
1Neural Computation, vol.21, no.5, pp.1459–1484, 2009.

Theory and Algorithm
for Learning with Dissimilarity Functions

Liwei Wang (wanglw@cis.pku.edu.cn)
Key Laboratory of Machine Perception, MOE

School of Electronics Engineering and Computer Science, Peking University
Beijing, 100871, P.R.China

Masashi Sugiyama (sugi@cs.titech.ac.jp)
Department of Computer Science, Tokyo Institute of Technology

2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan

Cheng Yang (yangch@cis.pku.edu.cn)
Key Laboratory of Machine Perception, MOE

School of Electronics Engineering and Computer Science, Peking University
Beijing, 100871, P.R.China

Kohei Hatano (hatano@i.kyushu-u.ac.jp)
Department of Informatics, Kyushu University

744 Motooka, Nishi-ku, Fukuoka-city, 819-0395, Japan

Jufu Feng (fjf@cis.pku.edu.cn)
Key Laboratory of Machine Perception, MOE

School of Electronics Engineering and Computer Science, Peking University
Beijing, 100871, P.R.China

Abstract
We study the problem of classification when only a dissimilarity function between
objects is accessible. That is, data samples are represented not by feature vectors
but in terms of their pairwise dissimilarities. We establish sufficient conditions for
dissimilarity functions to allow building accurate classifiers. The theory immedi-
ately suggests a learning paradigm: construct an ensemble of simple classifiers each
depending on a pair of examples, then find a convex combination of them to achieve
a large margin. We next develop a practical algorithm referred to as Dissimilarity
based Boosting (DBoost) for learning with dissimilarity functions under the theoret-
ical guidance. Experiments on a variety of databases demonstrate that the DBoost
algorithm is promising for several dissimilarity measures widely used in practice.

Keywords

Dissimilarity functions, Boosting, Sample complexity

Theory and Algorithm for Learning with Dissimilarity Functions 2

1 Introduction

In classification problems, objects are often represented by feature vectors in a Euclidean
space. The Euclidean feature space provides much more analytical tools for classifica-
tion than other representations. However, such a representation requires the selection of
features, which is usually difficult and domain dependent. For example, in the area of
fingerprint analysis, it took scientists for more than one hundred years to discover useful
features for fingerprint recognition (Maltoni et al., 2003). It is not clear even today what
kind of features have good discrimination ability for human face recognition, and existing
feature extraction algorithms are not reliable or accurate enough (Zhao et al., 2003).

An alternative way is to describe the patterns using dissimilarity functions. Dissimilar-
ity is a function that reflects the “distance” between two objects but with no restrictions
on its mathematical properties. For some applications such as image retrieval, dissimilar-
ity representation has the advantage that it is more convenient to define such a measure
than a set of meaningful features (Jacobs et al., 2000; Jain and Zongker, 1997). A num-
ber of image dissimilarities have been proposed in the literature (Simard et al., 1993;
Huttenlocher et al., 1993; Li et al., 2002; Wang et al., 2005) and successfully used in
real-world applications. Dissimilarity functions can also be defined on strings, graphs and
other structured objects (Gärtner, 2003; Saigo et al., 2004). This procedure thus provides
a bridge between classical and structural approaches to pattern classification (Graepel
et al., 1999; Goldfarb, 1985).

The simplest method to classify objects in dissimilarity representations is the nearest
neighbor (NN) rule. NN has an appealing asymptotic property that its error rate converges
to the Bayes optimal risk (Hart and Cover, 1967). However, the rate of convergence of NN
could be very slow (Fukunaga, 1990), and it is observed in practice that NN is sensitive
to the choice of dissimilarity measures and noise (Breiman et al., 1984).

In contrast to NN, there are several algorithms that take into account the global in-
formation as well. One type of methods first embeds the data into a (possibly pseudo)
Euclidean space, then applies traditional Euclidean classification algorithms, with modifi-
cations adapted to the pseudo Euclidean if necessary (Graepel et al., 1999). Another
type of methods explicitly constructs feature representations of the objects via their
(dis)similarities to a set of prototypes, and then runs standard linear separator algorithms
like Support Vector Machines (Vapnik, 1998) in the new space (Balcan et al., 2004, 2006;
Pekalska and Duin, 2002). All these algorithms demonstrate superior performance to NN
on a number of datasets.

In accordance to the progress made in algorithm development, a theoretical foundation
of learning with dissimilarities is needed. In some cases, a theory of learning can be given
in the form of sufficient conditions for efficient learning. The kernel theory is such an
example—the theory states that large margin is a sufficient condition for good kernels:
If the data are well separated with a large margin in an implicit high dimensional space
induced by the kernel, then the kernel is good. That is, there exists a learning algorithm
which can generate a classifier having a low generalization error with a small number of
training examples. Also important in practice is that the large margin condition implies

Theory and Algorithm for Learning with Dissimilarity Functions 3

learning algorithms that are computationally efficient. All the algorithms that only involve
the inner product in the original input space can be kernelized by replacing the inner
product by a positive semi-definite kernel.

Recently, Balcan and Blum (2006) developed a theory of learning with similarities in
this way. They defined a notion of what it means for a pairwise function to be a good
similarity function for a learning problem. They showed that their definition is sufficient
to allow one to learn well and captures the standard notion of a good kernel with some
degradation on learning parameters (see also Srebro, 2007; Balcan et al., to appear, for
details). This theory immediately suggests algorithms that use feature representation
based on prototypes as described earlier, and therefore provides a theoretical explanation
of their good empirical performances.

In this paper we develop a theory for learning with dissimilarity functions, in parallel
to Balcan and Blum’s results. We propose new sufficient conditions for a dissimilarity
function that yield good learning guarantees. These sufficient conditions also suggest a
computationally efficient algorithm which is a boosting type algorithm that combines an
ensemble of simple classifiers of special forms. We then make the algorithm more suitable
for practical usage. An advantage of our theory and algorithm is that they are appli-
cable to unbounded dissimilarity functions, while previous results deal with normalized
similarity measures.

The paper is organized as follows: We describe our theory in Section 2. In Section 3,
a practical algorithm called DBoost is proposed for learning with dissimilarity functions
as a consequence of the theory. We provide experimental evidence of the benefits of our
algorithm in Sections 4 and 5, and finally conclude in Section 6.

2 Theory

In this section we describe our theory of learning with dissimilarity functions. We pro-
pose sufficient conditions that have good learning guarantees and imply computationally
efficient algorithms. We begin with a simple yet intuitively reasonable sufficient condition
and then generalize it to incorporate more sophisticated cases.

2.1 Notations

By dissimilarity we mean any nonnegative bivariate function d(x, x′), where x, x′ ∈ X,
and X is an instance space. The axioms of a metric, i.e. reflectivity, symmetry and
triangle inequality are not necessary for a dissimilarity function.

Labeled examples are represented by z, z′, z′′, . . ., where z = (x, y), x ∈ X and y ∈
{−1, 1}. The examples are drawn randomly and, either independently or conditionally
independently, from the underlying distribution P of the problem over X×{−1, 1}. These
are always clear from the context. I denotes the indicator function, and sgn(x) = 1 if
x > 0 and −1 otherwise.

