
advantageous over LogReg and KLIEP in that it is equipped with a regularization path
tracking algorithm. Thanks to this, model selection of LSIF is computationally much more
efficient than LogReg and KLIEP. However, the regularization path tracking algorithm
tends to be numerically unstable.
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Input: {xi}ni=1 and {x′
j}n

′
j=1

Output: r̂(x)

b←− min(100, n′); n←− min(n, n′);

Randomly choose b centers {cℓ}bℓ=1 from {x′
j}n

′
j=1 without replacement;

For each candidate of Gaussian width σ

Ĥℓ,ℓ′ ←−
1

n

n∑
i=1

exp

(
−||xi − cℓ||2 + ||xi − cℓ′ ||2

2σ2

)
for ℓ, ℓ′ = 1, 2, . . . , b;

ĥℓ ←−
1

n′

n′∑
j=1

exp

(
−
||x′

j − cℓ||2

2σ2

)
for ℓ = 1, 2, . . . , b;

Xℓ,i ←− exp

(
−∥xi − cℓ∥2

2σ2

)
for i = 1, 2, . . . , n and ℓ = 1, 2, . . . , b;

X ′
ℓ,i ←− exp

(
−∥x

′
i − cℓ∥2

2σ2

)
for i = 1, 2, . . . , n and ℓ = 1, 2, . . . , b;

For each candidate of regularization parameter λ

B̂ ←− Ĥ +
λ(n− 1)

n
Ib;

B0 ←− B̂−1ĥ1⊤n + B̂−1X diag

(
ĥ⊤B̂−1X

n1⊤n − 1⊤b (X ∗ B̂−1X)

)
;

B1 ←− B̂−1X ′ + B̂−1X diag

(
1⊤b (X

′ ∗ B̂−1X)

n1⊤n − 1⊤b (X ∗ B̂−1X)

)
;

B2 ←− max

(
Ob×n,

n− 1

n(n′ − 1)
(n′B0 −B1)

)
;

r ←− (1⊤b (X ∗B2))
⊤; r′ ←− (1⊤b (X

′ ∗B2))
⊤;

LOOCV(σ, λ)←− r⊤r

2n
− 1⊤n r

′

n
;

end
end

(σ̂, λ̂)←− argmin(σ,λ) LOOCV(σ, λ);

H̃ℓ,ℓ′ ←−
1

n

n∑
i=1

exp

(
−||xi − cℓ||2 + ||xi − cℓ′ ||2

2σ̂2

)
for ℓ, ℓ′ = 1, 2, . . . , b;

h̃ℓ ←−
1

n′

n′∑
j=1

exp

(
−
||x′

j − cℓ||2

2σ̂2

)
for ℓ = 1, 2, . . . , b;

α̂←− max(0b, (H̃ + λ̂Ib)
−1h̃);

r̂(x)←−
b∑

ℓ=1

α̂ℓ exp

(
−||x− cℓ||2

2σ̂2

)
;

Figure 4: Pseudo code of uLSIF with leave-one-out cross-validation. B ∗B′ denotes the
element-wise multiplication of matrices B and B′ of the same size. For n-dimensional
vectors b and b′, diag

(
b
b′

)
denotes the n×n diagonal matrix with the i-th diagonal element

bi/b
′
i.
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Table 1: Density-ratio estimation methods.

Methods
Density

estimation
Model

selection
Optimization

Out-of-sample
prediction

KDE Necessary Available Analytic Possible

KMM Not necessary Not available Convex quadratic program Not possible

LogReg Not necessary Available Convex non-linear Possible

KLIEP Not necessary Available Convex non-linear Possible

LSIF Not necessary Available Convex quadratic program Possible

uLSIF Not necessary Available Analytic Possible

uLSIF inherits good properties of other methods, e.g., no density estimation is involved
and a built-in model selection method is available. In addition to these preferable prop-
erties, the solution of uLSIF can be computed analytically through matrix inversion and
therefore uLSIF is computationally very efficient and numerically stable. Furthermore,
thanks to the availability of the closed-form solution of uLSIF, the leave-one-out cross-
validation score can be analytically computed without repeating hold-out loops, which
highly contributes to reducing the computation time in the model selection phase.

As experimentally demonstrated in Section 4, KLIEP, LSIF, and uLSIF are shown to
be accurate and uLSIF is computationally advantageous. Thus the use of uLSIF may be
recommended for practical use.

3 Statistical Data Processing via Density-ratio Esti-

mation

In this section, we show how the density ratio estimation methods could be employed for
solving various statistical data processing tasks.

3.1 Covariate Shift Adaptation

Covariate shift [22] is a situation in supervised learning where the input distributions
change between the training and test phases but the conditional distribution of outputs
given inputs remains unchanged. Under covariate shift, standard learning techniques
such as maximum likelihood estimation are biased; the bias caused by covariate shift can
be asymptotically canceled by weighting the loss function according to the importance
[22, 2, 3, 5]. The basic idea of covariate shift adaptation is summarized in the following
importance sampling identity:

E
q′(x)

[g(x)] =

∫
g(x)q′(x)dx

=

∫
g(x)r(x)q(x)dx = E

q(x)
[g(x)r(x)].
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That is, the expectation of a function g(x) over q′(x) can be computed by the importance-
weighted expectation over q(x). Similarly, standard model selection criteria such as cross-
validation or Akaike’s information criterion lose their unbiasedness due to covariate shift;
proper unbiasedness can be recovered by modifying the methods based on importance
weighting [22, 2, 3, 5, 4, 14]. Furthermore, the performance of active learning or the
experiment design, i.e., the training input distribution is designed by the user to enhance
the generalization performance, could also be improved by the use of the importance.
[49, 50, 51, 52].

Thus the importance plays a central role in covariate shift adaptation and density-
ratio estimation methods could be used for reducing the estimation bias under covariate
shift. Examples of successful real-world applications includes brain-computer interface
[5], robot control [53], speaker identification [54], and natural language processing [15]. A
similar importance-weighting idea also plays a central role in domain adaptation [55] and
multi-task learning [40].

A more practical explanation of covariate shift adaptation techniques are summarized
in Section 4.2 with experimental results.

