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Abstract

The ν-support vector classification (ν-SVC) algorithm was shown to work well
and provide intuitive interpretations, e.g., the parameter ν roughly specifies the
fraction of support vectors. Although ν corresponds to a fraction, it cannot take
the entire range between 0 and 1 in its original form. This problem was settled
by a non-convex extension of ν-SVC and the extended method was experimentally
shown to generalize better than original ν-SVC. However, its good generalization
performance and convergence properties of the optimization algorithm have not been
studied yet. In this paper, we provide new theoretical insights into these issues and
propose a novel ν-SVC algorithm that has guaranteed generalization performance
and convergence properties.
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1 Introduction

Support vector classification (SVC) is one of the most successful classification algorithms
in modern machine learning [16]. SVC finds a hyperplane that separates training samples
in different classes with maximum margin [2]. The maximum margin hyperplane was
shown to minimize an upper bound of the generalization error according to the Vapnik-
Chervonenkis theory [17]. Thus the generalization performance of SVC is theoretically
guaranteed.
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SVC was extended to be able to deal with non-separable data by trading the margin
size with the data separation error [5]. This soft-margin formulation is commonly referred
to as C-SVC since the trade-off is controlled by the parameter C. C-SVC was shown to
work very well in a wide range of real-world applications [16].

An alternative formulation of the soft-margin idea is ν-SVC [15]—instead of the param-
eter C, ν-SVC involves another trade-off parameter ν that roughly specifies the fraction
of support vectors (or sparseness of the solution). Thus, the ν-SVC formulation provides
us richer interpretation than the original C-SVC formulation, which would be potentially
useful in real applications.

Since the parameter ν corresponds to a fraction, it should be able to be chosen between
0 and 1. However, it was shown that admissible values of ν are actually limited [6, 4]. To
cope with this problem, Perez-Cruz et al. [12] introduced the notion of negative margins
and proposed extended ν-SVC (Eν-SVC) which allows ν to take the entire range between
0 and 1. They also experimentally showed that the generalization performance of Eν-SVC
is often better than that of original ν-SVC. Thus the extension contributes not only to
elucidating the theoretical property of ν-SVC, but also to improving its generalization
performance.

However, there remain two open issues in Eν-SVC. The first issue is that the reason
why a high generalization performance can be obtained by Eν-SVC was not completely
explained yet. The second issue is that the optimization problem involved in Eν-SVC is
non-convex and theoretical convergence properties of the Eν-SVC optimization algorithm
have not been studied yet. The purpose of this paper is to provide new theoretical insights
into these two issues.

After reviewing existing SVC methods in Section 2, we elucidate the generalization
performance of Eν-SVC in Section 3. We first show that the Eν-SVC formulation could be
interpreted as minimization of the conditional value-at-risk (CVaR), which is often used
in finance1 [13, 9]. Then we give new generalization error bounds based on the CVaR risk
measure. This theoretical result justifies the use of Eν-SVC.

In Section 4, we address non-convexity of the Eν-SVC optimization problem. We
first give a new optimization algorithm that is guaranteed to converge to one of the local
optima within a finite number of iterations. Based on this improved algorithm, we further
show that the global solution can be actually obtained within finite iterations even though
the optimization problem is non-convex.

Finally, in Section 6, we give concluding remarks and future prospects. Proofs of all
theorems and lemmas are sketched in Appendix unless mentioned.

2 Support Vector Classification

In this section, we formulate the classification problem and briefly review support vector
algorithms.

1Although the CVaR method has been developed in finance, it is a general classification algorithm
and therefore we do not require the readers to have background knowledge in finance.
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2.1 Classification Problem

Let us address the classification problem of learning a decision function h from X (⊂ IRn)
to {±1} based on training samples (xi, yi) (i ∈ M := {1, ...,m}). We assume that
the training samples are i.i.d. following an unknown probability distribution P (x, y) on
X × {±1}.

The goal of the classification task is to obtain a classifier h that minimizes the gener-
alization error (or the risk):

R[h] :=

∫
1

2
|h(x)− y|dP (x, y), (1)

which corresponds to the misclassification rate for unseen test samples.
For the sake of simplicity, we generally focus on linear classifiers, i.e.,

h(x) = sign(⟨w,x⟩+ b), (2)

where w (∈ IRn) is a non-zero normal vector, b (∈ IR) is a bias parameter, and sign(ξ) = 1
if ξ ≥ 0 and −1 otherwise.

Most of the discussions in this paper can be directly applied to non-linear kernel
classifiers [16]. Thus we may not lose generality by restricting ourselves to linear classifiers.

2.2 Support Vector Classification

The Vapnik-Chervonenkis theory [17] showed that a large margin classifier has a small
generalization error. Motivated by this theoretical result, Boser et al. [2] developed an
algorithm for finding the hyperplane (w, b) with maximum margin:

min
w,b

1

2
∥w∥2 s.t. yi(⟨w,xi⟩+ b) ≥ 1, i ∈M. (3)

This is called (hard-margin) support vector classification (SVC) and valid when the train-
ing samples are linearly separable. In the following, we omit “i ∈ M” in the constraint
for brevity.

