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Dual Augmented Lagrangian Method for

Efficient Sparse Reconstruction
Ryota Tomioka∗ and Masashi Sugiyama†

Abstract

We propose an efficient algorithm for sparse signal reconstruction problems. The proposed algorithm

is an augmented Lagrangian method based on the dual problem. It is efficient when the number of

unknown variables is much larger than the number of observations because of the dual formulation.

Moreover, the primal variable is explicitly updated and the sparsity in the solution is exploited. Numerical

comparison with the state-of-the-art algorithms shows that the proposed algorithm is favorable when the

design matrix is poorly conditioned or dense and very large.

EDICS category: SAS-STAT, SAS-MALN

I. INTRODUCTION

Sparse signal reconstruction has recently gained considerable interests in signal/image processing and

machine learning. Sparsity is often a natural assumption in inverse problems, such as MEG/EEG source

localization and image/signal deconvolution; sparsity enables us to identify a small number of active

components even when the dimension is much larger than the number of observations. In addition, a
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sparse model is also valuable in predictive tasks because it can explain why it is able to make a prediction

in contrast to black-box models such as neural networks and support vector machines.

In this paper we consider the following particular problem that typically arises in sparse reconstruction:

(P) minimize
w∈Rn

1
2
∥Aw − b∥2 + λ∥w∥1 =: f(w), (1)

where w ∈ Rn is the coefficient vector to be estimated, A ∈ Rm×n is the design matrix, and b ∈ Rm is

the vector of observations; f(w) denotes the objetive function. It is well known that the ℓ1-norm penalty

enforces w to have many zero elements. It is called lasso [1] in the statistics, basis pursuit denoising [2]

in the signal processing, and FOCUSS [3] in the brain imaging communities.

Various methods have been proposed to efficiently solve the optimization problem (1) (or its generalized

versions). Iteratively reweighted shrinkage (IRS) is a popular approach for solving the problem (1) (see

[3]-[7]). The main idea of the IRS approach is to replace a non-differentiable (or non-convex) optimization

problem by a series of differentiable convex ones; typically the regularizer (e.g., ∥ · ∥1 in Eq. (1)) is

upper bounded by a weighted quadratic regularizer. Then one can use various existing algorithms to

minimize the upper bound. The upper bound is tightened after every minimization so that the solution

eventually converges to the solution of the original problem (1). The challenge in the IRS framework

is the singularity [7] around the coordinate axis. For example, in the ℓ1 problem in Eq. (1), any zero

component wj = 0 in the initial vector w will remain zero after any number of iterations. Moreover, it

is possible to create a situation that the convergence becomes arbitrarily slow for finite |wj | because the

convergence in the ℓ1 case is only linear [3]. Another recent work is the split Bregman iteration (SBI)

method [8], which is related to the Bregman iteration algorithm [9]. The Bregman iteration algorithm

can be considered as an augmented Lagrangian (AL) method (see [9]-[11]). By introducing an auxiliary

variable w̃, the SBI approach decouples the minimization of the first and the second term in Eq. (1),

which can then be handled independently. The two variables w and w̃ are gradually enforced to coincide

with each other. Both IRS and SBI require solving a linear system of the size of the number of unknown

variables (n) repeatedly, which may become challenging when n ≫ m.

Kim et al. [12] developed an efficient interior-point (IP) method called l1 ls. They proposed a truncated

Newton method for solving the inner minimization that scales well when the design matrix A is sparse.

The iterative shrinkage/thresholding (IST) (see [9], [13]-[15]) is a classic method but it is still an area

of active research [16], [17]. It alternately computes the steepest descent direction on the loss term in

Eq. (1) and the soft thresholding related to the regularization term. The IST method has the advantage

that every iteration is extremely light (only computes gradient) and every intermediate solution is sparse.
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However the naive version of IST is sensitive to the selection of step-size. Recently several authors have

proposed intelligent step-size selection criteria [16], [17].

In this paper we propose an efficient method that scales well when n ≫ m, which we call the dual

augmented Lagrangian (DAL). It is an AL method similarly to the SBI method but it is applied to the

dual problem; thus the inner minimization is efficient when n ≫ m. In addition, in contrast to the “divide

and conquer” approach of SBI, the inner minimization can be performed jointly over all the variables; it

converges super linearly because the inner minimization is solved at sufficient precision (see [10], [11]).

Moreover, although the proposed method is based on the dual problem, the primal variable is explicitly

updated in the computation as the Lagrangian multiplier. DAL computes soft thresholding after every

iteration similarly to the IST approach but with an improved direction as well as an automatic step-size

selection mechanism; typically the number of outer iterations is less than 10. The proposed approach

can be applied to large scale problems with dense design matrices because it exploits the sparsity in the

coefficient vector w in contrast to the IP methods [12], which exploits the sparsity in the design matrix.