Theory and Algorithm for Learning with Dissimilarity Functions 4

2.2 Sufficient Conditions for Learning with Dissimilarity Func-
tions

We propose in this subsection sufficient conditions for a dissimilarity function that are
useful for learning.

2.2.1 Strong (ϵ, γ)-goodness

We first give a notion of good dissimilarity functions, which is quite intuitive. This
definition expresses that if most examples are more likely to be close to random examples
z′ of the same class than to z′′ of the opposite class, the dissimilarity function is good.
More precisely, we use an accuracy parameter ϵ and a margin parameter γ to characterize
the goodness of a dissimilarity function.

Definition 1 A dissimilarity function d(x, x′) is said to be strongly (ϵ, γ)-good for the
learning problem, if at least 1 − ϵ probability mass of examples z satisfy1:

P (d(x, x′) < d(x, x′′) | y′ = y, y′′ = −y) ≥ 1/2 + γ/2, (1)

where the probability is over random examples z′ = (x′, y′) and z′′ = (x′′, y′′).

The notion of strongly (ϵ, γ)-good dissimilarity functions suggests a simple learning
algorithm: draw pairs of examples of different labels, and vote according to which class the
test example is more likely to be close to. This is summarized in the following theorem.

Theorem 2 If d is a strongly (ϵ, γ)-good dissimilarity function, then with probability at
least 1−δ over the choice of n = (4/γ2)ln(1/δ) pairs of examples (z′i, z

′′
i) with labels y′

i = 1,
y′′

i = −1, i = 1, 2, . . . , n, the following classifier

H(x) = sgn [f(x)] ,

where

f(x) =
1

n

n∑
i=1

sgn [d(x, x′′
i) − d(x, x′

i)],

has an error rate of no more than ϵ + δ. That is

P (yf(x) ≤ 0) ≤ ϵ + δ.

Proof The proof uses a technique in Balcan and Blum (2006). Let M be the set of
examples satisfying (1). For any fixed z = (x, y) ∈ M ,

P (d(x, x′)< d(x, x′′) | y′ =y, y′′ =−y)

= E (I (d(x, x′)< d(x, x′′)) | y′ =y, y′′ =−y)

=
1

2
E (sgn[d(x, x′′) − d(x, x′)] | y′ =y, y′′ =−y) +

1

2
,

1In (1) using γ/2 is to make 0 ≤ γ ≤ 1.

Theory and Algorithm for Learning with Dissimilarity Functions 5

where the probability is over random examples z′ = (x′, y′) and z′′ = (x′′, y′′) . Thus
inequality (1) is equivalent to

E (sgn [d(x, x′′) − d(x, x′)] | y′ =y, y′′ =−y) ≥ γ.

The Chernoff bound then implies that:

PSn (y · f(x) ≤ 0) = PSn

(
y · 1

n

n∑
i=1

sgn [d(x, x′′
i) − d(x, x′

i)] ≤ 0

)
≤ e−nγ2/2,

where PSn denotes the probability over the choice of n pairs of training examples. Since
the above inequality holds for every z ∈ M , we can take expectation over all z ∈ M ,
which results in that the expected error is at most e−nγ2/2, i.e.

Ez∈M [PSn (yf(x) ≤ 0)] ≤ e−nγ2/2.

Note that

Ez∈M [PSn (yf(x) ≤ 0)] = Pz∈M, Sn (yf(x) ≤ 0) = ESn [Pz∈M (yf(x) ≤ 0)] ,

thus we have
ESn [Pz∈M (yf(x) ≤ 0)] ≤ e−nγ2/2.

Next using the Markov inequality we obtain that the probability that the error rate over
the set M is larger than θ is at most e−nγ2/2/θ for arbitrary θ > 0:

PSn [Pz∈M (yf(x) ≤ 0) ≥ θ] ≤ e−nγ2/2/θ.

Finally, setting δ = e−nγ2/2/θ and adding the ϵ probability of examples z not in M
completes the proof.

2.2.2 (ϵ, γ, B)-goodness

Although Definition 1 and its suggested algorithm is natural, the notion of strong
(ϵ, γ)-goodness may be too restrictive. Many good dissimilarity functions that can be
used, in a more intellectually way, to learn well do not satisfy Definition 1. To il-
lustrate this, we show in Fig.1 a simple one-dimensional example. In this learning
problem, positive and negative examples are uniformly distributed in [1/8, 9/8] and
[−9/8,−1/8] respectively. The dissimilarity function of two points x and x′ used here
is d(x, x′) = |x − x′|. This problem should be perfectly learned with this dissimilarity
function. However, for positive example x ≈ 1/8 or negative example x ≈ −1/8, the
probability P (d(x, x′) < d(x, x′′) | y′ = y, y′′ = −y) is not one. In fact, it is not difficult
to show that for any positive example x ∈ [1/8, 1/4] or negative example x ∈ [−1/4,−1/8],
we have

P (d(x, x′) < d(x, x′′) | y′ = y, y′′ = −y) =
1

2
+

3/4

2
≤ 7

8
.

Theory and Algorithm for Learning with Dissimilarity Functions 6

0 1/8 -1/8 9/8 -9/8

Positive

Y = +1

Negative

 Y = -1

X

Figure 1: Positive examples are uniformly distributed in [1/8, 9/8]. Negative examples
are uniformly distributed in [−9/8,−1/8]. d(x, x′) = |x − x′|.

That is, 1/8 probability mass of examples do not have a margin larger than 3/4. Thus
the dissimilarity function is not strongly (1/8, γ)-good for any γ > 3/4.

Notice however, for any example (x, y) in the above problem, when randomly choosing
x′ (or x′′) of the same (or opposite) class of x, if we only use the examples near the bound-
ary, then we would have that d(x, x′) < d(x, x′′) (y′ = y, y′′ = −y) holds for all examples
(x, y). To be concrete, if we draw x′ according to a new distribution p̃(x | y = 1) which is
the uniform distribution on [1/8, 3/8], and draw x′′ according to p̃(x | y = −1) which is
the uniform distribution on [−3/8,−1/8], we can learn a zero-error classifier. Therefore,
with respect to the new distributions p̃(x|y), the dissimilarity function is perfect: it is
strongly (0, 1)-good for the problem.

Generally, if we know the dissimilarity function is strongly good with respect to distri-
butions p̃(x|y = 1) and p̃(x|y = −1), we could reweight the data as if they were generated
from p̃ and learn the classifier in the same way as described in Theorem 2.

In the following definition, a further step is made. We merely assume the existence of
the new distributions, which are not necessarily known a priori. This definition therefore
captures a broad class of dissimilarity functions. Later it will become clear that this
assumption alone is sufficient to learn an accurate classifier.