2.3 C-Support Vector Classification

Cortes and Vapnik [5] extended the SVC algorithm to non-separable cases and proposed
trading the margin size with the data separation error (i.e., “soft-margin”):

min
w,b,ξ

1

2
∥w∥2 + C

m∑
i=1

ξi

s.t. yi(⟨w,xi⟩+ b) ≥ 1− ξi, ξi ≥ 0,

where C (> 0) controls the trade-off. This formulation is usually referred to as C-SVC,
and was shown to work very well in various real-world applications [16].
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2.4 ν-Support Vector Classification

ν-SVC is another formulation of soft-margin SVC [15]:

min
w,b,ξ,ρ

1

2
∥w∥2 − νρ+

1

m

m∑
i=1

ξi

s.t. yi(⟨w,xi⟩+ b) ≥ ρ− ξi, ξi ≥ 0, ρ ≥ 0,

where ν is the trade-off parameter2.
Schölkopf et al. [15] showed that if the ν-SVC solution yields ρ > 0, C-SVC with C =

1/(mρ) produces the same solution. Thus ν-SVC and C-SVC are equivalent. However,
ν-SVC has additional intuitive interpretations, e.g., ν is an upper bound on the fraction
of margin errors and a lower bound on the fraction of support vectors (i.e., sparseness of
the solution). Thus, the ν-SVC formulation would be potentially more useful than the
C-SVC formulation in real applications.

2.5 Eν-SVC

Although ν has an interpretation as a fraction, it cannot always take its full range between
0 and 1 [6, 4].

2.5.1 Admissible Range of ν

For the optimal solution {αC
i }mi=1 of dual C-SVC, let

ζ(C) :=
1

Cm

m∑
i=1

αC
i , νmin := lim

C→∞
ζ(C), and νmax := lim

C→0
ζ(C).

Then, Chang and Lin [4] showed that for ν ∈ (νmin, νmax], the optimal solution set of ν-
SVC is the same as that of C-SVC with some C (not necessarily unique). In addition, the
optimal objective value of ν-SVC is strictly negative. However, for ν ∈ (νmax, 1], ν-SVC
is unbounded, i.e., there exists no solution; for ν ∈ [0, νmin], ν-SVC is feasible with zero
optimal objective value, i.e., we end up with just having a trivial solution (w = 0 and
b = 0).

2.5.2 Increasing Upper Admissible Range

It was shown by Crisp and Burges [6] that

νmax =
2min(m+,m−)

m
,

where m+ and m− are the number of positive and negative training samples. Thus, when
the training samples are balanced (i.e., m+ = m−), νmax = 1 and therefore ν can reach its

2We will discuss the admissible range of ν later
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upper limit 1 without having unboundedness. When the training samples are imbalanced
(i.e., m+ ̸= m−), Perez-Cruz et al. [12] proposed modifying the optimization problem of
ν-SVC as

min
w,b,ξ,ρ

1

2
∥w∥2 − νρ+

1

m+

∑
i:yi=1

ξi +
1

m−

∑
i:yi=−1

ξi

s.t. yi(⟨w,xi⟩+ b) ≥ ρ− ξi, ξi ≥ 0, ρ ≥ 0,

i.e., the effect of positive and negative samples are balanced. Under this modified formu-
lation, νmax = 1 holds even when training samples are imbalanced.

For the sake of simplicity, we focus on the case where m+ = m− in the rest of this
paper; when m+ ̸= m−, all the results given in this paper can be extended by balancing
the effect of positive and negative samples as above.

2.5.3 Decreasing Lower Admissible Range

When ν ∈ [0, νmin], ν-SVC produces a trivial solution (w = 0 and b = 0) as shown in
Chang and Lin [4]. To prevent this, Perez-Cruz et al. [12] proposed allowing the margin
ρ to be negative and enforcing the norm of w to be unity:

min
w,b,ξ,ρ

−νρ+ 1

m

m∑
i=1

ξi

s.t. yi(⟨w,xi⟩+ b) ≥ ρ− ξi, ξi ≥ 0, ∥w∥2 = 1. (4)

By this modification, a non-trivial solution can be obtained even for ν ∈ [0, νmin]. This
modified formulation is called extended ν-SVC (Eν-SVC).

The Eν-SVC optimization problem is non-convex due to the equality constraint
∥w∥2 = 1. Perez-Cruz et al. [12] proposed the following iterative algorithm for com-
puting a solution. First, for some initial w̃, solve the problem (4) with ∥w∥2 = 1 replaced
by ⟨w̃,w⟩ = 1. Then, update w̃ using the optimal solution ŵ as

w̃ ←− γw̃ + (1− γ)ŵ (5)

for γ = 9/10, and iterate this procedure until convergence.
Perez-Cruz et al. [12] experimentally showed that the generalization performance of

Eν-SVC with ν ∈ [0, νmin] is often better than that with ν ∈ (νmin, νmax], implying that
Eν-SVC is a promising classification algorithm. However, it is not clear how the notion
of negative margins influences on the generalization performance and how fast the above
iterative algorithm converges. The goal of this paper is to give new theoretical insights
into these issues.