3.2 Inlier-based Outlier Detection

Let us consider an outlier detection problem [23, 24] of finding irregular samples in a
dataset (“evaluation dataset”) based on another dataset (“model dataset”) that only
contains regular samples. Defining the density ratio over two sets of samples, we can see
that the density-ratio values for regular samples are close to one, while those for outliers
tend to be significantly deviated from one. Thus the density-ratio values could be used as
an index of the degree of outlyingness [7]. Since the evaluation dataset has a wider support
than the model dataset, we regard the evaluation dataset as samples corresponding to the
denominator in the density ratio and the model dataset as samples corresponding to the
numerator in the density ratio. Then outliers tend to have smaller density-ratio values
(i.e., close to zero). As such, density-ratio estimation methods could be employed for
outlier detection. A similar idea could be used for change-point detection in time-series
[56, 57] and two-sample problems in hypothesis testing [58].

Practical advantages of the density-ratio approach in outlier detection scenarios are
experimentally investigated in Section 4.3.

3.3 Conditional Density Estimation

Suppose we are given n i.i.d. paired samples {(xk,yk)}nk=1 drawn from a joint distribution
with density p(x,y). The goal is to estimate the conditional density p(y|x). When the
domain of x is continuous, conditional density estimation is not straightforward since a
naive empirical approximation cannot be used [26, 59].

In the context of density-ratio estimation, let us regard {(xk,yk)}nk=1 as samples cor-
responding to the numerator of the density ratio and {xk}nk=1 as samples corresponding
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to the denominator of the density ratio, i.e., we consider the density ratio defined by

r(x,y) :=
p(x,y)

p(x)
,

which is equivalent to the conditional density p(y|x). Thus a density-ratio estimation
method directly gives an estimate of the conditional density. Using a density-ratio esti-
mation method, we can estimate the conditional density as

p̂(y|x) = r̂(x,y).

Below, we explain a more technical detail by taking the uLSIF idea as an example.
Similar formulations are also possible for LSIF and KLIEP. However, KMM and LogReg
may not be used for conditional density estimation since these methods explicitly require
that the domains of the denominator and the numerator of the density ratio are common,
which is not satisfied here.

For the density-ratio model

r̂(x,y) =
b∑

ℓ=1

αℓφℓ(x,y),

let us consider the following squared fitting error.

1

2

∫∫
(r̂(x,y)− r(x,y))2 p(x)dxdy

=
1

2

∫∫ ( b∑
ℓ=1

αℓφℓ(x,y)

)2

p(x)dxdy −
∫∫ b∑

ℓ=1

αℓφℓ(x,y)p(x,y)dxdy

+
1

2

∫∫
r(x,y)p(x,y)dxdy,

where the last term is a constant. Ignoring the constant, approximating the integral
by sample averages, and adding the ℓ2-regularizer, we have the following optimization
problem:

min
{αℓ}bℓ=1

[
1

2

b∑
ℓ,ℓ′=1

αℓαℓ′Ĥℓ,ℓ′ −
b∑

ℓ=1

αℓĥℓ +
λ

2

b∑
ℓ=1

α2
ℓ

]
,

where

Ĥℓ,ℓ′ :=
1

n

n∑
k=1

∫
φℓ(xk,y)φℓ′(xk,y)dy,

ĥℓ :=
1

n

n∑
k=1

φℓ(xk,yk).
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This is basically the same formulation as uLSIF. For the Gaussian basis functions

ϕℓ(x,y) = exp

(
−∥x− uℓ∥2

2σ2

)
exp

(
−∥y − vℓ∥2

2σ2

)
,

the integral in the definition of Ĥℓ,ℓ′ above can be computed analytically as∫
ϕℓ(x,y)ϕℓ′(x,y)dy

= (
√
πσ)dY exp

(
−2∥x− uℓ∥2 + 2∥x− uℓ′∥2 + ∥vℓ − vℓ′∥2

4σ2

)
,

where dY denotes the dimension of y.
For the KLIEP-type loss function, we may formulate the optimization criterion as

max
{αℓ}bℓ=1

[
n∑

k=1

log

(
b∑

ℓ=1

αℓφℓ(xk,yk)

)]

subject to
1

n

b∑
ℓ=1

αℓ

n∑
k=1

∫
φℓ(xk,y)dy = 1 and α1, α2, . . . , αb ≥ 0.

Practical advantages of the density-ratio approach in conditional density estimation
scenarios are experimentally investigated in Section 4.4. See the paper [16] for more detail.

3.4 Mutual Information Estimation

Suppose that we are given n i.i.d. paired samples {(xk,yk)}nk=1 drawn from a joint distri-
bution with density p(x,y). Let us denote the marginal densities of xk and yk by p(x)
and p(y), respectively. Mutual information I(X, Y ) between random variables X and Y
is defined by

I(X,Y ) :=

∫∫
p(x,y) log

p(x,y)

p(x)p(y)
dxdy, (13)

which plays a central role in information theory [29]. A squared-loss variant of mutual
information is defined by

Is(X, Y ) :=
1

2

∫ (
p(x,y)

p(x)p(y)
− 1

)2

p(x)p(y)dxdy. (14)

This corresponds to the f -divergence [60, 61] from p(x,y) to p(x)p(y) with the squared
loss, while ordinary mutual information (13) corresponds to the f -divergence with the log
loss (i.e., the Kullback-Leibler divergence [36]).
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3.4.1 Estimating Mutual Information using Density-ratio Methods

Let us regard {(xk,yk)}nk=1 as samples corresponding to the numerator of the density
ratio and {(xk,yk′)}nk,k′=1 as samples corresponding to the denominator of the density
ratio, i.e., we consider the density ratio defined by

r(x,y) :=
p(x,y)

p(x)p(y)
.

Then mutual information can be estimated using a density-ratio estimator r̂(x,y) as
follows [8]:

Î(X,Y ) =
1

n

n∑
k=1

log r̂(xk,yk).

Below, we explain a more concrete formulation by taking the uLSIF idea as an example;
see the papers [8, 13, 17] for more detail on mutual information estimation based on
density-ratio methods. For the density-ratio model

r̂(x,y) =
b∑

ℓ=1

αℓφℓ(x,y),

let us consider the following squared fitting error.

1

2

∫∫
(r̂(x,y)− r(x,y))2 p(x)p(y)dxdy

=
1

2

∫∫ ( b∑
ℓ=1

αℓφℓ(x,y)

)2

p(x)p(y)dxdy −
∫∫ b∑

ℓ=1

αℓφℓ(x,y)p(x,y)dxdy

+
1

2

∫∫
r(x,y)p(x,y)dxdy,

where the last term is a constant. Ignoring the constant, approximating the integral
by sample averages, and adding the ℓ2-regularizer, we have the following optimization
problem:

min
{αℓ}bℓ=1

[
1

2

b∑
ℓ,ℓ′=1

αℓαℓ′Ĥℓ,ℓ′ −
b∑

ℓ=1

αℓĥℓ +
λ

2

b∑
ℓ=1

α2
ℓ

]
, (15)

where

Ĥℓ,ℓ′ :=
1

n2

n∑
k,k′=1

φℓ(xk,yk′)φℓ′(xk,yk′),

ĥℓ :=
1

n

n∑
k=1

φℓ(xk,yk).
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This is basically the same formulation as uLSIF.
For the KLIEP-type loss function, we may formulate the optimization criterion as

max
{αℓ}bℓ=1

[
n∑

k=1

log

(
b∑

ℓ=1

αℓφℓ(xk,yk)

)]

subject to
1

n2

b∑
ℓ=1

αℓ

n∑
k,k′=1

φℓ(xk,yk′) = 1 and α1, α2, . . . , αb ≥ 0.