Definition 3 Denote by p(x | y = 1) and p(x | y = −1) the conditional pdfs of the
learning problem. A dissimilarity function d is said to be (ϵ, γ, B)-good for the learning
problem if:

1. There exist two conditional pdfs p̃(x | y = 1) and p̃(x | y = −1) such that for all
x ∈ X

p̃(x | y =1)

p(x | y =1)
≤

√
B,

p̃(x | y =−1)

p(x | y =−1)
≤

√
B.

2. At least 1 − ϵ probability mass of examples z satisfy

P̃ (d(x, x′) < d(x, x′′)| y′ = y, y′′ = −y) ≥ 1/2 + γ/2, (2)

where P̃ is the probability with respect to p̃(x′|y′) and p̃(x′′|y′′) . That is,

P̃ (d(x, x′) < d(x, x′′)| y′ = y, y′′ = −y)

=

∫∫
I [d(x, x′)< d(x, x′′)] p̃ (x′| y′=y) p̃ (x′′| y′′=−y) dx′dx′′.

Theory and Algorithm for Learning with Dissimilarity Functions 7

The next theorem says that (ϵ, γ, B)-goodness guarantees the existence of a low-error
large-margin classifier, which is a convex combination of the base classifiers.

Theorem 4 If d is a (ϵ, γ, B)-good dissimilarity function, then with probability at least
1 − δ over the choice of n = 16B2/γ2 ln(1/δ) pairs of examples ((x′

i, 1), (x′′
i ,−1)), i =

1, 2, . . . , n, there exists a convex combination classifier f(x) of n base classifiers hi(x):

f(x) =
n∑

i=1

αihi(x),
∑

αi = 1, αi ≥ 0,

where
hi(x) = sgn [d(x, x′′

i) − d(x, x′
i)] ,

such that the error rate of the combined classifier at margin γ/2B is at most ϵ + δ. That
is,

P (y · f(x) ≤ γ/2B) ≤ ϵ + δ.

Proof Denote2

w1(x) =
p̃(x | y = 1)

p(x | y = 1)
, w−1(x) =

p̃(x | y = −1)

p(x | y = −1)
.

Let M be the set of examples satisfying (2). For a fixed z = (x, y) ∈ M ,

P̃ (d(x, x′)< d(x, x′′) | y′ =y, y′′ =−y)

=

∫∫
p̃(x′ | y′ =y) p̃(x′′ | y′′ =−y) I [d(x, x′)<d(x, x′′)] dx′dx′′

=

∫∫
wy(x

′) w−y(x
′′) p(x′| y′ = y) p(x′′| y′′ = −y)

{
sgn [d(x, x′′) − d(x, x′)] + 1

2

}
dxdx′

=
1

2
E {wy(x

′)w−y(x
′′) sgn [d(x, x′′)−d(x, x′)] | y′=y, y′′=−y} +

1

2
.

Hence
P̃ (d(x, x′) < d(x, x′′) | y′ = y, y′′ = −y) ≥ 1/2 + γ/2

is equivalent to

E {wy(x
′)w−y(x

′′) sgn [d(x, x′′)− d(x, x′)] | y′=y, y′′=−y} ≥γ.

Note that 0 ≤ w1(x
′)w−1(x

′′) ≤ B , the above inequality together with the Hoeffding
inequality implies that:

P

{
y

1

n

n∑
i=1

w1(x
′
i)w−1(x

′′
i) sgn [d(x, x′′

i)−d(x, x′
i)] ≤ γ/2

}
≤ e−nγ2/8B2

2w1(x) and w−1(x) are called the importance in the context of covariate shift adaptation (Shimodaira,
2000; Sugiyama et al., 2007).

Theory and Algorithm for Learning with Dissimilarity Functions 8

Let αi =
w1(x

′
i) w−1(x

′′
i)∑

j w1(x′
j) w−1(x′′

j)
, we have:

P

y
n∑

i=1

αi sgn [d(x, x′′
i)−d(x, x′

i)] ≤
nγ/2

n∑
j=1

w1(x′
j) w−1(x′′

j)

 ≤ e−nγ2/8B2

.

Since w1(x
′
i)w−1(x

′′
i) ≤ B, we obtain

P

{
y ·

n∑
i=1

αi sgn [d(x, x′′
i) − d(x, x′

i)] ≤ γ/2B

}
≤ e−nγ2/8B2

.

Taking expectation over all z ∈ M then using the Markov inequality as in the proof of
Theorem 2, we complete the proof.

This theorem suggests a simple algorithm for learning with a (ϵ, γ, B)-good dissimi-
larity function d: First draw a set S1 that contains n = O(B2

γ2 ln 1/δ) pairs of examples

((x′
i, 1), (x′′

i ,−1)), i = 1, 2, . . . , n, and then construct n base classifiers

hi(x) = sgn [d(x, x′′
i) − d(x, x′

i)] .

It is guaranteed that with probability 1 − δ there exists a low-error and large-margin
classifier, which is a convex combination of these hi(x). Boosting would be natural for
learning this large-margin voting classifier—thus one draws an additional set of examples
S2, uses Boosting to learn the combination coefficients αi, and obtains the final classifier

H(x) = sgn

[
n∑

i=1

αihi(x)

]
.

In order that the final classifier H(x) has an error rate at most ϵ + ϵ1 with probability at
least 1− 2δ, the size of the second training set S2 can be set as3 Õ(B2

ϵ21γ2) according to the

margin bound for convex combination classifiers (Schapire et al., 1998; Wang et al., 2008).
The total amount of examples needed to achieve such a learning guarantee is Õ(B2

γ2ϵ21
) if

we set δ = ϵ1.

2.2.3 Generalized (ϵ, γ, B)-Goodness

In this subsection we present a generalization of the (ϵ, γ, B)-goodness. Recall in Definition
3 that for a (ϵ, γ, B)-good dissimilarity function d, most examples z = (x, y) satisfy

P̃ (d(x, x′) − d(x, x′′) < 0 | z, y′ = y, y′′ = −y) ≥ 1/2 + γ/2,

3In Õ we hide the negligible logarithm terms of the learning parameters

Theory and Algorithm for Learning with Dissimilarity Functions 9

where P̃ is the probability with respect to two (unknown) pdfs p̃(x′|y′) and p̃(x′′|y′′). A
more broader class of dissimilarity functions would be that most examples z = (x, y)
satisfy

P̃ (d(x, x′) − d(x, x′′) < v | z, y′ = y, y′′ = −y) ≥ 1/2 + γ/2

for some threshold v, which may depend on the example pair (x′, x′′).

Definition 5 Denote by p(x | y = 1) and p(x | y = −1) the conditional pdfs of the
learning problem. A dissimilarity function d is said to be generalized (ϵ, γ, B)-good for the
learning problem if:

1. There exist two conditional pdfs p̃(x | y = 1) and p̃(x | y = −1) such that for all
x ∈ X

p̃(x | y =1)

p(x | y =1)
≤

√
B,

p̃(x | y =−1)

p(x | y =−1)
≤

√
B.