3 Justification of the Eν-SVC Criterion

In this section, we give a new interpretation of Eν-SVC and theoretically explain why it
works well.
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3.1 New Interpretation of Eν-SVC as CVaR minimization

Let f(w, b;x, y) be the margin error for a sample (x, y):

f(w, b;x, y) := −y(⟨w,x⟩+ b)

∥w∥
.

Let us consider the distribution of margin errors over all training samples:

Φ(α|w, b) := P{(xi, yi) | f(w, b;xi, yi) ≤ α}.
For β ∈ [0, 1), let αβ(w, b) be the 100β-percentile of the margin error distribution:

αβ(w, b) := min{α | Φ(α|w, b) ≥ β}.
Thus only the fraction (1 − β) of the margin error f(w, b;xi, yi) exceeds the threshold
αβ(w, b) (see Figure 1). αβ(w, b) is commonly referred to as the value-at-risk (VaR) in
finance and is often used by security houses or investment banks to measure the market
risk of their asset portfolios [13, 9].

Let us consider the β-tail distribution of f(w, b;xi, yi):

Φβ(α|w, b) :=

0 for α < αβ(w, b),

Φ(α|w,b)−β
1−β

for α ≥ αβ(w, b).

Let ϕβ(w, b) be the mean of the β-tail distribution of f(w, b;xi, yi) (see Figure 1 again):

ϕβ(w, b) := EΦβ
[f(w, b;xi, yi)],

where EΦβ
denotes the expectation over the distribution Φβ. ϕβ(w, b) is called the con-

ditional VaR (CVaR). By definition, the CVaR is always larger than or equal to the VaR:

ϕβ(w, b) ≥ αβ(w, b). (6)

Let us consider the problem of minimizing the CVaR ϕβ(w, b) (which we refer to as
minCVaR):

min
w,b

ϕβ(w, b). (7)

Then we have the following theorem.

Theorem 1 The solution of the minCVaR problem (7) is equivalent to the solution of
the Eν-SVC problem (4) with

ν = 1− β.

Theorem 1 shows that Eν-SVC actually minimizes the CVaR ϕ1−ν(w, b). Thus, Eν-
SVC could be interpreted as minimizing the mean margin error over a set of “bad” training
samples. In contrast, the hard-margin SVC problem (3) can be equivalently expressed in
terms of the margin error as

min
w,b

max
i∈M

f(w, b;xi, yi).

Thus hard-margin SVC minimizes the margin error of the single “worst” training sample.
This analysis shows that Eν-SVC can be regarded as an extension of hard-margin SVC
to be less sensitive to an outlier (i.e., the single “worst” training sample).
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Figure 1: An example of the distribution of margin errors f(w, b;xi, yi) over all training
samples. αβ(w, b) is the 100β-percentile called the value-at-risk (VaR), and the mean
ϕβ(w, b) of the β-tail distribution is called the conditional VaR (CVaR).

3.2 Justification of Eν-SVC

We have shown the equivalence between Eν-SVC and minCVaR. Here we derive new
bounds of the generalization error based on the notion of CVaR and try to justify the use
of Eν-SVC.

When training samples are linearly separable, the margin error f(w, b;xi, yi) is neg-
ative for all samples. Then, at the optimal solution (w∗, b∗), the CVaR ϕ1−ν(w

∗, b∗) is
always negative. However, in non-separable cases, ϕ1−ν(w

∗, b∗) could be positive particu-
larly when ν is close to 0. Regarding the CVaR, we have the following lemma.

Lemma 2 ϕ1−ν(w
∗, b∗) is continuous with respect to ν and is strictly decreasing when ν

is increased.

Let ν be such that
ϕ1−ν(w

∗, b∗) = 0

if such ν exists; we set ν = νmax if ϕ1−ν(w
∗, b∗) > 0 for all ν and we set ν = 0 if

ϕ1−ν(w
∗, b∗) < 0 for all ν. Then we have the following relation (see Figure 2):

ϕ1−ν(w
∗, b∗) < 0 for ν ∈ (ν, νmax],

ϕ1−ν(w
∗, b∗) > 0 for ν ∈ (0, ν).

Below, we analyze the generalization error of Eν-SVC depending on the value of ν.

3.2.1 Justification When ν ∈ (ν, νmax]

We begin with the case where ν ∈ (ν, νmax].
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Non-convex Convex

Figure 2: A profile of the CVaR ϕ1−ν(w
∗, b∗) as a function of ν. As shown in Section 4,

the Eν-SVC optimization problem can be cast as a convex problem if ν ∈ (ν, νmax], while
it is essentially non-convex if ν ∈ (0, ν).