The uLSIF-type algorithm would be suitable for estimating squared-loss mutual in-
formation (14), while the KLIEP-type algorithm would be suited for estimating log-loss
mutual information (13).

3.4.2 Variable Selection

Mutual information can be used for measuring independence between random variables
[30, 31] since it vanishes if and only if x and y are independent. Thus we can use density-
ratio estimation methods for variable selection.

Let
x = (x(1), x(2), . . . , x(d))⊤.

If mutual information between a variable x(m) and an output y is small, the variable
x(m) is irrelevant to the prediction of y; on the other hand, a variable with large mutual
information is relevant for prediction. Thus, variable selection can be carried out, e.g., by
ranking all the variables according to estimated mutual information values and choosing
the leading variables for subsequent learning procedures.

Note that the range of application of this method is not limited to selecting a single
variable, but this method can also be used for selecting a subset of variables based on
mutual information between variable subsets and the output value. See the paper [12] for
applications in bioinformatics.

3.4.3 Feature Extraction

Variable selection is restricted to choosing a subset of variables. In contrast, feature
extraction tries to construct new features from original variables, typically in the form of
a linear combination of original variables [32, 33].

From the viewpoint of independence between random variables, the most informative
feature ξ(1) (∈ Rd) for predicting the output value y is given by

ξ(1) := argmax
ξ

I(Xξ, Y ) subject to ||ξ|| = 1,

where Xξ is the orthogonal projection of the input vector X onto ξ. The next informative
feature may be sought iteratively in the orthogonal complement of the features found so
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far. More specifically, the (m+ 1)-th feature is obtained as

ξ(m+1) := argmax
ξ

I(Xξ, Y )

subject to ||ξ|| = 1, (ξ(1), ξ(2), . . . , ξ(m))⊤ξ = 0m.

Then the final M -dimensional feature vector of a sample x is constructed as

(ξ(1), ξ(2), . . . , ξ(M))⊤x.

Thus, density-ratio estimation methods can be used for feature extraction.
See the paper [17] for technical details of density-ratio based feature extraction, where

M components are searched in a batch manner in the context of sufficient dimension
reduction [62].

3.4.4 Independent Component Analysis

Suppose there is a d-dimensional random signal

x = (x(1), x(2), . . . , x(d))⊤

drawn from p(x), where x(1), x(2), . . . , x(d) are statistically independent of each other, i.e.,
p(x) is factorized as

p(x) = p1(x
(1))p2(x

(2)) · · · pd(x(d)).
We cannot directly observe the signal x, but we are only given a linearly mixed signal y:

y = Ax,

where A is a d × d invertible matrix called the mixing matrix. The goal of independent
component analysis[34] is, given mixed signal samples {yi}ni=1, to obtain a de-mixing
matrix W that recovers the original signal x:

x̂ = Wy.

The ideal solution is given by
W = A−1,

but we do not care about the permutation and scaling of each component of x̂.
A direct approach to independent component analysis is to determine W so that each

component of x̂ is as independent as possible. Here we can use mutual information as an
independence measure.

I(X̂(1), X̂(2), . . . , X̂(d)) :=

∫
p(x̂) log

p(x̂)∏d
m=1 p(x̂

(m))
dx̂.

Thus density-ratio estimation methods could be used for independent component analysis.
See the paper [13] for technical details.
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4 Experiments

In this section, we illustrate the usefulness of the density ratio methods through various
experiments.

4.1 Comparison of Density-ratio Estimation Methods

First, we compare the experimental performance of the density-ratio estimation methods
reviewed in Section 2.

Let the dimension of the input space be d and

q(x) = N (x; (0, 0, . . . , 0)⊤, Id), (16)

q′(x) = N (x; (1, 0, . . . , 0)⊤, Id), (17)

where N (·;µ,Σ) denotes the Gaussian density with mean µ and covariance matrix Σ
and Id is the d-dimensional identity matrix. The task is to estimate the density ratio at
{xi}ni=1:

ri := r(xi) =
q′(xi)

q(xi)
for i = 1, 2, . . . , n. (18)

We compare the following methods:

KDE(CV): The Gaussian kernel (1) is used, where the kernel widths for estimating q(x)
and q′(x) are separately optimized based on 5-fold likelihood cross-validation.

KMM(med): The performance of KMM is dependent on B, ϵ, and σ. We set B = 1000
and ϵ = (

√
n− 1)/

√
n following the original paper [4], and the Gaussian width σ is

set at the median distance among all pairs of samples in {xi}ni=1∪{x′
j}n

′
j=1, following

the heuristic used in the references [38, 33].

LogReg(CV): Gaussian kernels are used as basis functions, where the kernel width σ
and the regularization parameter λ are chosen based on 5-fold cross-validation.

KLIEP(CV): A Gaussian kernel model is used, where the kernel width σ is selected
based on 5-fold likelihood cross-validation.

uLSIF(CV): A Gaussian kernel model is used, where the kernel width σ and the regu-
larization parameter λ are determined based on leave-one-out cross-validation.

We did not include LSIF due to its numerical instability. All the methods are im-
plemented using the MATLAB R⃝ environment, where the CPLEX R⃝ optimizer is used for
solving quadratic programs in KMM and the LIBLINEAR implementation is used for
LogReg [63].

We fix n′ = 1000 and consider the following two settings for n and d:

(a) n = 100 and d = 1, 2, . . . , 20,
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(b) d = 10 and n = 50, 60, . . . , 150.

We run the experiments 100 times for each d, each n, and each method, and evaluate
the quality of the importance estimates {r̂i}ni=1 by the normalized mean squared error
(NMSE):

NMSE :=
1

n

n∑
i=1

(
r̂i∑n

i′=1 r̂i′
− ri∑n

i′=1 ri′

)2

. (19)

NMSEs averaged over 100 trials (a) as a function of the input dimensionality d and
(b) as a function of the sample size n are plotted in log scale in Figure 5. Error bars
are omitted for clear visibility—instead, the best method in terms of the mean error and
comparable ones based on the t-test [58] at the significance level 1% are indicated by ‘◦’;
the methods with significant difference are indicated by ‘×’.