This paper is organized as follows. In Sec. II, the DAL algorithm is presented; two approaches for

the inner minimization problem are discussed. In Sec. III, we experimentally compare DAL to the state-

of-the-art SpaRSA [17] and l1 ls [12] algorithms. We give a brief summary and future directions in

Sec. IV.

II. METHOD

A. Dual augmented Lagrangian method for sparse reconstruction

The challenge in minimizing Eq. (1) arises from its non-differentiability. The proposed approach

is based on the minimization of a differentiable surrogate function fη(w), which we derive from the

augmented Lagrangian function Lη of the dual problem of Eq. (1).

Using the Fenchel duality (see [18, Sec. 5.4]) and a splitting similar to SBI (in the dual), we obtain

the following dual problem of problem (1) (see also [15]):

(D) maximize
v∈Rn,α∈Rm

−1
2
∥α − b∥2

2 +
1
2
∥b∥2

2 − δ∞λ (v),︸ ︷︷ ︸
=: d(α,v)

(2)

subject to v = A⊤α, (3)

where δ∞λ (v) is the indicator function [15] of the ℓ∞ ball of radius λ, i.e., δ∞λ (v) = 0 if ∥v∥∞ ≤ λ, and

+∞ otherwise. It can be shown that the strong duality holds, i.e., the maximum of Eq. (2) d(α∗, v∗)

coincides with the minimum of Eq. (1) f(w∗), where w∗ and (α∗, v∗) are the minimizer and the

maximizer of the primal and dual problems, respectively.
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The augmented Lagrangian (AL) function of the dual problem (Eqs. (2) and (3)) is defined as follows:

Lη(α,v; w) = d(α, v) − w⊤
(
A⊤α − v

)
− η

2
∥A⊤α − v∥2

2, (4)

where w is the Lagrangian multiplier associated with the equality constraint (Eq. (3)) and corresponds to

the coefficient vector in the primal problem. The last term in Eq. (4) is called the barrier term and η ≥ 0

is called the barrier parameter. When η = 0, the AL function is reduced to the ordinary Lagrangian

function. See [10], [11] for the details of the AL method. See also [19] for the ordinary Lagrangian

duality. Now we define the surrogate function fη(w) as follows:

fη(w) = max
α∈Rm,v∈Rn

Lη(α, v; w). (5)

Note that from the strong duality f0(w) = maxα,v L0(α, v; w) = f(w). In addition, since L0(α,v; w) ≥

Lη(α, v; w), the inequality f(w) ≥ fη(w) holds. Moreover, since fη(w) ≥ Lη(α∗, v∗;w) = d(α∗,v∗) =

f(w∗) (we used A⊤α∗ = v∗ to obtain the first equality), we have minw∈Rn fη(w) = f(w∗) for any

nonnegative η. Furthermore, fη(w) is differentiable if η > 0.

The maximization with respect to v in Eq. (5) can be carried out analytically and v can be eliminated

from Eq. (4) as follows:

max
v∈Rn

Lη(α, v; w) − c(w, η)

= −1
2
∥α − b∥2

2 − min
v∈Rn

(
δ∞λ (v) +

η

2

∥∥∥v − A⊤α − w/η
∥∥∥2

2

)
= −1

2
∥α − b∥2

2 −
η

2
∥A⊤α + w/η − P∞

λ (A⊤α + w/η)∥2
2

= −1
2
∥α − b∥2

2 −
η

2
∥STλ(A⊤α + w/η)∥2

2 =:Lη(α; w), (6)

where c(w, η) is a constant that only depends on w and η, and P∞
λ is a projection on the ℓ∞ ball of

radius λ; note that ηP∞
λ (w) = P∞

ηλ(ηw); in addition, we define the well known soft thresholding function

STλ (see [13]-[15],[9]) as follows:

STλ(w) = w − P∞
λ (w) =

(
max(|wj | − λ, 0)

wj

|wj |

)
j

(j = 1, . . . , n). (7)

The coefficient vector w is updated using the gradient of fη(w) as follows:

wk+1 = wk + ηk(A⊤αk − vk), (8)

because ∇wfη(wk) = ∇wLη(αk, vk;wk) = −(A⊤αk − vk), where (αk, vk) is the maximizer of

Eq. (5) at the current wk. Moreover, we can show that (αk, vk) also maximizes L0(α, v; wk+1) [10,
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Choose sequences η1 ≤ η2 ≤ · · · and ϵ1 ≥ ϵ2 ≥ · · · . Let w1 be the initial primal vector. Let k = 1.

while Stopping criterion is not satisfied do

Let αk be an (approximate) minimizer of ϕk(α) := −Lηk
(α; wk) (see Eq. (6)) with tolerance ϵk as follows:

αk ≅ argmin
α∈Rm

(
1
2
∥α − b∥2

2 +
ηk

2

∥∥STλ

(
A⊤α + wk/ηk

)∥∥2

2

)
, (9)

where ∥∇αϕk(αk)∥2 ≤ ϵk. See Eq. (11) for the expression of the gradient ∇αϕk(α).