Theorem 3 Let ν ∈ (ν, νmax]. Suppose that the support X is in a ball of radius R around
the origin. Then, for all (w, b) such that ∥w∥ = 1 and ϕ1−ν(w, b) < 0, there exists a
positive constant c such that the following bound hold with probability at least 1− δ:

R[h] ≤ ν +G(α1−ν(w, b)), (8)

where R[h] is defined by Eq.(1) and

G(γ) =

√
2

m

(
4c2(R2 + 1)2

γ2
log2(2m)− 1 + log

2

δ

)
.

The generalization error bound in (8) is furthermore upper-bounded as

ν +G(α1−ν(w, b)) ≤ ν +G(ϕ1−ν(w, b)).

G(γ) is monotone decreasing as |γ| increases. Thus, the above theorem shows that
when ϕ1−ν(w, b) < 0, the upper bound ν+G(ϕ1−ν(w, b)) is lowered if the CVaR ϕ1−ν(w, b)
is reduced. Since Eν-SVC minimizes ϕ1−ν(w, b) (see Theorem 1), the upper bound of the
generalization error is also minimized.

3.2.2 Justification When ν ∈ (0, ν]

Next, we investigate the generalization error when ν ∈ (ν, νmax]. Our discussion below
depends on the sign of α1−ν(w, b). When α1−ν(w, b) < 0, we have the following theorem.

Theorem 4 Let ν ∈ (0, ν]. Then, for all (w, b) such that ∥w∥ = 1 and α1−ν(w, b) < 0,
there exists a positive constant c such that the following bound holds with probability at
least 1− δ:

R[h] ≤ ν +G(α1−ν(w, b)).



On Generalization Performance and Non-Convex Optimization of Eν-SVM 9

A proof of the above theorem is omitted since the proof follows a similar line to
the proof of Theorem 3. This theorem shows that when α1−ν(w, b) < 0, the upper
bound ν + G(α1−ν(w, b)) is lowered if α1−ν(w, b) is reduced. On the other hand, Eq.(6)
shows that the VaR α1−ν(w, b) is upper-bounded by the CVaR ϕ1−ν(w, b). Therefore,
minimizing ϕ1−ν(w, b) by Eν-SVC may have an effect of lowering the upper bound of the
generalization error.

When α1−ν(w, b) > 0, we have the following theorem.

Theorem 5 Let ν ∈ (0, ν]. Then, for all (w, b) such that ∥w∥ = 1 and α1−ν(w, b) > 0,
there exists a positive constant c such that the following bound hold with probability at
least 1− δ:

R[h] ≥ ν −G(α1−ν(w, b)).

Moreover, the lower bound of R[h] is bounded from above as

ν −G(α1−ν(w, b)) ≤ ν −G(ϕ1−ν(w, b)).

A proof of the above theorem is also omitted since the proof resembles to Theorem 3.
Theorem 5 implies that the lower bound ν − G(α1−ν(w, b)) of the generalization error
is upper-bounded by ν − G(ϕ1−ν(w, b)). On the other hand, Eq.(6) and α1−ν(w, b) > 0
yields ϕ1−ν(w, b) > 0. Thus minimizing ϕ1−ν(w, b) by Eν-SVC may contribute to lowering
the lower bound ν −G(α1−ν(w, b)) of the generalization error.

4 New Optimization Algorithm

As reviewed in Section 2.5, Eν-SVC involves a non-convex optimization problem. In
this section, we give a new efficient optimization procedure for Eν-SVC. Our proposed
procedure involves two optimization algorithms depending on the value of ν. We first
describe the two algorithms and then show how these two algorithms are chosen for
practical use.

4.1 Optimization When ν ∈ (ν, νmax]

When ν ∈ (ν, νmax], the following lemma holds.

Lemma 6 When ν ∈ (ν, νmax], the Eν-SVC problem (4) is equivalent to

min
w,b,ξ,ρ

−νρ+ 1

m

m∑
i=1

ξi

s.t. yi(⟨w,xi⟩+ b) ≥ ρ− ξi, ξi ≥ 0, ∥w∥2 ≤ 1. (9)

This lemma shows that the equality constraint ∥w∥2 = 1 in the original problem
(4) can be replaced by ∥w∥2 ≤ 1 without changing the solution. Due to convexity of
∥w∥2 ≤ 1, the above optimization problem is convex and therefore we can easily obtain
the global solution by a standard optimization software.
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4.2 Optimization When ν ∈ (0, ν]

If ν ∈ (0, ν], the Eν-SVC optimization problem is essentially non-convex and therefore we
need a more elaborate algorithm.

4.2.1 Local Optimum Search

Here, we propose the following iterative algorithm for finding a local optimum.

Algorithm 7 (The Eν-SVC local optimum search algorithm for ν ∈ (0, ν])

Step 1: Randomly initialize w̃.
Step 2: Solve the following linear program:

min
w,b,ξ,ρ

−νρ+ 1

m

m∑
i=1

ξi (10)

s.t. yi(⟨w,xi⟩+ b) ≥ ρ− ξi, ξi ≥ 0, ⟨w̃,w⟩ = 1,

and denote the optimal solution by (ŵ, b̂, ξ̂, ρ̂).
Step 3: If w̃ = ŵ, terminate and output w̃. Otherwise, update w̃ by w̃ ←− ŵ/∥ŵ∥.
Step 4: Repeat Steps 2–3.