2. There exists a threshold v(x′, x′′) such that at least 1−ϵ probability mass of examples
z satisfy

P̃ (d(x, x′) − d(x, x′′) < v(x′, x′′)| y′ = y, y′′ = −y) ≥ 1/2 + γ/2, (3)

where P̃ is the probability with respect to p̃(x′|y′) and p̃(x′′|y′′).

The learning guarantee of the generalized (ϵ, γ, B)-good dissimilarity functions is the
same as that of the (ϵ, γ, B)-good dissimilarities if the threshold is known.

Theorem 6 Let d be a generalized (ϵ, γ, B)-good dissimilarity function. Assume that
the threshold v(x′, x′′) is known. Then with probability at least 1 − δ over the choice of
n = 16B2/γ2 ln(1/δ) pairs of examples (z′i, z

′′
i) with labels y′

i = 1, y′′
i = −1, i = 1, 2, . . . , n,

there exists a convex combination classifier f(x) of n base classifiers hi(x):

f(x) =
n∑

i=1

αihi(x),
∑

αi = 1, αi ≥ 0,

where
hi(x) = sgn [d(x, x′′

i) − d(x, x′
i) + v(x′, x′′)]

such that the error rate of the combined classifier at margin γ/2B is at most ϵ + δ.

Proof The proof follows the proof of Theorem 4 by replacing sgn[d(x, x′′)−d(x, x′)] with
sgn[d(x, x′′) − d(x, x′) + v(x′, x′′)].

A generalized (ϵ, γ, B)-good dissimilarity function guarantees efficient learning if the
threshold is given. In practice, it is difficult to know the threshold a priori. However, one
can learn the thresholds and the linear coefficients simultaneously in the Boosting frame-
work. Namely, we draw a set S1 of n pairs of examples ((x′, 1), (x′′,−1)) i = 1, 2, . . . , n,

Theory and Algorithm for Learning with Dissimilarity Functions 10

and a training set S2. Then we use Boosting to learn the thresholds v(x′, x′′) and the
coefficients αi so that the combined classifier

f(x) =
n∑

i=1

αihi(x),
∑

αi = 1, αi ≥ 0,

hi(x) = sgn [d(x, x′′
i) − d(x, x′

i) + v(x′, x′′)]

has low-error and large-margin on the training set S2. We will describe this algorithm in
detail and make it more practical in Section 3.

2.2.4 (ϵ, γ, B, η)-Goodness

We propose a further generalization of the previous goodness definitions by weakening the
first condition in Definition 5. Here we do not require there are uniform upper bounds of
p̃(x|y)
p(x|y)

. We only need that p̃(x|y)
p(x|y)

≤ B for most examples. This new definition of goodness
can be applied to a much broader class of dissimilarity functions and contains all previous
goodness notions as special cases.

Definition 7 Denote by p(x | y = 1) and p(x | y = −1) the conditional pdfs of the
learning problem. A dissimilarity function d is said to be (ϵ, γ, B, η)-good for the learning
problem if:

1. There exist two conditional pdfs p̃(x | y= 1) and p̃(x | y= −1) such that

p̃(x | y =1)

p(x | y =1)
≤

√
B,

p̃(x | y =−1)

p(x | y =−1)
≤

√
B

hold for at least 1 − η probability mass of examples (x, y).

2. There exists a threshold v(x′, x′′) such that at least 1−ϵ probability mass of examples
z satisfy

P̃ (d(x, x′) − d(x, x′′) < v(x′, x′′)| y′ = y, y′′ = −y) ≥ 1/2 + γ/2, (4)

where P̃ is the probability with respect to p̃(x′|y′) and p̃(x′′|y′′).

The learning guarantee of a (ϵ, γ, B, η)-good dissimilarity function is the same as the
(ϵ, γ, B)-good dissimilarity only up to a constant factor.

Theorem 8 If d is a (ϵ, γ, B, η)-good dissimilarity function, then with probability at least
1 − δ over the choice of n = 16B2/γ2 ln(2/δ) pairs of examples (z′i, z

′′
i) with labels y′

i =
1, y′′

i = −1, i = 1, 2, . . . , n, there exists a convex combination classifier f(x) of n base
classifiers hi(x):

f(x) =
n∑

i=1

αihi(x),
∑

αi = 1, αi ≥ 0,

Theory and Algorithm for Learning with Dissimilarity Functions 11

where
hi(x) = sgn [d(x, x′′

i) − d(x, x′
i) + v(x′

i, x
′′
i)]

such that the error rate of the combined classifier at margin γ/2B is at most ϵ+δ, provided

η ≤ γ2δ
64B2 ln(2/δ)

and the threshold is known.

Proof The proof is almost the same as Theorem 6. The only difference is that by our
assumption, when choosing n = 16B2/γ2 ln(2/δ) pairs of examples, the probability that
there contains a “bad” example is at most δ/2, where a bad example z′ = (x′, y′) or

z′′ = (x′′, y′′) means that p̃(x′|y′=1)
p(x′|y′=1)

>
√

B or p̃(x′′|y′′=−1)
p(x′′|y′′=−1)

>
√

B respectively.

2.3 Discussions of the Sufficient Conditions

In this subsection we compare our results with existing theory on learning with
(dis)similarity functions, and study possible extension of the proposed sufficient con-
ditions.

2.3.1 Comparison to Previous Theory on Learning with Similarity Functions

We first point out that our results of dissimilarity functions can be easily extended to
similarity functions. Let s(x, x′) denote a similarity function. Just replacing d(x, x′) <
d(x, x′′) by s(x, x′) > s(x, x′′) in all definitions and theorems gives the theory for similarity
functions. Therefore, the theory is a unified framework for learning with similarity and
dissimilarity functions.

In Balcan and Blum (2006) theory, a similarity function s is said to be (ϵ, γ)-good for
a (deterministic label) learning problem if there exists a weighting function w(x) ∈ [0, 1],
such that at least 1 − ϵ probability mass of examples x satisfy

E [w(x′)s(x, x′)|y′ = y] ≥ E [w(x′)s(x, x′)|y′ = −y] + γ.

For a (ϵ, γ)-good similarity function, there is a simple learning approach. First draw a
set of examples {x1, x2, . . . , xn}. Then construct a n-dimensional feature vector of each
object x as

(s(x, x1), s(x, x2), . . . , s(x, xn)) .

It can be shown that with high probability there is a large-margin low-error linear separa-
tor in the n-dimensional feature space. So linear SVM can be used to learn the classifier
in the feature space with a new set of examples.

On the practical side, the theory of Balcan and Blum implies a SVM type algorithm,
while ours suggests a Boosting type algorithm. On the theoretical side, their notion of
good similarity functions and ours are different sufficient conditions for learning with
(dis)similarity functions. That is, neither is a subset of the other, as described in the
following proposition.

Theory and Algorithm for Learning with Dissimilarity Functions 12

Proposition 9

1. For every γ and B, there is a similarity function s(·, ·) and a learning problem P ,
such that s(·, ·) is (0, γ, B)-good for P in our sense, but not (0, γ/B)-good in Balcan
and Blum’s sense.