Figure 5(a) shows that the error of KDE(CV) sharply increases as the input dimension
grows, while LogReg, KLIEP, and uLSIF tend to give much smaller errors than KDE. This
would be the fruit of directly estimating the density ratio without going through density
estimation. KMM tends to perform poorly, which is caused by an inappropriate choice of
the Gaussian kernel width. On the other hand, model selection in LogReg, KLIEP, and
uLSIF seems to work quite well. Figure 5(b) shows that the errors of all methods tend
to decrease as the number of samples grows. Again, LogReg, KLIEP, and uLSIF tend to
give much smaller errors than KDE and KMM.

Next we investigate the computation time. Each method has a different model selection
strategy, i.e., KMM does not involve model selection, KDE and KLIEP involve cross-
validation over the kernel width, and LogReg and uLSIF involve cross-validation over
both the kernel width and the regularization parameter. Thus the naive comparison of
the total computation time is not so meaningful. For this reason, we first investigate the
computation time of each density-ratio estimation method after the model parameters are
fixed.

The average CPU computation time over 100 trials are summarized in Figure 6. Fig-
ure 6(a) shows that the computation time of KDE, KLIEP, and uLSIF is almost indepen-
dent of the input dimensionality, while that of KMM and LogReg is highly dependent on
the input dimensionality. Among them, uLSIF is one of the fastest methods. Figure 6(b)
shows that the computation time of LogReg, KLIEP, and uLSIF is nearly independent of
the number of samples, while that of KDE and KMM sharply increase as the number of
samples increases.

Both LogReg and uLSIF have very good accuracy and their computation time after
model selection is comparable. Finally, we compare the entire computation time of LogReg
and uLSIF including cross-validation, which is summarized in Figure 7. We note that
the Gaussian width σ and the regularization parameter λ are chosen over the 9 × 9
equidistant grid in this experiment for both LogReg and uLSIF. Therefore, the comparison
of the entire computation time is fair. Figure 7(a) and Figure 7(b) show that uLSIF
is approximately 5 times faster than LogReg under the current setup. More practical
comparison of computation time will be shown in the next subsections.
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Figure 5: NMSEs averaged over 100 trials in log scale. Error bars are omitted for clear
visibility. Instead, the best method in terms of the mean error and comparable ones based
on the t-test at the significance level 1% are indicated by ‘◦’; the methods with significant
difference are indicated by ‘×’.
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Figure 6: Average computation time (after model selection) over 100 trials.
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Figure 7: Average computation time over 100 trials (including model selection of the
Gaussian width σ and the regularization parameter λ over the 9× 9 grid).
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Overall, uLSIF is shown to be the most computationally-efficient method among the
group of the most accurate methods.

4.2 Covariate Shift Adaptation in Regression and Classification

Next, we illustrate the performance of the importance estimation methods in covariate
shift adaptation.

In addition to training input samples {xi}ni=1 drawn from a training input density q(x)
and test input samples {x′

j}n
′

j=1 drawn from a test input density q′(x), suppose that we
are given training output samples {yi}ni=1 at the training input points {xi}ni=1. The task
is to predict the outputs {y′j}n

′
j=1 for the test inputs {x′

j}n
′

j=1 based on the input-output
training samples {(xi, yi)}ni=1.

We use the following kernel model for function learning:

f̂(x;θ) =
t∑

ℓ=1

θℓKh(x,mℓ),

where Kh(x,x
′) is the Gaussian kernel (1) and mℓ is a template point randomly chosen

from {x′
j}n

′
j=1 without replacement. We set the number of kernels at t = 50. We learn the

parameter θ by importance-weighted regularized least-squares (IWRLS) [64, 3]:

θ̂IWRLS := argmin
θ∈Rt

[
n∑

i=1

r̂(xi)
(
f̂(xi;θ)− yi

)2
+ γ||θ||2

]
. (20)

It is known that IWRLS is consistent when the true importance r(xi) is used as weights—
unweighted RLS is not consistent due to covariate shift, given that the true learning target
function f(x) is not realizable by the model f̂(x) [22].

The solution θ̂IWRLS is analytically given by

θ̂IWRLS = (K⊤ŴK + γIb)
−1K⊤Ŵy,

where

Ki,ℓ := Kh(xi,mℓ),

Ŵ := diag (r̂(x1), r̂(x2), . . . , r̂(xn)) ,

y := (y1, y2, . . . , yn)
⊤.

diag (a, b, . . . , c) denotes the diagonal matrix with the diagonal elements a, b, . . . , c.
The kernel width h and the regularization parameter γ in IWRLS (20) are chosen by

importance-weighted cross-validation (IWCV) [5]. More specifically, we first divide the
training samples {zi | zi = (xi, yi)}ni=1 into R disjoint subsets {Zr}Rr=1. Then a function

f̂r(x) is learned using {Zj}j ̸=r by IWRLS and its mean test error for the remaining samples
Zr is computed:

1

|Zr|
∑

(x,y)∈Zr

r̂(x)loss
(
f̂r(x), y

)
,
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where

loss (ŷ, y) :=

{
(ŷ − y)2 (Regression),
1
2
(1− sign{ŷy}) (Classification).

We repeat this procedure for r = 1, 2, . . . , R and choose the kernel width h and the
regularization parameter γ so that the average of the above mean test error over all r is
minimized. We set the number of folds in importance-weighted cross-validation to R = 5.
Importance-weighted cross-validation is shown to be an (almost) unbiased estimator of
the generalization error, while unweighted cross-validation with misspecified models is
biased due to covariate shift [2, 5].

The datasets provided by DELVE [65] and IDA [66] are used for performance eval-
uation. Each dataset consists of input/output samples {(xk, yk)}nk=1. We normalize all
the input samples {xk}nk=1 into [0, 1]d and choose the test samples {(x′

j, y
′
j)}n

′
j=1 from the

pool {(xk, yk)}nk=1 as follows. We randomly choose one sample (xk, yk) from the pool and

accept this with probability min(1, 4(x
(c)
k )2), where x

(c)
k is the c-th element of xk and c

is randomly determined and fixed in each trial of the experiments. Then we remove xk

from the pool regardless of its rejection or acceptance, and repeat this procedure until n′

samples are accepted. We choose the training samples {(xi, yi)}ni=1 uniformly from the
rest. Thus, in this experiment, the test input density tends to be lower than the training
input density when x

(c)
k is small. We set the number of samples at n = 100 and n′ = 500

for all datasets. Note that we only use {(xi, yi)}ni=1 and {x′
j}n

′
j=1 for training regressors or

classifiers; the test output values {y′j}n
′

j=1 are used only for evaluating the generalization
performance.