The linear program (10) is the same as the one proposed by Perez-Cruz et al. [12], i.e.,
the equality constrained ∥w∥2 = 1 of the original problem (4) is replaced by ⟨w̃,w⟩ = 1.
The updating rule of w̃ in Step 3 is different from the one proposed by Perez-Cruz et
al. [12] (cf. Eq.(5)). This difference may look subtle at a glance, but this small difference
actually allows us to prove its finite convergence property as explained below.

We define a “corner” (or “0-dimensional face”) of Eν-SVC (4) as the intersection of an
edge of the polyhedral cone formed by linear constraints of (4) and ∥w∥2 = 1. Under the
new update rule, the algorithm visits a corner of Eν-SVC (4) in each iteration. Since Eν-
SVC has finite corners, we can show that Algorithm 7 with the new update rule terminates
within a finite number of iterations, i.e., less than or equal to the number of corners of
Eν-SVC.

Theorem 8 Algorithm 7 terminates within a finite number of iterations of Steps 2–3.
Furthermore, a solution of the modified Eν-SVC algorithm is a local minimizer if it is
unique and non-degenerate.

4.2.2 Global Optimum Search

Next, we show that the global solution can be actually obtained within finite iterations,
despite non-convexity of the optimization problem.

A naive approach to searching for the global solution is to run the local optimum search
algorithm many times with different initial values and choose the best local solution.
However, there is no guarantee that this naive approach can find the global solution.
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Below, we give a more systematic way to find the global solution based on the following
lemma.

Lemma 9 When ν ∈ (0, ν], the Eν-SVC problem (4) is equivalent to

min
w,b,ξ,ρ

−νρ+ 1

m

m∑
i=1

ξi

s.t. yi(⟨w,xi⟩+ b) ≥ ρ− ξi, ξi ≥ 0, ∥w∥2 ≥ 1. (11)

Lemma 9 could be proved in a similar way as Lemma 6, so we omit the proof. This
lemma shows that the equality constraint ∥w∥2 = 1 in the original Eν-SVC problem (4)
can be replaced by ∥w∥2 ≥ 1 without changing the solution if ν ∈ (0, ν].

The problem (11) is called a linear reverse convex program (LRCP), which is a class of
non-convex problems consisting of linear constraints and one concave inequality (∥w∥2 ≥ 1
in the current case). The feasible set of the problem (11) consists of a finite number of
faces. For LRCPs, Horst and Tuy [10] showed that the local optimal solutions correspond
to 0-dimensional faces (or corners). This implies that all the local optimal solutions of
the Eν-SVC problem (11) can be traced by checking all the faces.

Let D be the feasible set of Eν-SVC (4). Below, we summarize the Eν-SVC training
algorithm based on the cutting plane method [10], which is an efficient method of tracing
faces.

Algorithm 10 (The Eν-SVC global optimum search algorithm for ν ∈ (0, ν])

Step 1: D̃ ←− D.
Step 2: Find a local solution by Algorithm 7.

Step 3: Identify a face of D in D̃ that corresponds the local solution.
Step 4a: If the face is a corner, construct a “concavity cut”.
Step 4b: If the face is a proper face, construct a “facial cut”.

Step 5: Add the cut to the problem (10) and D̃.

Step 6: Repeat Steps 2–5 until D̃ includes no face of D.
Step 7: Output the best local optimal solution as the global solution.

If the local solution obtained in Step 2 is a corner of D (i.e., the local solution is
not on any cutting plane as (a) in Figure 3), a concavity cut [10] is constructed. The
concavity cut has a role of removing the local solution, i.e., a 0-dimensional face of D and
its neighborhood. Otherwise, a facial cut [11] is constructed to eliminate the proper face
(see (b) in Figure 3).

Since the total number of distinct faces of D is finite in the current setting and a facial
cut or a concavity cut eliminates at least one face at a time, Algorithm 10 is guaranteed
to terminate within finite iterations (precisely, less than or equal to the number of all
dimensional faces of Eν-SVC). Furthermore, since the addition of a concavity cut or a
facial cut does not remove local solutions which are better than the best local solution
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(a)

(b)

Concavity cut

Facial cut

Figure 3: A 0-dimensional face (a) and three proper faces (bold solid lines) of D are

identified in D̃. If the corner (a) is found in Step 2, a concavity cut is constructed. If

the corner (b) is found, a facial cut is constructed. If these two cuts are added to D̃, the
remaining area includes no face of D.

found so far, Algorithm 10 is guaranteed to trace all sufficient local solutions. Thus we
can always find a global solution within finite iterations by Algorithm 10. A more detailed
discussion on the concavity cut and the facial cut is shown in Horst and Tuy [10] and
Majthay and Whinston [11], respectively.