Update the primal coefficient vector wk as:

wk+1 = STληk

(
wk + ηkA⊤αk

)
. (10)

k ← k + 1.

end while

Fig. 1. Dual augmented Lagrangian (DAL) algorithm.

Chap.5]; thus f(wk+1) = L0(αk, vk; wk+1) = d(αk, vk) − wk
⊤(A⊤αk − vk) − η∥A⊤αk − vk∥2 ≤

Lη(αk, vk, wk) = fη(wk) ≤ f(wk), where the first inequality is strict whenever ∥A⊤αk − vk∥ > 0.

The barrier parameter η is increased as η1 ≤ η2 ≤ · · · ; this guarantees super linear convergence of the

method (see [10]). Accordingly the dual augmented Lagrangian method can be described as in Fig. 1.

Note that Eq. (10) is obtained by substituting vk = P∞
λ (A⊤αk + wk/ηk) into Eq. (8).

B. Inner minimization

The inner minimization of ϕk(α) in Eq. (9) can be efficiently performed through the Newton method

because of the special structures of the gradient and the Hessian matrix of ϕk(α). ϕk(α) is once differ-

entiable everywhere and also twice differentiable except the points on which the above soft thresholding

function switches. The gradient and the Hessian of the objective function ϕk(α) can be written as follows:

∇αϕk(α) = α − b + ASTληk
(q), (11)

∇2
αϕk(α) = Im + ηkA+A+

⊤, (12)

where q = wk + ηkA
⊤α, Im is the identity matrix of size m, and A+ is the submatrix of A that

consists of “active” columns with indices J+ = {j ∈ {1, 2, . . . , n} : |qj | > ληk}. Note that in both

the computation of the gradient and the Hessian, computational complexity is only proportional to the

number of active components of q. Thus the sparser the (intermediate) solution becomes the faster the

computation of a Newton step becomes. The discontinuity of the second derivative is in general not a

problem. In fact, we can see from the complementary slackness condition that for finite η the optimal
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solution-multiplier pair (w∗,α∗) is on a regular point; thus the convergence around the minimum is

quadratic.

We propose two approaches for solving the Newton system ∇2
αϕk(α)y = −∇αϕk(α). The first

approach (DALchol) uses the Cholesky factorization of the Hessian matrix ∇2
αϕk(α). The second

approach (DALcg) uses a preconditioned conjugate gradient method (the truncated Newton method

in [12]) with a preconditioner that only consists of the diagonal elements of the Hessian matrix. Finally the

standard backtracking line-search with initial step-size 1 is applied to guarantee decrease in the objective

ϕk(α).

III. EMPIRICAL COMPARISONS

We test the computational efficiency of the proposed DAL algorithm on the ℓ2-ℓ1 problem (Eq. (1))

under various conditions. The DAL algorithm is compared to two state-of-the-art algorithms, namely

l1 ls (interior-point algorithm, [12]) and SpaRSA (step-size improved IST, [17]).

A. Experimental settings

In the first experiment (Fig. 2(a)), the elements of the design matrix A are sampled from the indepen-

dent zero-mean Gaussian distribution with variance 1/(2n). This choice of variance makes the largest

singularvalue of A approximately one [17]. The true coefficient vector w0 is generated by randomly filling

4% of its elements by +1 or −1 which is also randomly chosen. The remaining elements are zero. The

target vector b is generated as b = Aw0+ξ, where ξ is sampled from the zero-mean Gaussian distribution

with variance 10−4. The number of observations (m) is increased from m = 128 to m = 8, 196 while

the number of variables (n) is increased proportionally as n = 4m. The regularization constant λ is kept

constant at 0.025, which is found to approximately correspond to the choice λ = 0.1∥A⊤b∥∞ in [17]. In

the second experiment (Fig. 2(b)), the setting is almost the same except that the singular values of A is

replaced by a series decreasing as 1/s for the s-th singular value. Thus the condition number (the ratio

between the smallest and the largest singular values) of A is m. Additionally we set the variance of ξ

to zero (no noise) and keep λ constant at 0.0003, which is also found to approximately correspond to

the setting in [17]. In the last experiment (Fig. 3), the number of observations (m) is kept at m = 1, 024

and the number of samples (n) is increased from n = 4, 096 to n = 1, 048, 576. The design matrix A

and the target vector b are generated as in the first experiment. In addition, the regularization constant

λ is decreased as λ = 1.6/n1/2, which equals 0.025 at n = 4, 096 and is again chosen to approximately

match the setting in [17]. In each figure, we show the computation time, the number of iterations, and
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the sparsity of the solution (the proportion of non-zero elements in the final solution) from top to bottom.