We run the experiments 100 times for each dataset and evaluate the mean test error :

1

n′

n′∑
j=1

loss
(
f̂(x′

j), y
′
j

)
.

The results are summarized in Table 2, where ‘Uniform’ denotes uniform weights (or
equivalently, no importance weight). The numbers in the brackets are the standard devi-
ation. All the error values are normalized so that the mean error of Uniform is one. For
each dataset, the best method in terms of the mean error and comparable ones based on
the Wilcoxon signed rank test at the significance level 1% are described in bold face. The
upper half of the table corresponds to regression datasets taken from DELVE [65], while
the lower half correspond to classification datasets taken from IDA [66]. All the methods
are implemented using the MATLAB R⃝ environment, where the CPLEX R⃝ optimizer is
used for solving quadratic programs in KMM and the LIBLINEAR implementation is
used for LogReg [63].

The table shows that the generalization performance of KLIEP and uLSIF tends to
be better than that of Uniform, KDE, KMM, and LogReg. The mean computation time
over 100 trials is described in the bottom row of the table, where the value is normalized
so that the computation time of uLSIF is one. This shows that the computation time of
uLSIF is much shorter than KLIEP. Thus, uLSIF is overall shown to be useful in covariate
shift adaptation.



A Density-ratio Framework for Statistical Data Processing 28

Table 2: Mean test error averaged over 100 trials for covariate shift adaptation in regres-
sion and classification. The numbers in the brackets are the standard deviation. All the
error values are normalized by that of ‘Uniform’ (uniform weighting, or equivalently no
importance weighting). For each dataset, the best method in terms of the mean error
and comparable ones based on the Wilcoxon signed rank test at the significance level
1% are described in bold face. The upper half corresponds to regression datasets taken
from DELVE [65], while the lower half correspond to classification datasets taken from
IDA [66]. All the methods are implemented using theMATLAB R⃝ environment, where the
CPLEX R⃝ optimizer is used for solving quadratic programs in KMM and the LIBLINEAR
implementation is used for LogReg [63].

Data Uniform KDE
(CV)

KMM
(med)

LogReg
(CV)

KLIEP
(CV)

uLSIF
(CV)

kin-8fh 1.00(0.34) 1.22(0.52) 1.55(0.39) 1.31(0.39) 0.95(0.31) 1.02(0.33)
kin-8fm 1.00(0.39) 1.12(0.57) 1.84(0.58) 1.38(0.57) 0.86(0.35) 0.88(0.39)
kin-8nh 1.00(0.26) 1.09(0.20) 1.19(0.29) 1.09(0.19) 0.99(0.22) 1.02(0.18)
kin-8nm 1.00(0.30) 1.14(0.26) 1.20(0.20) 1.12(0.21) 0.97(0.25) 1.04(0.25)

abalone 1.00(0.50) 1.02(0.41) 0.91(0.38) 0.97(0.49) 0.94(0.67) 0.96(0.61)
image 1.00(0.51) 0.98(0.45) 1.08(0.54) 0.98(0.46) 0.94(0.44) 0.98(0.47)

ringnorm 1.00(0.04) 0.87(0.04) 0.87(0.04) 0.95(0.08) 0.99(0.06) 0.91(0.08)
twonorm 1.00(0.58) 1.16(0.71) 0.94(0.57) 0.91(0.61) 0.91(0.52) 0.88(0.57)
waveform 1.00(0.45) 1.05(0.47) 0.98(0.31) 0.93(0.32) 0.93(0.34) 0.92(0.32)

Average 1.00(0.38) 1.07(0.40) 1.17(0.37) 1.07(0.37) 0.94(0.35) 0.96(0.36)

Comp.
time

— 0.82 3.50 3.27 2.23 1.00

4.3 Inlier-based Outlier Detection

Next, we apply importance estimation methods to outlier detection.
We again test KMM(med), LogReg(CV), KLIEP(CV), and uLSIF(CV) for importance

estimation; in addition, we include native outlier detection methods for comparison pur-
poses. The outlier detection problem that the native methods used below solve is to find
outliers in a single dataset {xk}nk=1—the native methods can be employed in the current
scenario (i.e., inlier-based outlier detection) just by finding outliers from all samples:

{xk}nk=1 = {xi}ni=1 ∪ {x′
j}n

′

j=1.

One-class support vector machine (OSVM): The support vector machine (SVM)
[1, 38] is one of the most successful classification algorithms in machine learning.
The core idea of SVM is to separate samples in different classes by the maximum
margin hyperplane in a kernel-induced feature space.

OSVM is an extension of SVM to outlier detection [24]. The basic idea of OSVM
is to separate data samples {xk}nk=1 into outliers and inliers by a hyperplane in a
Gaussian reproducing kernel Hilbert space. More specifically, the solution of OSVM



A Density-ratio Framework for Statistical Data Processing 29

is given as the solution of the following convex quadratic programming problem:

min
{rk}nk=1

1

2

n∑
k,k′=1

rkrk′Kσ(xk,xk′)

subject to
n∑

k=1

rk = 1 and 0 ≤ r1, r2, . . . , rn ≤
1

νn
,

where ν (0 ≤ ν ≤ 1) is the maximum fraction of outliers.

We use the inverse distance of a sample from the separating hyperplane as an outlier
score. The OSVM solution is dependent on the outlier ratio ν and the Gaussian
kernel width σ, and there seems to be no systematic method to determine the values
of these tuning parameters. Here we use the median distance between samples as
the Gaussian width, which is a popular heuristic [38, 33]. The value of ν is fixed
to the true output ratio, i.e., the ideal optimal value. Thus the simulation results
below should be slightly in favor of OSVM.

Local outlier factor (LOF): LOF is the score to detect a local outlier which lies rela-
tively far from the nearest dense region [23]. For a prefixed natural number k, the
LOF value of a sample x is defined by

LOFR(x) =
1

k

k∑
i=1

imdk(nearesti(x))

imdk(x)
,

where nearesti(x) denotes the i-th nearest neighbor of x and imdk(x) denotes the
inverse mean distance from x to its k nearest neighbors:

imdk(x) =
1

1
k

∑k
i=1 ∥x− nearesti(x)∥

.