4.3 Choice of Two Algorithms

We have two convergent algorithms when ν ∈ (ν, νmax] and ν ∈ (0, ν]. Thus, choosing a
suitable algorithm depending on the value of ν would be an ideal procedure. However,
the value of the threshold ν is difficult to explicitly compute since it is implicitly defined
via the optimal value ϕ1−ν(w

∗, b∗) (see Figure 2). Therefore, it is not straightforward to
choose a suitable algorithm for a given ν.

When we use Eν-SVC in practice, we usually compute the solutions for several different
values of ν and choose the most promising one based on, e.g., cross-validation. In such
scenarios, we can properly switch the two algorithms without explicitly knowing the value
of ν—our key idea is that the solution of the problem (9) is non-trivial (i.e., w ̸= 0) if
and only if ν ∈ (ν, νmax]. Thus if the solutions are computed from large ν to small ν,
the switching point can be identified by checking triviality of the solution. The proposed
algorithm is summarized as follows.



On Generalization Performance and Non-Convex Optimization of Eν-SVM 13

Algorithm 11 (The Eν-SVC algorithm for (νmax ≥) ν1 > ν2 > · · · > νk > 0)

Step 1: i←− 1.
Step 2: Compute (w∗, b∗) for νi by solving (9).
Step 3a: If w∗ ̸= 0, accept (w∗, b∗) as the solution for νi,

increment i, and go to Step 2.
Step 3b: If w∗ = 0, reject (w∗, b∗).
Step 4: Compute (w∗, b∗) for νi by Algorithm 10.
Step 5: Accept (w∗, b∗) as the solution for νi,

increment i, and go to Step 4 unless i > k.

The global optimum search algorithm (Algorithm 10) is used in Step 4 of Algorithm 11,
and the local optimum search algorithm (Algorithm 7) is used in Step 2 of Algorithm 10.
The initial value in Algorithm 7 is randomly chosen when it is used alone, but when it
is used in Algorithm 11, we may use the solution for νi−1 as the initial value for νi in
Algorithm 7.

5 Numerical Examples

In this section, we numerically investigate the convergence property of Eν-SVC.
For illustration, we use the liver-disorders dataset available from the UCI repository

[1]. This dataset contains 345 samples with 6 attributes. We randomly choose 4/5 of the
samples for training and the rest are used as test samples. We test ν = 0.60, 0.61, . . . , 0.80.
Preliminarily, we confirmed that the threshold ν exists in [0.71, 0.72]—thus we solve the
convex optimization problem (9) for ν ≥ 0.72 and the global optimum search algorithm
(Algorithm 10) for ν ≤ 0.71. Here we implemented Algorithm 10 in a slightly simplified
way—only concavity cuts are constructed to remove local solutions and their neighbor-
hood; facial cuts are not considered since the construction of a facial cut is computationally
expensive and not practical. We set the upper limit of the number of cuts to 100.

Figure 4(a) depicts the test error rate of the global solution. This shows that the
best test error rate is achieved in the non-convex region (i.e., ν ≤ 0.71). Thus, for
obtaining a better generalization performance, it is worth solving the non-convex opti-
mization problem. Figure 4(b) depicts the number of concavity planes constructed until
Algorithm 10 terminates. This shows that as ν decreases, the number of cutting planes
gradually increases—implying that non-convexity of Eν-SVC gets stronger as ν decreases.
To investigate how many local solutions exist in non-convex Eν-SVC, we run the local
search algorithm (Algorithm 7) 100 times, each starting from a random initial solution
w̃. Figure 4(c) depicts the number of different local solutions found by the local search
algorithm (the dotted line). This shows that the number of local solutions is actually
only a few. The graph also contains the iteration number when Algorithm 10 attains the
global solution (the solid line). This shows that the global solution is always found in the
first iteration; thus the remaining loop is just for confirming whether the already found
solution is really the global optimal or not.



On Generalization Performance and Non-Convex Optimization of Eν-SVM 14

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 46

 0.6  0.65  0.7  0.75  0.8

test error

(a) The test error rate

 0

 20

 40

 60

 80

 100

 0.6  0.65  0.7  0.75  0.8

num. of cuts

(b) The number of cutting planes gen-
erated until the algorithm terminates

 0

 1

 2

 3

 4

 0.6  0.65  0.7  0.75  0.8

iter. of best local sol.
num. of local solutions

(c) The iteration number when the
global solution is found by the global
search algorithm (the solid line) and the
number of local solutions found by the
local search algorithm (the dotted line)

Figure 4: Numerical results for the liver-disorders dataset. The horizontal axes denote
the parameter value of ν, and the threshold ν exists in [0.71, 0.72].
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Figure 5: Numerical results for the diabetes dataset. The horizontal axes denote the
parameter value of ν, and the threshold ν exists in [0.52, 0.53].
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Figure 6: Numerical results for the heart dataset. The horizontal axes denote the param-
eter value of ν, and the threshold ν exists in [0.32, 0.33].
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Algorithm 10 can theoretically guarantee global optimality of the solution. However,
the above numerical results imply that we may practically use a simple local search
algorithm (Algorithm 7) for finding a good enough solution; this enables us to obtain a
better generalization performance very efficiently.