2. For every γ, there is a similarity function s(·, ·) and a learning problem P , such that
s(·, ·) is (0, γ)-good for P in Balcan and Blum’s sense, but not (0, Bγ, B)-good in
our sense for any B.

Very recently, Balcan et al. (2008) proposed an improved sufficient condition for learn-
ing with similarity functions: s is said to be a (ϵ, γ, τ)-good similarity function for a
learning problem P if there is a random indicator variable R (depending on x′) such
that E[yy′s(x, x′)|R] ≥ γ and Pr(R) ≥ τ . Here R can be understood as a (stochastic)
membership function on x′, indicating whether it is “important” or not.

This new notion of good similarity function and our definition of goodness are still
different sufficient conditions, as shown in the following proposition.

Proposition 10

1. For every γ and B, there is a similarity function s(·, ·) and a learning problem P ,
such that s(·, ·) is (0, γ, B)-good for P in our sense, but not (0, γ′, τ ′)-good in Balcan
et al. improved sense for any γ′ and τ ′ such that γ′τ ′ ≥ γ/B.

2. For every γ, there is a similarity function s(·, ·) and a learning problem P , such that
s(·, ·) is (0, γ, τ)-good for P in Balcan et al. improved sense, but not (0, Bγ′, B)-good
in our sense for any B and any γ′ ≥ max(γ, τ).

Proof This is immediate from the previous proposition and the following relation between
improved (ϵ, γ, τ)-goodness and the (ϵ, γ)-goodness described in (Balcan et al., 2008): A
(ϵ, γ, τ)-good similarity function is also a (ϵ, γτ)-good similarity function; And a (ϵ, γ′)-
good similarity function is also a (ϵ, γ, τ) similarity function, where γ′ ≥ max(γ, τ).

To conclude the comparison, our (ϵ, γ, B)-goodness implies that the “order” of the
(dis)similarity is important. That is, data from the same class are closer than those
from different classes. But how much closer is not crucial. On the other hand, the
(ϵ, γ)-goodness and its improvement of Balcan et al. imply that the average value of the
similarity is important. From a practical viewpoint, if the user has some confidence that
the data from the same class are more likely to be closer to each other, our result and the
suggested Boosting type algorithm apply. This is especially suitable for the applications
in which an appropriate scaling of the (dis)similarities is difficult or expensive. In case
the (dis)similarities are well scaled so that there is a significant difference of the within-
class and between-class (average) similarity, the SVM type algorithm suggested by the
(ϵ, γ)-goodness apply.

Theory and Algorithm for Learning with Dissimilarity Functions 13

2.3.2 Pseudo Good Dissimilarity Functions

We require in our definitions of good dissimilarity functions that most of the examples
(at least 1 − ϵ probability mass) are more likely to be close to a random example of the
same class than to an example of the opposite class. Another natural but weaker notion
would be the following:

Definition 11 A dissimilarity function d(x, x′) is said to be pseudo γ-good for the learn-
ing problem, if

P (d(x, x′) < d(x, x′′) | y′ = y, y′′ = −y) > 1/2 + γ/2, (5)

where the probability is taken over the random examples z = (x, y), z′ = (x′, y′) and
z′′ = (x′′, y′′).

Note that the pseudo γ-goodness is a weaker notion than strong (ϵ, γ)-goodness, as
described in the following proposition.

Proposition 12 If a dissimilarity function is strongly (ϵ, γ)-good for a learning problem,
then it is also pseudo γ′-good, where γ′ = (1 − ϵ)γ − ϵ (if γ′ ≥ 0).

Proof The proposition is immediate by noting that the left hand side of Eq.(5) is the
expectation of the left hand side of Eq.(1) over z = (x, y).

One might expect that the pseudo goodness would also imply learnability, possibly
in a weak sense. However, the next proposition shows that the majority voting scheme
given in previous theorems, in general, does not guarantee any learnability, even in the
weakest sense. This result means that our sufficient conditions for efficient learning with
dissimilarity functions may not be weakened too much.

Proposition 13 For any pseudo γ-good (0 < γ < 1/2) dissimilarity function d, there
exists a learning problem such that even we have infinitely many pairs of training examples
(z′i, z

′′
i) with labels y′

i = 1, y′′
i = −1, i = 1, 2, . . . , n, the error rate of the voting classifier is

higher than 1/2. That is,
P (y · f(x) < 0) > 1/2,

where

f(x) = lim
n→∞

1

n

n∑
i=1

sgn [d(x, x′′
i) − d(x, x′

i)].

Proof For a fixed example z = (x, y), when n → ∞, the law of large numbers gives that
f(x) converges in probability to

E { sgn [d(x, x′′) − d(x, x′)] | z , y′ =1, y′′ =−1 } .

Theory and Algorithm for Learning with Dissimilarity Functions 14

Note further that

E { sgn [d(x, x′′) − d(x, x′)] | z , y′ = 1, y′′ = −1}
= 2P { d(x, x′) < d(x, x′′) | z , y′ = 1, y′′ = −1} − 1.

An error occurs, i.e. yf(x) < 0 if

P { d(x, x′) <d(x, x′′) | z , y′ =y, y′′ =−y } < 1/2.

Denote
g(z) = P (d(x, x′)< d(x, x′′) | z , y′ =y, y′′ =−y) .

For 0 < γ < 1/2, it is easy to construct a distribution4 such that the following two
inequalities hold simultaneously:

E [g(z)] ≥ 1/2 + γ/2,

P (g(z) < 1/2) > 1/2.

The first inequality is equivalent to (3), meaning that the dissimilarity function is pseudo
γ-good for the problem. The second inequality implies that the error rate of the voting
classifier is larger than 1/2.

3 The DBoost Algorithm

In this section, we slightly modify the algorithm suggested by our theory to make it more
suitable for practical usage. The proposed algorithm is essentially a Dissimilarity based
Boosting, which will be referred to as DBoost.

Recall that under the theoretical guidance, to learn with a dissimilarity function d, one
needs to draw two sets of examples. One set contains n pairs of examples ((x′

i, 1), (x′′
i ,−1)),

with which we construct the base classifiers

hi(x) = sgn [d(x, x′′
i) − d(x, x′

i) + vi] , i = 1, 2, . . . , n.

The other set of examples are used as training data for Boosting to learn the thresholds
vi and the combination coefficients αi so that the voting classifier

f(x) =
n∑

i=1

αihi(x),
∑

αi = 1, αi ≥ 0

has a low-error and large-margin on the training set.
In practice however, the users often have only one fixed set of examples. So in the

DBoost algorithm we try to make use of the data efficiently. Denote by S the set of

4For example: P (g(z) = 1/2 − δ) = 1/2 + δ, P (g(z) = 1) = 1/2 − δ, for some small δ.

Theory and Algorithm for Learning with Dissimilarity Functions 15

data the user has. The DBoost algorithm first constructs the pairs (x′
i, 1), (x′′

i ,−1) by
considering all possible pairs of examples with different labels in S. Then S is also
served as the training set for Boosting to learn the final large-margin convex-combination
classifier.