All the results are averaged over 10 random initial coefficient vectors w. All the experiments are run

on MATLAB 7.7 (R2008b) on a workstation with two 3.0GHz quad-core Xeon processors and 16GB of

memory.

B. Practical issues

1) Stopping criterion: We use the “duality” stopping criterion proposed in [17] for all the results

presented here. More precisely, we generate a dual variable α̂ as α̂ = λα̃/∥A⊤α̃∥∞, where α̃ = Aw−b

is the gradient of the primal loss term in Eq. (1). The above defined α̂ is a feasible point of the dual

problem (Eq. (2)) by definition, i.e., ∥A⊤α̂∥∞ ≤ λ. Thus we use the primal-dual pair (w, α̂) to measure

the relative duality gap (f(w) − d(α̂, A⊤α̂))/f(w), where f and d are the objective functions in the

primal problem (Eq. (1)) and the dual problem (Eq. (2)), respectively. The tolerance 10−3 is used.

2) Hyperparameters: The tolerance parameter ϵk for the inner minimization is chosen as follows.

We use ϵ1 = 10−4 · m1/2 and decrease ϵk as ϵk = ϵk−1/2. Using larger ϵk results in cheaper inner

minimization but often requires a larger number of outer iterations. The barrier parameter ηk also affects

the behavior of the algorithm. Typically larger ηk gives larger reduction in the duality gap at every

iteration but makes the inner minimization more difficult. Additionally the best value of ηk depends on

the size of the problem, regularization constant λ, and the spectrum of A. Here we manually choose η1

for each problem and increase ηk as ηk = 2ηk−1, which guarantees the super-linear convergence [10].

C. Results

When the data is well conditioned (Fig. 2(a)), SpaRSA performs clearly the best within the three

algorithms. The proposed DAL algorithm with the conjugate gradient (DALcg) performs comparably to

l1 ls. The proposed DAL with the Cholesky factorization (DALchol) is less efficient than DALcg when

m is large because the complexity grows as O(m3); note however that the cost for building the Hessian

matrix is only O(m2n+), where n+ is the number of active components (see Eq. (12)).

In contrast, when the data is poorly conditioned (Fig. 2(b)), the proposed DALcg runs almost 100

times faster than SpaRSA at most. This can be clearly seen in the number of iterations (the middle row).

Although the numbers of iterations DAL and l1 ls require are almost constant from Fig. 2(a) to Fig. 2(b),

that of SpaRSA is increased at least by the factor 10. Note that the sparsity of the solution is decreasing

as the number of samples increases. This may explain why the proposed DAL algorithm is more robust

to poor conditioning than l1 ls because l1 ls does not exploit the sparsity in the solution.
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Fig. 2. Comparison of running time and number of iterations of DAL, SpaRSA and l1 ls for problems of various sizes with

(a) design matrix A generated from independent normal random variables and (b) the same matrix with singular values replaced

by a power-law distribution. The horizontal axis denotes the number of observations (m). The number of variables is n = 4m.

The regularization constant λ is fixed at λ = 0.025 in (a) and λ = 0.0003 in (b). Note that in the second row the number of

iterations spent by DALchol and DALcg are the same and in the third row all methods found solutions with the same sparsity

except l1 ls, whose sparsity is always 100% (no sparsity).

Finally we compare the three algorithms for very large problems in Fig. 3. Clearly the proposed DAL

has milder scaling to the dimensionality than both SpaRSA and l1 ls. This is because the proposed DAL

algorithm is based on the dual problem (Eq. (2)). The computational efficiency of DALchol and DALcg

is comparable because m is kept constant in this experiment.

IV. CONCLUSION

In this paper we have proposed a new optimization framework for sparse signal reconstruction, which

converges super-linearly. It is based on the dual sparse reconstruction problem. The sparsity of the

coefficient vector w is explicitly used in the algorithm. Numerical comparisons have shown that the

proposed DAL algorithm is favorable against a state-of-the-art algorithm SpaRSA when the design matrix

A is poorly conditioned or m ≪ n. In fact, it has solved problems with millions of variables in less than

20 minutes even when the design matrix A is dense. In addition, for dense A, DAL has shown improved

efficiency to l1 ls in most cases. Future work includes generalization of DAL to other loss functions and

sparsity measures, continuation strategy, and approximate minimization of the inner problem.
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Fig. 3. Comparison of the algorithms for large scale problems when the number of variable (n) is much larger than the number

of observations (m). m is kept constant at m = 1024. λ is decreased as λ = 1.6/n1/2. Note that in the third row all methods

found solutions with the same sparsity except l1 ls, whose sparsity is always 100% (no sparsity).
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