Similar experiments are also carried out for the diabetes and heart datasets; the former
contains 768 samples with 8 attributes and the latter consists of 270 samples with 13
attributes. We numerically confirmed that the threshold ν exists in [0.52, 0.53] for the
diabetes dataset and [0.32, 0.33] for the heart dataset. The results are summarized in
Figure 5 and Figure 6, respectively. For these datasets, the best error rate is again
achieved in the non-convex regions (for the heart dataset, the same best error rate can
also be achieved in the convex regions). However, the number of cuts needed for the
global convergence grows very sharply as ν decreases, so using Algorithm 10 may not be
practical. On the other hand, the best solution can still be found at an earlier iteration
and therefore Algorithm 7 would be sufficient for finding a good solution.

6 Conclusions

Eν-SVC is an excellent classification algorithm, although its generalization performance
and convergence properties have not been elucidated yet. In this paper, we gave new
theoretical insights into Eν-SVC. We first characterized the generalization error of Eν-
SVC in terms of the conditional value-at-risk (CVaR, see Figure 1) and showed that
a good generalization performance is expected by Eν-SVC. We then derived a globally
convergent optimization algorithm even though the optimization problem involved in Eν-
SVC is non-convex. Through numerical experiments, we showed that the simple local
search algorithm actually gives the global solution after a few repetitions. Thus, the local
search algorithm would be sufficient in practice. We note that this practically useful
conclusion cannot be derived without having a global convergent algorithm. Thus our
theoretical convergence results have been successfully translated into a useful practical
consequence.

The new insights brought by the CVaR formulation are summarized as follows.

• The generalization performance of Eν-SVC can be characterized in terms of the
CVaR risk measure (see Section 3.2).

• Through ν, the CVaR formulation allows us to judge whether the target optimization
problem is convex or not (see Figure 2 and Section 4).

• The CVaR interpretation shows that Eν-SVC is a natural extension of hard-margin
SVC for being insensitive to outliers (see Figure 1 and Section 3.1).

Finally, we conclude by describing possible future work. We introduced the threshold
ν based on the sign of the CVaR (see Figure 2). We can check that the problem (9)
is equivalent to ν-SVC in the sense that they share the same negative optimal value in
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(ν, νmax] and (νmin, νmax], respectively [9]. On the other hand, the problem (9) and ν-
SVC have the zero optimal value in (0, ν] and [0, νmin], respectively. Thus, although the
definitions of ν and νmin are different, they would be essentially the same. We will study
the relation between ν and νmin in more detail in the future work.

In this paper, we focused on SVC and investigated its generalization performance in
terms of the margin error. Another popular line of research for developing good classi-
fiers would be boosting [7, 8]. The good performance of boosting has been theoretically
investigated also in terms of the margin error [14, 3, 18]. Thus a challenging future direc-
tion would be to establish a unified theory that covers both SVC and boosting within an
integrated framework. We expect that such a line of research will provide further insights
into developing classifiers with high generalization capability.
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A Sketch of Proof of Theorem 1

Let (w∗, b∗, α∗) be the optimal solution of

min
w,b,α

Fβ(w, b, α), (12)

where, for [X]+ := max{X, 0},

Fβ(w, b, α) := α +

∑
i∈M [f(w, b;xi, yi)− α]+

(1− β)m
. (13)

Then Rockafellar and Uryasev [13] showed that

Fβ(w
∗, b∗, α∗) = ϕβ(w

∗, b∗) = min
w,b

ϕβ(w, b), (14)

i.e, the problems (7) and (12) are equivalent.
Introducing slack variables ξi, imposing ∥w∥2 = 1 (which does not change the solution

essentially; only the scale is changed), and letting ν = 1 − β and ρ = −α in Eq.(12), we
establish the theorem.
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B Sketch of Proof of Lemma 2

Since Eq.(12) only involves continuous functions, continuity of Fβ(w
∗, b∗, α∗) with respect

to β is clear. From Eq.(14), ϕβ(w
∗, b∗) is also continuous. Let (w∗

βi
, b∗βi

, α∗
βi
) be the optimal

solutions of Eq.(12) for 0 < β1 < β2 < 1. Then we have

ϕβ1(w
∗
β1
, b∗β1

) = Fβ1(w
∗
β1
, b∗β1

, α∗
β1
) ≤ Fβ1(w

∗
β2
, b∗β2

, α∗
β2
)

< Fβ2(w
∗
β2
, b∗β2

, α∗
β2
) = ϕβ2(w

∗
β2
, b∗β2

),

where the first inequality is due to optimality of (w∗
β1
, b∗β1

, α∗
β1
) and the second strict

inequality is clear from Eq.(13). Thus ϕβ(w
∗, b∗) is strictly increasing with respect to β,

implying that ϕ1−ν(w
∗, b∗) is strictly decreasing with respect to ν.