In the DBoost algorithm, we choose AdaBoost as the booster due to its good ability to
generate large-margin classifiers (Freund and Schapire, 1996). The thresholds vi and the
coefficients αi are learned by AdaBoost in a series of rounds. At the ith round, we have
a distribution Di over the training set S. The algorithm then searches for the example
pair (x′

i, x
′′
i) and the threshold vi so that the base classifier

hi(x) = sgn [d(x, x′′
i) − d(x, x′

i) + vi]

has the minimum training error on S with respect to the distribution Di. The (unnor-
malized) coefficient αi is determined by this training error, and the distribution Di is also
updated accordingly (see Fig.3 for details). After T rounds, the DBoost outputs the final
classifier

H(x) = sgn [f(x)] ,

where

f(x) =
T∑

i=1

αihi(x).

One difficulty in the above procedure is that at each round searching for the best
example pair (x′

i, x
′′
i) over all possible pairs is computationally expensive. We solve this

problem in DBoost by searching for the best pair not over the whole set of possible pairs,
but only over a small number M of example pairs randomly selected at each round.
The selection of these example pairs is according to the current distribution Di. It is
well known that as the round i increases, Boosting makes the distribution Di put larger
weights on the examples harder to classify. Therefore, the example pair would be two
data near the classification boundary since they are the most difficult examples.

The DBoost algorithm is described in detail in Fig.2 and Fig.3. Fig.2 shows the
subroutine of searching for the pair (x′, x′′) and the threshold v to construct the base
classifier at a certain round of boosting. Fig.3 describes the boosting framework in DBoost
which is essentially the AdaBoost algorithm. Here we just show the original version of
the AdaBoost given by Freund and Schapire (1996). An improved version—RealBoost
(Schapire and Singer, 1999) can often achieve better performance. RealBoost folds the
coefficient αt into the base classifier ht, and hence ht outputs a real number. For details
please refer to Schapire and Singer (1999).

Theory and Algorithm for Learning with Dissimilarity Functions 16

Input: Dissimilarity function d(·, ·)
Training set S = {(x1, y1), (x2, y2), . . . , (xl, yl)}
Distribution D on the training examples

Initialization: err∗ = ∞
for m = 1 to M do

1. Randomly select two examples xm
+ , xm

− according to D, and construct the
pair.
2. Find vm so that the classifier

h(m)(x) = sgn
[
d(x, xm

+) − d(x, xm
−) + vm

]
has the minimum error rate errm, where errm =

∑l
i=1 D(i)I

[
yi ̸= h(m)(xi)

]
,

and I is the indicator function.
3. if errm < err∗,

err∗ = errm, x∗
+ = xm

+ , x∗
− = xm

− , v∗ = vm

endif
end
Output: The base classifier

h(x) = sgn
[
d(x, x∗

+) − d(x, x∗
−) + v∗] .

Figure 2: The subroutine: BaseLearn

Input: Dissimilarity function d(·, ·)
S = {(x1, y1), (x2, y2), . . . , (xl, yl)}
where xi ∈ X, yi ∈ {−1, 1}.

Initialization: D1(i) = 1/l.
for t = 1 to T do

1. Call BaseLearn(d, S,Dt); The returned classifier is denoted as ht.
2. Let

αt =
1

2
ln

1 + γt

1 − γt

,

where γt =
∑l

i=1 Dt(i)yiht(xi).
3. Update:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

,

where Zt is a normalization factor chosen so that Dt+1 will be a distribution.
end
Output: The final Classifier

H(x) = sgn

(
T∑

t=1

αtht(x)

)
.

Figure 3: The main DBoost algorithm

Theory and Algorithm for Learning with Dissimilarity Functions 17

4 Experiments on Learning with Dissimilarity Func-

tions

In this section we perform experiments on algorithms that learn with dissimilarity func-
tions. We compare DBoost to the nearest neighbor rule and the algorithm based on Balcan
and Blum’s theory mentioned in the Introduction. The algorithms will be denoted by NN
and LSVM for short, respectively. The details of the implementation are described below.

1. DBoost: For DBoost, there are two parameters to be specified. One is M in Fig.2,
that is, the number of example pairs forming the search space. As discussed earlier,
introducing M is to reduce the computational cost. We found that the value of
M has no significant effect on the performance unless M is too small. So in all
the experiments we simply set M = 100. The other parameter is T in Fig.3, i.e.
the number of base classifiers generated in boosting. We set T = 1000 in all the
experiments.

2. NN: We use the one-nearest neighbor (1NN) classifier.

3. LSVM: This approach is based on Balcan and Blum’s theory of learning with
similarity functions. Given a similarity function s, we choose a set of prototypes
{p1, p2, . . . , pr}. For each training data x, calculate the similarity of x and the pro-
totypes, and then construct the vector (s(x, p1), s(x, p2), . . . , s(x, pr)). This vector
is treated as the feature representation of x. The final step is to run linear SVM on
this r-dimensional space to obtain the classifier.

As mentioned earlier, to have a learning guarantee for this algorithm, the similarity
should be a normalized function. That is |s| ≤ 1. So we need to transform the
dissimilarity d to a normalized s. We consider

s = e−d2/σ.

The value of the parameter σ is tuned by cross validation on the training set. In
our implementation, we randomly select twenty percent of the training examples as
prototypes, and we run libsvm (Chang and Lin, 2001) to obtain the linear SVM
classifier.

In the first set of experiments we study image classification. For some cases it is more
convenient to directly define dissimilarities between images than to construct meaningful
features. Many dissimilarity measures of images have been proposed in the literature.
We adopt in this experiment three measures: the Tangent distance (Simard et al., 1993),
the Fuzzy Image Metric (Li et al., 2002) and the Euclidean distance. We perform the
experiments on the USPS database which consists of images of handwritten digits. The
dataset has been partitioned into a fixed training set and a test set, consisting of 7291
and 2007 examples respectively.

Theory and Algorithm for Learning with Dissimilarity Functions 18

Fig. 4 shows the results of the three algorithms with the three dissimilarity measures
respectively. By using the Tangent distance, NN achieves the best performance. In
fact, the Tangent distance is developed specifically for the handwritten-digit classification
problem. It incorporates strong domain knowledge and is invariant to local within-class
transformations (Simard et al., 1993). Therefore the Tangent distance determines a good
local topology for handwritten digit images. If two images have a very small Tangent
distance, they are highly likely to be in the same class.

The other two dissimilarities—the Fuzzy Image Metric and the Euclidean distance are
more general purpose measures. The information of the local distance alone is not enough
for an accurate classification in this handwritten digit problem. So the performance of NN
with these two dissimilarities are not excellent. On the other hand, DBoost works well in
these cases. This result implies that the Fuzzy Image Metric and the Euclidean distance
are still good dissimilarity functions. In other words, they contain enough information to
build accurate classifiers.