If x alone is apart from a cloud of points, imdk(x) tends to become smaller than
imdk(nearesti(x)) for all i. Then the LOF value gets large and therefore such a
point is regarded as an outlier. The performance of LOF depends on the choice of
the parameter k and there seems no systematic way to find an appropriate value of
k. Here we test several different values of k.

Kernel density estimator (KDE’): A naive density estimation of all data samples
{xk}nk=1 can also be used for outlier detection since the density value itself could
be regarded as an outlier score. We use KDE with the Gaussian kernel (1) for
density estimation, where the kernel width is determined based on 5-fold likelihood
cross-validation.

All the methods are implemented using the R environment—we use the ksvm routine
in the kernlab package for OSVM [67] and the lofactor routine in the dprep package for
LOF [68].
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The datasets provided by IDA [66] are used for performance evaluation. These datasets
are binary classification datasets consisting of positive/negative and training/test sam-
ples. We allocate all positive training samples for the “model” set, while all positive
test samples and a fraction ρ (= 0.01, 0.02, 0.05) of negative test samples are assigned in
the “evaluation” set. Thus, we regard the positive samples as regular and the negative
samples as irregular.

When evaluating the performance of outlier detection methods, it is important to take
into account both the detection rate (the amount of true outliers an outlier detection
algorithm can find) and the detection accuracy (the amount of true inliers that an outlier
detection algorithm misjudges as outliers). Since there is a trade-off between the detection
rate and the detection accuracy, we adopt the area under the ROC curve (AUC) as our
error metric [69].

The mean AUC values over 20 trials as well as the computation time in Table 3,
where the value is normalized so that the computation time of uLSIF is one. The table
shows that uLSIF works fairly well. KLIEP works slightly better than uLSIF, but uLSIF
is computationally much more efficient. LogReg overall works reasonably well, but it
performs poorly for some datasets and the average AUC performance is not as good as
uLSIF or KLIEP. KMM and OSVM are not comparable to uLSIF in AUC and they
are computationally inefficient. Note that we also tested KMM and OSVM with several
different Gaussian widths and experimentally found that the heuristic of using the median
sample distance as the Gaussian kernel width works reasonably well in this experiment.
Thus the AUC values of KMM and OSVM are close to optimal. LOF with large k is shown
to work well, although it is not clear whether the heuristic of simply using large k is always
appropriate or not. The computational cost of LOF is high since nearest neighbor search
is computationally expensive. KDE’ works reasonably well, but its performance is not as
good as uLSIF and KLIEP.

Overall, uLSIF is shown to work well with low computational costs.

4.4 Conditional Density Estimation

We apply the uLSIF idea to conditional density estimation and investigate its practical
performance using benchmark datasets.

We compare the uLSIF-based method with the following methods.

ϵ-neighbor Kernel Density Estimation (ϵ-KDE): For estimating the conditional
density p(y|x), ϵ-neighbor kernel density estimation (ϵ-KDE) employs the standard
kernel density estimator using a subset of samples, {yi}i∈Ix,ϵ for some threshold ϵ
(≥ 0), where Ix,ϵ is the set of sample indices such that

∥xi − x∥ ≤ ϵ.

In the case of Gaussian kernels, ϵ-KDE is expressed as

p̂(y|x) = 1

|Ix,ϵ|
∑
i∈Ix,ϵ

N (y;yi, σ
2IdY),
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Table 3: Mean AUC values for outlier detection over 20 trials for the benchmark datasets.
All the methods are implemented using the R environment, where quadratic programs in
KMM are solved by the ipop optimizer [67], the ksvm routine is used for OSVM [67], and
the lofactor routine is used for LOF [68].

Data uLSIF KLIEP LogReg KMM OSVM LOF KDE’
Name ρ (CV) (CV) (CV) (med) (med) k = 5 k = 30 k = 50 (CV)

banana
.01 .851 .815 .447 .578 .360 .838 .915 .919 .934
.02 .858 .824 .428 .644 .412 .813 .918 .920 .927
.05 .869 .851 .435 .761 .467 .786 .907 .909 .923

b-cancer
.01 .463 .480 .627 .576 .508 .546 .488 .463 .400
.02 .463 .480 .627 .576 .506 .521 .445 .428 .400
.05 .463 .480 .627 .576 .498 .549 .480 .452 .400

diabetes
.01 .558 .615 .599 .574 .563 .513 .403 .390 .425
.02 .558 .615 .599 .574 .563 .526 .453 .434 .425
.05 .532 .590 .636 .547 .545 .536 .461 .447 .435

f-solar
.01 .416 .485 .438 .494 .522 .480 .441 .385 .378
.02 .426 .456 .432 .480 .550 .442 .406 .343 .374
.05 .442 .479 .432 .532 .576 .455 .417 .370 .346

german
.01 .574 .572 .556 .529 .535 .526 .559 .552 .561
.02 .574 .572 .556 .529 .535 .553 .549 .544 .561
.05 .564 .555 .540 .532 .530 .548 .571 .555 .547

heart
.01 .659 .647 .833 .623 .681 .407 .659 .739 .638
.02 .659 .647 .833 .623 .678 .428 .668 .746 .638
.05 .659 .647 .833 .623 .681 .440 .666 .749 .638

s-image
.01 .812 .828 .600 .813 .540 .909 .930 .896 .916
.02 .829 .847 .632 .861 .548 .785 .919 .880 .898
.05 .841 .858 .715 .893 .536 .712 .895 .868 .892

splice
.01 .713 .748 .368 .541 .737 .765 .778 .768 .845
.02 .754 .765 .343 .588 .744 .761 .793 .783 .848
.05 .734 .764 .377 .643 .723 .764 .785 .777 .849

thyroid
.01 .534 .720 .745 .681 .504 .259 .111 .071 .256
.02 .534 .720 .745 .681 .505 .259 .111 .071 .256
.05 .534 .720 .745 .681 .485 .259 .111 .071 .256

titanic
.01 .525 .534 .602 .502 .456 .520 .525 .525 .461
.02 .496 .498 .659 .513 .526 .492 .503 .503 .472
.05 .526 .521 .644 .538 .505 .499 .512 .512 .433

t-norm
.01 .905 .902 .161 .439 .846 .812 .889 .897 .875
.02 .896 .889 .197 .572 .821 .803 .892 .901 .858
.05 .905 .903 .396 .754 .781 .765 .858 .874 .807

w-form
.01 .890 .881 .243 .477 .861 .724 .887 .889 .861
.02 .901 .890 .181 .602 .817 .690 .887 .890 .861
.05 .885 .873 .236 .757 .798 .705 .847 .874 .831

Average .661 .685 .530 .608 .596 .594 .629 .622 .623

Comp. time 1.00 11.7 5.35 751 12.4 85.5 8.70
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where N (y;µ,Σ) denotes the Gaussian density with mean µ and covariance matrix
Σ and dY denotes the dimension of y. The threshold ϵ and the bandwidth σ may be
chosen based on likelihood cross-validation. ϵ-KDE is simple and easy-to-use, but
is not reliable in high-dimensional problems. Slightly more sophisticated variants
have been proposed based on weighted kernel density estimation[70, 71], but they
still share the same weakness.