C Sketch of Proof of Theorem 3

For a homogeneous classifier h(x̃) = sign(⟨w̃, x̃⟩), the following lemma holds [15]:

Lemma 12 Suppose that the support X of x̃ is in a ball of radius R̃ around the origin.
Then, for all w̃ such that ∥w̃∥ = 1, there exists a positive constant c such that the following
bound holds with probability at least 1− δ:

R[h] ≤|{i | yi⟨w̃, x̃i⟩ < γ̃}|
m

+

√√√√ 2

m

(
4c2R̃2

γ̃2
log2(2m)− 1 + log

2

δ

)
.

Let

w̃ =
(w⊤, b)⊤√
1 + b2

and x̃ = (x⊤, 1)⊤.

Then our classifier (2) can be regarded as homogeneous. The assumption that all the
data points x live in a centered ball of radius R implies that all the data points x̃ live in
a centered ball of radius

R̃ =
√
R2 + 1.

The assumption ∥w∥ = 1 implies ∥w̃∥ = 1. Then we can apply Lemma 12 to the current
setting. The condition yi⟨w̃, x̃i⟩ < γ̃ results in

yi(⟨w,xi⟩+ b) < γ̃
√
1 + b2 := γ.

When all the data points x live in a centered ball of radius R, we can assume without
loss of generality that |b| ≤ R. Then we have

1

γ̃2
=

1 + b2

γ2
≤ 1 +R2

γ2
.

Now let us set
γ = −α1−ν(w, b).
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We can show that
1

m
|{i | yi(⟨w,xi⟩+ b) < −α1−ν(w, b)}| ≤ ν.

Then we obtain the upper bound ν +G(α1−ν(w, b)); the upper bound ν +G(ϕ1−ν(w, b))
is clear from Eq.(6).

D Sketch of Proof of Lemma 6

Since the difference between the problems (4) and (9) is only the norm constraint of w,
it is enough to show that for ν ∈ (ν, νmax], ∥w∗∥2 = 1 holds at the optimal solution
(w∗, b∗, ξ∗, ρ∗) of the problem (9). For such ν, ϕ1−ν(w

∗, b∗) < 0 holds, i.e., the opti-
mal value of Eν-SVC is negative. If we suppose ∥w∗∥2 < 1, another feasible solution
(w∗, b∗, ξ∗, ρ∗)/∥w∗∥ achieves a smaller optimal value than (w∗, b∗, ξ∗, ρ∗). This contra-
dicts to the optimality of (9), and hence ∥w∗∥2 = 1 is proved.

E Sketch of Proof of Theorem 8

Let (ŵk, b̂k, ξ̂k, ρ̂k) be an optimal solution of the linear program (10) in the k-th iteration.
Then, a feasible solution of Eν-SVC (4) is given by

(w̃k, b̃k, ξ̃k, ρ̃k) = (ŵk, b̂k, ξ̂k, ρ̂k)/∥ŵk∥.

Since (ŵk, b̂k, ξ̂k, ρ̂k) is at a corner of the feasible set of the linear program (10),

(w̃k, b̃k, ξ̃k, ρ̃k) is also a corner of the feasible set of Eν-SVC (4).
Let q(·) be the objective function of Eν-SVC (4), which is also the objective function

of the linear program (10). Then we have

q(ξ̃k−1, ρ̃k−1) > q(ξ̂k, ρ̂k) ≥ q(ξ̃k, ρ̃k) = q(ξ̂k, ρ̂k)/∥ŵk∥,

where the first inequality comes from the optimality of (ξ̂k, ρ̂k) of the linear program (10).
The second inequality comes from ∥ŵk∥ > 1, which is ensured by ⟨w̃k−1, ŵk⟩ = 1. Thus
the algorithm finds a distinct corner of Eν-SVC (4) in each iteration. Since the number
of corners of Eν-SVC (4) is finite, the algorithm terminates within finite iterations.

Let ∆d = (∆w⊤ ∆b⊤ ∆ρ⊤ ∆ξ⊤)⊤ be a perturbation from the solution d∗ =
(w∗, b∗, ρ∗, ξ∗) of Algorithm 7. Note that d∗ is an optimal solution of the linear pro-
gram (10) with w̃ = w∗. Using the Karush-Kuhn-Tucker (KKT) optimality conditions,
we can express the increase ∆q of the objective value as

∆q := −ν∆ρ+
1

m

∑
i∈M

∆ξi

= ∆d⊤


y1x1 . . . ymxm O
y1 . . . ym 0
1 . . . 1 0

I I

(λ∗

µ∗

)
− δ∗∆w⊤w∗,
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where λ∗ ∈ IRm
+ , µ

∗ ∈ IRm
+ , and δ∗ ≤ 0 are KKT multipliers. If ∆d is a feasible perturba-

tion (i.e., d∗ +∆d is feasible), we can show that ∆q > 0, which implies that d∗ is locally
optimal.


