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Abstract

In this paper, we address the task of active learning for linear regression models in
collaborative settings. The goal of active learning is to select training points that
would allow accurate prediction of test output values. We propose a new active
learning criterion that is aimed at directly improving the accuracy of the output
value estimation by analyzing the effect of the new training points on the estimates
of the output values. The advantages of the proposed method are highlighted in
collaborative settings – where most of the data points are missing, and the number
of training data points is much smaller than the number of the parameters of the
model.

1 Introduction

The goal of supervised learning is to learn a function that allows to accurately predict
the output for previously unseen inputs. A function is learned from the training data,
consisting of inputs and outputs from the unknown target function. A popular phrase
in computer science ”Garbage in, Garbage Out” summarizes well the importance of the
training data in the learning process.

The training data (needed by the supervised learning) may not be available in advance
and therefore may need to be acquired. A common way of acquiring the training data is
by specifying the inputs (or select inputs in cases where obtaining inputs at the arbitrary
location is not possible) and obtaining the corresponding outputs from the target function.
However, obtaining output values often incurs a cost (in terms of money, effort, time,
availability, etc.). For example, asking a user to evaluate a movie (in order to learn
user’s preferences) is costly in terms of the user’s effort and time. The degree to which
a training point allows us to approximate the function varies. For example, rating a
popular item may not be useful for approximating the user’s preferences since most users
assign a positive rating to a popular item. On the other hand, rating an item which is
representative of many other items and whose rating is uncertain may allow us to better
approximate the user’s preferences. The goal of active learning (AL) is to avoid acquiring



Output Divergence Criterion for Active Learning in Collaborative Settings 2

the training points that are not useful. To achieve this, active learning criterion selects
input points (for which the output values will be obtained) as to maximize the accuracy
of the learned function. What makes the AL task challenging is that we have to predict
the improvement in the accuracy of the learned function with regard to the input point
before its output value is obtained, since once the output value is obtained it incurs a
cost.

In traditional settings, we learn an approximation of the target function based on the
training data from the target function. The number of training points is often assumed
to be large enough in order to obtain an accurate approximation of the target function
9).

In some cases, there are not enough training points to obtain an accurate function
approximation. In addition, obtaining training points from the target function could
be costly. In collaborative settings, however, the training points from other functions
(collaborative data) could be available at no cost 6), 1). For example, while rating a
movie may require a substantial effort from a user, the same movie could have already
been rated by many other users. The goal of active learning in collaborative settings is to
utilize the training data of other functions, in order to improve the accuracy of the target
function of interest.

There have been a number of works addressing the task of active learning in collabo-
rative settings. Many of the works concentrate on the domain of recommender systems,
due to the availability of datasets and the widespread use of collaborative methods (often
referred to as collaborative filtering). Nakamura et al. 11) considered the collaborative
filtering problem as an image restoration problem; where a user’s preferences are restored
from the items for which the user has expressed preferences. Selecting the item to be
rated is then formulated as finding a restriction operator (an operator that restricts the
components to those having observed values) that minimizes the expected squared error.
Boutiler et al. 2) selected the item to rate based on the expected value of information with
respect to the explicit probabilistic model; where the value of information is expressed as
the expected improvement in the decision quality after the item is rated. In 7),4), the
items to be rated are selected so that they would allow the system to assign the user to
a certain stereotype.

Linear regression based methods are often used in collaborative filtering 1). However,
there are few works on active learning in collaborative settings for linear regression based
methods 15),1). Standard linear regression-based active learning approaches 3),10),5) can
be applied to collaborative setting but are not necessarily well suited for it. These ap-
proaches tend to improve the accuracy of output estimates by selecting training points
that may allow to improve the function’s parameters. However, in collaborative setting,
improved parameters may not necessarily translate into improved accuracy. A famous
statistician Vladimir Vapnik noted that: ”When solving a problem of interest, do not
solve a more general problem as an intermediate step. Try to get the answer that you
really need but not a more general one.” The ultimate goal of active learning is to im-
prove the accuracy of output estimates (and not necessary the accuracy of the function’s
parameters). Motivated by this, we propose a new active learning method that is aimed
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Figure 1: Problem representation. The task is to select an input δ for which the output
value of the target function yδ will be provided, as to better approximate the output
values y∗.

at directly improving the accuracy of the output value estimates, by analyzing the effect
of the new training points on the estimates of the output values.