Mixture Density Network (MDN): The mixture density network (MDN) models the
conditional density by a mixture of parametric densities[26]. In the case of Gaussian
densities, MDN is expressed as

p̂(y|x) =
b∑

ℓ=1

πℓ(x)N (y;µℓ(x), σ
2
ℓ (x)IdY),

where πℓ(x) denotes the mixing coefficient such that

b∑
ℓ=1

πℓ(x) = 1 and 0 ≤ πℓ(x) ≤ 1 for all x ∈ DX.

All the parameters {πℓ(x),µℓ(x), σ
2
ℓ (x)}bℓ=1 are learned as a function of x by a

neural network with regularized maximum likelihood estimation. The number b of
Gaussian components, the number of hidden units in the neural network, and the
regularization parameter may be chosen based on likelihood cross-validation. MDN
has been shown to work well, although its training is time-consuming and only a
local solution may be obtained due to non-convexity of neural network learning.

Kernel Quantile Regression (KQR): Kernel quantile regression (KQR) predicts the
100τ -percentile of the conditional distribution for a given τ (∈ (0, 1)) when y is
one-dimensional[27, 72]. For the Gaussian kernel model

f̂τ (x) =
n∑

i=1

αi,τϕi(x) + bτ ,

the parameters {αi,τ}ni=1 and bτ are learned by

min
{αi,τ}ni=1,bτ

[
n∑

i=1

ψτ (yi − f̂τ (xi)) + λ
n∑

i,j=1

ϕi(xj)αi,ταj,τ

]
,

where

ψτ (r) =

{
(1− τ)|r| (r ≤ 0),

τ |r| (r > 0).

Thus, solving KQR for all τ ∈ (0, 1) gives an estimator of the entire conditional
distribution. The bandwidth σ and the regularization parameter λ may be chosen
based on cross-validation.
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Table 4: Experimental results on benchmark datasets. The difference between out-of-
sample negative log-likelihoods of uLSIF and the competing methods are described. The
positive (negative) values indicate that the performance of uLSIF is better (worse) than
the competing method. Mean computation time is described as the ratio to uLSIF (i.e.,
smaller is faster). dX denotes the dimensionality of the input x. The dimensionality of
the output y is one in all the datasets.

Dataset (n, dX) vs. ϵ-KDE vs. MDN vs. KQR

caution (50,2) 0.25 0.40 0.47
ftcollinssnow (46,1) −0.02 0.01 0.79
highway (19,11) −0.69 2.15 0.05
heights (687,1) 0.03 0.14 0.35
sniffer (62,4) 0.64 0.69 0.44

snowgeese (22,2) −1.64 3.32 −0.09
ufc (117,4) 0.42 −0.21 0.16

birthwt (94,7) 0.05 0.06 0.53
crabs (100,6) 0.84 −1.28 −0.78

GAGurine (157,1) 0.08 −0.49 0.10
geyser (149,1) 0.22 0.46 0.56
gilgais (182,8) 0.94 −0.41 1.74
topo (26,2) 0.02 0.85 0.66

BostonHousing (253,13) −0.21 −0.39 −0.30
CobarOre (19,2) 0.27 0.15 6.84

engel (117,1) 0.99 −0.21 —
mcycle (66,1) −0.22 0.08 0.12

BigMac2003 (34,9) −0.26 0.13 0.51
UN3 (62,6) 0.93 −0.20 0.02
cpus (104,7) 0.47 0.82 —

Computation time ×0.0036 ×37.0 ×0.64

A key fact is that the solution of KQR is piecewise linear with respect to τ , so the
entire solution path can be computed efficiently[28]. This implies that the condi-
tional cumulative distribution can be computed efficiently. However, solution path
tracking tends to be numerically rather unstable and the range of applications of
KQR is limited to one-dimensional output y. Furthermore, some heuristic procedure
is needed to convert conditional cumulative distributions into conditional densities,
which can cause additional estimation errors.

We use the benchmark datasets described in Table 4, which are accompanied with
the R package [73]. In each dataset, 50% of samples are randomly chosen for conditional
density estimation and the rest are used for computing the estimation accuracy based on
the out-of-sample log-likelihood. In MDN, the number of Gaussian components is set to
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b = 3. The results are summarized in Table 4, showing that uLSIF compares favorably
with the other methods in accuracy. Note that the solution of KQR was not available for
the ‘engel’ and ‘cpus’ datasets due to numerical instability.

4.5 Mutual Information Estimation

Finally, we apply the KLIEP idea to estimating mutual information (13) and investigate
its practical performance using artificial datasets.

We compare the KLIEP-based method with the following methods.

Kernel Density Estimator (KDE): Based on KDE, mutual information can be ap-
proximated using density estimates p̂(x,y), p̂(x), and p̂(y) (obtained from
{(xi,yi)}ni=1, {xi}ni=1, and {yi}ni=1, respectively) as

Î(X,Y ) =
1

n

n∑
i=1

log
p̂(xi,yi)

p̂(xi)p̂(yi)
.

However, density estimation is known to be a hard problem and division by esti-
mated densities may expand the estimation error. For this reason, the KDE-based
approach may not be reliable in practice.

A more sophisticated density estimation approach uses histogram-based density
estimators with data-dependent partition. In the context of estimating Kullback-
Leibler divergence, consistency properties of histogram-based methods have been
studied thoroughly [74, 75, 76]. However, these methods are not reliable in high-
dimensional problems.

K-nearest Neighbor Method (KNN): Mutual information can be expressed in terms
of the entropies as

I(X, Y ) = H(X) +H(Y )−H(X, Y ),

where H(X) denotes the entropy of X:

H(X) := −
∫
q(x) log q(x)dx.

Thus mutual information can be approximated if the entropies H(X), H(Y ), and
H(X,Y ) are estimated.