We then consider the dissimilarity with discrete (qualitative) values. For instance,
when people make subjective evaluation of the similarity between images, only quali-
tative (discrete) values can be given. For example, similar, average and dissimilar are
possible values of a three-level qualitative dissimilarity. We evaluate the algorithms on
such qualitative measures. To conduct the experiments, Euclidean distances are quan-
tized to 3 to 15 levels respectively. The results on the USPS datasets are shown in Fig. 5.
It shows that even with the 3-level measures, for which the information of local topology
are mostly lost, DBoost still has a low error rate.

We also evaluate the performance of the algorithms against noisy data. We add to the
USPS images Gaussian white noise with different variances, and give the algorithms as
input the Euclidean distances. The results are depicted in Fig. 6, showing that DBoost
is the most robust to noise.

In the second set of experiments, we evaluate the algorithms on a variety of domains.
We adopt twenty two benchmark datasets from the UCI repository (Asuncion and New-
man, 2007). The aim is to see whether the DBoost algorithm works well for dissimilarity
functions that are widely used in practice. Here we consider two dissimilarity measures:
l1 and l∞. In the experiments each dataset is used in a five-fold cross validation fashion.
The datasets are described in Table 1.

The results are listed in Table 2. For each dataset, the algorithm that has the best
performance and those that are comparable to the best according to the t-test at the
significant level 0.01 are marked in boldface. From these results one can see that, on the
whole, DBoost has the best performance with these two dissimilarities even though they
are not good measures for the NN classifier.

Theory and Algorithm for Learning with Dissimilarity Functions 19

Figure 4: Comparison of the algorithms on USPS dataset using three dissimilarity func-
tions: Euclidean distance (ED), Fuzzy Image Metric (FIM), and Tangent Distance (TD)

Figure 5: Comparison of the algorithms using quantized dissimilarity functions on the
USPS database.

Figure 6: Comparison of the algorithms on the USPS database with noise.

Theory and Algorithm for Learning with Dissimilarity Functions 20

Table 1: Description of the 22 datasets from UCI repository.

Data Set # Classes # Examples Data Set # Classes # Examples

Balance 3 625 Letter 26 20000
Breast 2 699 Liver 2 345
Cleveland 2 297 Monk1 2 556
Diabetes 2 768 Monk2 2 601
Echo 2 106 Monk3 2 554
German 2 1000 Satimage 6 6435
Hays 3 160 Vehicle 4 846
Hepatitis 2 155 Vowel 11 990
Image 7 2310 Wdbc 2 569
Ionosphere 2 351 Wine 3 178
Iris 3 150 Wpbc 2 194

Table 2: Comparison of the performances of the six algorithms on UCI datasets.

l1 l∞
Data Set NN LSVM DBoost NN LSVM DBoost
Balance 20.2 ± 1.4 7.8 ± 2.9 5.6 ± 2.3 24.0 ± 3.9 6.1 ± 1.7 5.3 ± 2.6
Breast 3.2 ± 1.7 2.5 ± 1.7 2.9 ± 1.8 5.0 ± 1.9 3.1 ± 2.1 3.4 ± 2.6
Cleveland 22.6 ± 5.4 17.8 ± 6.0 20.5 ± 5.5 26.2 ± 6.0 27.0 ± 4.3 24.9 ± 8.5
Diabetes 29.3 ± 1.7 23.8 ± 3.2 26.4 ± 2.8 29.0 ± 1.5 22.9 ± 2.8 27.2 ± 1.3
Echo 21.7 ± 7.3 16.9 ± 3.8 12.3 ± 2.7 22.6 ± 7.8 16.9 ± 3.8 17.9 ± 3.9
German 30.4 ± 2.9 26.7 ± 2.2 27.3 ± 2.2 33.1 ± 2.9 30.1 ± 1.8 29.5 ± 3.4
Hayes 27.5 ± 7.4 16.2 ± 3.4 18.7 ± 3.2 32.5 ± 6.8 26.2 ± 4.7 21.3 ± 4.6
Hepatitis 21.3 ± 9.3 18.4 ± 3.3 17.8 ± 9.6 19.1 ± 8.8 19.1 ± 6.6 19.1 ± 8.8
Image 2.1 ± 0.6 3.4 ± 1.0 1.6 ± 0.4 3.3 ± 1.0 3.9 ± 1.0 2.7 ± 0.6
Ionosphere 10.8 ± 2.8 6.8 ± 2.7 5.4 ± 2.9 13.1 ± 1.6 7.7 ± 2.9 5.7 ± 3.9
Iris 7.3 ± 4.3 4.0 ± 3.7 6.7 ± 3.4 4.7 ± 3.8 2.7 ± 2.8 4.0 ± 3.7
Letter 4.7 ± 0.3 4.2 ± 0.2 5.0 ± 0.1 8.8 ± 0.5 4.1 ± 0.4 6.3 ± 0.3
Liver 40.3 ± 6.7 31.6 ± 4.7 30.4 ± 6.4 41.4 ± 3.8 37.4 ± 4.0 31.2 ± 5.7
Monk1 20.3 ± 4.6 8.6 ± 3.7 0.0 ± 0.0 20.1 ± 4.9 19.0 ± 2.8 1.8 ± 1.4
Monk2 14.0 ± 3.4 24.1 ± 2.5 1.7 ± 1.8 14.0 ± 3.3 27.8 ± 3.9 4.5 ± 2.8
Monk3 19.1 ± 9.1 3.6 ± 0.9 2.3 ± 0.8 24.5 ± 1.4 6.5 ± 2.0 4.1 ± 1.0
Satimage 9.4 ± 1.0 8.8 ± 0.9 8.0 ± 0.9 12.1 ± 1.6 9.6 ± 1.0 9.8 ± 0.8
Vehicle 30.9 ± 2.4 28.3 ± 0.9 27.0 ± 2.4 32.6 ± 4.9 28.8 ± 1.6 22.6 ± 2.1
Vowel 2.0 ± 1.2 8.5 ± 2.0 2.7 ± 1.5 2.6 ± 1.0 7.7 ± 2.4 3.6 ± 1.4
Wdbc 4.2 ± 1.4 3.5 ± 0.6 2.3 ± 0.8 6.1 ± 1.4 5.4 ± 1.4 5.8 ± 2.5
Wine 4.5 ± 1.5 2.2 ± 2.3 3.9 ± 3.2 6.2 ± 3.7 1.7 ± 1.5 2.8 ± 2.8
Wpbc 31.4 ± 3.8 23.7 ± 5.7 22.7 ± 4.1 37.1 ± 5.1 23.7 ± 5.7 26.3 ± 5.0

Theory and Algorithm for Learning with Dissimilarity Functions 21

5 Experiments on Learning with Similarities

In this section we provide experimental results of algorithms on learning with a similarity
function. As pointed out in Section 2.3, our theory and algorithm can be applied to
similarities with only minor modifications. To be specific, in order to use the DBoost
algorithm for a similarity function s(x′, x′′), we only need to change the base classifier

h(x) = sgn
[
d(x, x∗

+) − d(x, x∗
−) + v∗]

in Fig. 2 to
h(x) = sgn

[
s(x, x∗

−) − s(x, x∗
+) − v∗] .

We run experiments in the similarity setting with a music classification task. The goal is
to evaluate the algorithms with a practical similarity measure. The data consists of 50
Japanese Pop songs and 50 Japanese traditional songs (used in a five-fold cross validation
fashion). Each song is represented in the MIDI format, which contains a set of sequences
of musical notes, cues, tones, volumes and so on. We extract the main melody from each
song and convert it to a string, where each character corresponds to a sixteenth note or
a sixteenth rest.

The similarity measure we use for a pair of songs is the length of the Longest Com-
mon Subsequence (LCS). The LCS of a string s and a string t is the longest (possibly
nonconsecutive) sequence of characters which appear both in s and t. For example, given
two strings s = aabbcc and t = abca, the LCS of s and t is abc. The length of LCS is a
natural measure to capture the similarity between two melodies since similar songs would
share longer subsequences.

However, the similarity matrix based on the length of LCS is, in general, not positive
semi-definite (Hagio, 2006). For example, consider the set of strings {a, b, ab, ba}. It is
easy to check that the LCS-based similarity matrix is

1 0 1 1
0 1 1 1
1 1 2 1
1 1 1 2

 ,

which has a negative eigenvalue.
We evaluate four algorithms in this experiment. Besides NN, LSVM and DBoost, we

also consider ordinary SVM for this non-positive similarity kernel. We adopt a common
approach which adds to the similarity (kernel) matrix a positive diagonal to enforce it
to be positive definite. Fig. 7 shows the performances of four algorithms. These results
demonstrate that DBoost is promising for this simple and intuitive similarity measure.

6 Conclusions

In this work we gave sufficient conditions for dissimilarity functions to allow one to learn
well. We showed that if most examples are more likely to be close to a randomly selected

Theory and Algorithm for Learning with Dissimilarity Functions 22

NN SVM LSVM DBoost
0

5

10

15

20

25

30

E
rr

or
 r

at
e

(%
)

Figure 7: Results on music similarity data

example of the same class than to a random example of the other class, then there is a
simple algorithm that can learn well with the dissimilarity measure. The random selec-
tion of the examples could be according to arbitrary probability distributions satisfying
a mild condition. Therefore the sufficient condition captures a large class of dissimilar-
ity functions. We also developed a more practical algorithm named DBoost under the
theoretical guidance. DBoost learns a large-margin convex-combination classifier of a set
of base classifiers, each of which depends only on the dissimilarities. Experimental re-
sults demonstrate that DBoost has good performance with several dissimilarity measures
widely used in practice.

Acknowledgement

We thank Masayuki Takeda for kindly providing us Japanese songs data and we also thank
Kazuhito Hagio for preprocessing them. This work was supported by NSFC(60775005,
60635030) and Global COE Program of Tokyo Institute of Technology.

References

A. Asuncion and D. J. Newman. UCI machine learning repository, 2007.

M.-F. Balcan and A. Blum. On a theory of learning with similarity functions. In
William W. Cohen and Andrew Moore, editors, International Conference on Machine
Learning, 2006.

M.-F. Balcan, A. Blum, and N. Srebro. Improved guarantees for learning via similarity
functions. In 21st Annual Conference on Learning Theory, 2008.

Theory and Algorithm for Learning with Dissimilarity Functions 23

M.-F. Balcan, A. Blum, and N. Srebro. A theory of learning with similarity functions.
Machine Learning, to appear.

M.-F. Balcan, A. Blum, and S. Vempala. On kernels, margins, and low-dimensional
mappings. In International Workshop on Algorithmic Learning Theory, 2004.

M.-F. Balcan, A. Blum, and S. Vempala. Kernels as features: On kernels, margins, and
low-dimensional mappings. Machine Learning, 65:79–94, 2006.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. Wadsworth, 1984.

C. C. Chang and C. J. Lin. A library for support vector machines. Available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm, 2001.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Interna-
tional Conference on Machine Learning, 1996.

K. Fukunaga. Introduction to Statistical Pattern Recognition (Second Edition). Academic
Press., 1990.

T. Gärtner. A survey of kernels for structured data. SIGKDD Explorations, 5(1):S268–
S275, 2003.

L. Goldfarb. A new approach to pattern recognition. In L. N. Kannal and A. Rosenfeld,
editors, Progress in Pattern Recognition, volume 2, pages 241–402. Elsevier, 1985.

T. Graepel, R. Herbrich, P. Bollmann-Sdorra, and K. Obermayer. Classification on pair-
wise proximity data. Advances in Neural Information Processing Systems, 1999.

K. Hagio. Design and evaluation of string similarity measure based kernels. Bachelor
thesis, Department of Electrical Engineering and Computer Science, Kyushu University,
March 2006. In Japanese.

P. Hart and T. Cover. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, (13):21–27, 1967.

D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge. Comparing images using the
hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(9):850–863, 1993.

D. W. Jacobs, D. W., and Y. Gdalyahu. Classification with nonmetric distances: Image
retrieval and class representation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(6):583–560, 2000.

A. K. Jain and D. E. Zongker. Representation and recognition of handwritten digits
using deformable templates. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(12):1386–1391, 1997.

Theory and Algorithm for Learning with Dissimilarity Functions 24

J. Li, G. Chen, and Z. Chi. A fuzzy image metric with application to fractal coding. IEEE
Transactions on Image Processing, 11(6):636–643, 2002.

D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar. Handbook of Fingerprint Recognition.
New York: Springer, 2003.

E. Pekalska and Robert P. W. Duin. Dissimilarity representations allow for building good
classifiers. Pattern Recognition Letters, 23(8), 2002.

H. Saigo, J.-P. Vert, N. Ueda, and T. Akutsu. Protein homology detection using string
alignment kernels. Bioinformatics, (11):1682–1689, 2004.

R. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting the margin: A new explanation
for the effectiveness of voting methods. Annals of Statistics, 26:1651–1686, 1998.

R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated pre-
dictions. Machine Learning, 37:297–336, 1999.

H. Shimodaira. Improving predictive inference under covariate shift by weighting the
log-likelihood function. Journal of Statistical Planning and Inference, 90(2):227–244,
2000.

P. Simard, Y. LeCun, and J. Denker. Efficient pattern recognition using a new transfor-
mation distance. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in
Neural Information Processing Systems, volume 5, 1993.

N. Srebro. How good is a kernel when used as a similarity measure? In The 20th Annual
Conference on Learning Theory, 2007.

M. Sugiyama, M. Krauledat, and K.-R. Müller. Covariate shift adaptation by importance
weighted cross validation. Journal of Machine Learning Research, 8:985–1005, May
2007.

V. Vapnik. Statistical Learning Theory. John Wiley and Sons Inc., 1998.

L. Wang, M. Sugiyama, C. Yang, Z. Zhou, and J. Feng. On the margin explanation of
boosting algorithms. In 21st Annual Conference on Learning Theory, 2008.

L. Wang, Y. Zhang, and J. Feng. On the euclidean distance of images. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27(8):1334–1339, 2005.

W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. Face recognition: A literature
survey. ACM Computing Surveys, 35:399–458, 2003.