Based on this expression, a mutual information estimator that utilizes the k-nearest
neighbor distance (KNN) was developed [30]. Let us define the norm of z = (x,y)
by

∥z∥z := max{∥x∥, ∥y∥},
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where ∥ · ∥ denotes the Euclidean norm. Let Nk(i) be the set of k-nearest neighbor
samples of (xi,yi) with respect to the norm ∥ · ∥z, and let

ϵx(i) := max{∥xi − xi′∥ | (xi′ ,yi′) ∈ Nk(i)},
nx(i) := |{zi′ | ∥xi − xi′∥ ≤ ϵx(i)}|,
ϵy(i) := max{∥yi − yi′∥ | (xi′ ,yi′) ∈ Nk(i)},
ny(i) := |{zi′ | ∥yi − yi′∥ ≤ ϵy(i)}|.

Then the KNN-based mutual information estimator is given by

Î(X, Y ) =ψ(k) + ψ(n)− 1

k
− 1

n

n∑
i=1

[
ψ(nx(i)) + ψ(ny(i))

]
,

where ψ is the digamma function.

An advantage of the above KNN-based method is that it does not simply replace
entropies with their estimates, but it is designed to cancel the error of individual
entropy estimation. It is reported to perform better than the KDE-based method
[77], and its consistency properties have been theoretically studied in the context
of general Kullback-Leibler divergence estimation [78]. However, a drawback of
the KNN-based approach in practice is that the estimation accuracy depends on
the value of k and there seems no systematic strategy to choose the value of k
appropriately.

Edgeworth Expansion Method (EDGE): An entropy approximator based on the
Edgeworth expansion was proposed in the reference [31], where the entropy of a
distribution is approximated by that of the normal distribution and some additional
higher-order correction terms. More specifically, for a d-dimensional distribution,
an estimator Ĥ of the entropy H is given by

Ĥ =Hnormal −
1

12

d∑
i=1

κ2i,i,i −
1

4

d∑
i,j=1,i ̸=j

κ2i,i,j −
1

72

d∑
i,j,k=1,i<j<k

κ2i,j,k,

where Hnormal is the entropy of the normal distribution with covariance matrix equal
to the target distribution and κi,j,k (1 ≤ i, j, k ≤ d) is the standardized third cu-
mulant of the target distribution. In practice, all the cumulants are estimated from
samples.

Based on EDGE, mutual information can be approximated using entropy estimators
Ĥ(X), Ĥ(Y ), and Ĥ(X, Y ) as

Î(X, Y ) = Ĥ(X) + Ĥ(Y )− Ĥ(X, Y ).

If the underlying distribution is close to the normal distribution, the above approxi-
mation is accurate and the EDGE method works well. However, if the distributions
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are far from the normal distribution, the approximation error becomes large and
therefore the EDGE method is unreliable.

In principle, it is possible to include the fourth and even higher cumulants for
further reducing the estimation bias. However, this in turn increases the estimation
variance; the expansion up to the third cumulants seems to be reasonable.

We use the following four datasets for experiments (see Figure 8):

(a) Linear dependence: y has a linear dependence on x as

x ∼ N (x; 0, 0.5) and y|x ∼ N (y; 3x, 1),

where N (x;µ, σ2) denotes the normal density with mean µ and variance σ2.

(b) Non-linear dependence with correlation: y has a quadratic dependence on x as

x ∼ N (x; 0, 1) and y|x ∼ N (y; x2, 1).

(c) Non-linear dependence without correlation: y has a lattice-structured depen-
dence on x as

x ∼ U(x;−0.5, 0.5) and y|x ∼

{
N (x; 0, 1

3
) if x ≤ |1

6
|,

1
2
(N (x; 1, 1

3
) +N (x;−1, 1

3
)) otherwise,

where U(x; a, b) denotes the uniform density on (a, b).

(d) Independence: x and y are independent to each other as

x ∼ U(x; 0, 0.5) and y|x ∼ N (y; 0, 1).

The task is to estimate mutual information (13) between x and y. We compare the
performance of KLIEP (with cross validation), KDE (with cross validation), KNN (with

k = 1, 5, 15), and EDGE; the approximation error of a mutual information estimate Î is
measured by

|Î − I|.

Figure 9 depicts the average approximation error—KLIEP, KDE, KNN with k =
5, and EDGE perform well for the dataset (a), KLIEP tends to outperform the other
estimators for the dataset (b), KLIEP and KNN with k = 5 show the best performance
against the other methods for the dataset (c), and KLIEP, EDGE, and KNN with k = 15
perform well for the dataset (d).

KDE works moderately well for the datasets (a)–(c), while it performs poorly for the
dataset (d). This instability would be ascribed to devision by estimated densities, which
tends to magnify the estimation error. KNN seems work well for all four datasets if the
value of k is chosen optimally; the best value of k varies depending on the datasets and thus
using a prefixed value of k is not appropriate. Therefore, k needs to be chosen adaptively
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Figure 8: Datasets used in mutual information estimation experiments.

using the data samples. However, there is no systematic model selection strategy for KNN
and therefore KNN would be unreliable in practice. EDGE works well for the datasets (a),
(b), and (d), which posses high normality1. However, for the dataset (c) where normality
of the target distributions is low, the EDGE method performs poorly. In contrast, KLIEP
with cross validation performs reasonably well for all four datasets in a stable manner.

These experimental results show that KLIEP nicely compensates for the weaknesses
of the existing methods.

1Note that although the Edgeworth approximation is exact when the target distributions are precisely
normal, the EDGE method still suffers from some estimation error since the cumulants are estimated
from samples.
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tion
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Figure 9: MI approximation error measured by |Î−I| averaged over 100 trials as a function
of the sample size n. The symbol ‘◦’ on a line means that the corresponding method is
the best in terms of the average error or is judged to be comparable to the best method
by the t-test at the significance level 1%.
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5 Conclusions

Avoiding density estimation is crucial in statistical data processing, as advocated by
Vladimir Vapnik. Following this idea, a new data analysis framework based on the ratio
of two probability density functions has been developed recently and is gathering a lot of
attention in the machine learning and data mining communities. In this paper, we gave a
comprehensive review of density-ratio estimation methods and discussed advantages and
disadvantages of the methods qualitatively and quantitatively. Then we explained that the
density-ratio framework accommodates a wide variety of statistical data processing tasks
such as non-stationarity adaptation, outlier detection, conditional density estimation, and
mutual information estimation We expect that such a new approach could be useful in
various computer vision applications.

So far, parametric and non-parametric convergence rates of density-ratio estimation
methods have been investigated thoroughly [42, 4, 10, 8, 11] and algorithmic stability has
been studied in the framework of smoothed analysis [47]. Further investigating advan-
tages of direct density-ratio estimation over indirect density estimation approaches is an
important future direction to pursue.
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