2 Problem Formulation

2.1 Linear Regression in Collaborative Settings

Let us formulate the task of function approximation for collaborative settings in a linear
regression form (see Figure 1). A matrix entry corresponds to the output value of a
function for an input i.e. xi,j = fj(xi) (for recommender systems it corresponds to a
rating of an item i by a user j). We want to approximate the output values y of the
target function through the linear combination of the output values of other functions
(corresponding to the column vectors of matrix X) weighted by the parameters β:

y = Xβ + ε, (1)

X ∈ Rt×p, where t is the number of inputs and p is the number of functions; y ∈ Rt,
parameters β ∈ Rp, and ε ∼ N (0, σ2It) normally distributed i.i.d. noise with mean zero

and unknown variance σ2. We can obtain the least squares estimator β̂ of the parameter
values as:

β̂ =
(
X

⊤
X
)−1

X
⊤
y, (2)

where ⊤ denotes the transpose. The target output values are then approximated in terms
of output values of other functions.

Collaborative settings could be considered a special case of traditional settings with
the following characteristics:

• matrix is sparse (most of the matrix entries are missing)
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• the number of inputs and the number functions/features (dimensions of the matrix)
are large

• the number of training points is much smaller than the dimensions of the matrix

Since in the collaborative settings the matrix X is sparse, the matrix X⊤X is singular
and is not invertible. To cope with this, we add a regularization constant αI to X⊤X
(where the value of α is positive and is small e.g. α = 0.1). This ensures that X⊤X+ αI

is full rank (invertible), and improves numerical stability. Parameters β̂ could now be
expressed as:

β̂ = (X⊤X+ αI)−1X⊤y. (3)

We can approximate the output values y∗ of the test inputs by estimates ŷ as:

ŷ = X∗β̂, (4)

where X∗ are the output values of the functions for the test inputs. We measure how well
ŷ approximates y∗ by the generalization error G:

G(ŷ) = ∥ŷ − y∗∥2 . (5)

2.2 Active Learning Task

We consider the following task. We are allowed to sequentially select for which inputs the
output values (of the target function) are obtained. We want to select an input δ, so that
obtaining and adding its output value yδ to the existing output values y minimizes the
generalization error G:

argminδG. (6)

3 Related Work

An information matrix is typically used for identifying inputs, obtaining output values
for which, allows us to reduce the generalization error. The inverse of the information
matrix A:

A−1 =
(
X⊤X

)−1
, (7)

allows us to estimate the error of the approximated parameters β̂ (obtained by Eq.(2) and
used for estimating the output values by Eq.(4)). The active learning task could then be
formulated as the minimization of the parameter’s estimation error based on a particular
optimality criterion of the information matrix.
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3.1 A-optimal

The A-optimal design 3) seeks to minimize the trace of the inverse of the information
matrix i.e.:

min trA−1. (8)

This criterion results in minimizing the average variance of the estimates of the regression
parameters β̂.

3.2 D-optimal

The D-optimal design 10) seeks to maximize the determinant of the information matrix
i.e.:

max |A| . (9)

This criterion results in maximizing the differential Shannon information content of the
parameter estimates.

3.3 E-optimal

The E-optimal design 5) seeks to minimize the 2-norm of the inverse of the information
matrix i.e.:

min
∥∥A−1

∥∥
2
. (10)

This criterion results in maximizing the minimum eigenvalue of the information matrix.

3.4 Transductive Experimental Design

The transductive experimental design 15) seeks to maximize the trace of the information
matrix with respect to test points i.e.:

max tr
(
X∗X⊤A−1XX∗⊤) . (11)

This criterion results in finding representative training points that span a linear space for
retaining most of the information of the test points.

4 Proposed Method

4.1 Motivations

The methods described in Section 3 tend to indirectly improve the estimates of output
values ŷ by improving the estimates of parameters β̂. However, in collaborative settings,
this may not necessarily be efficient for the reasons outlined bellow:

• The ultimate goal is to obtain good estimates ŷ of the output values y, and not
necessarily good estimates β̂ of the parameters β.
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• Traditional optimal design methods tend to assume that the bias is sufficiently small,
and concentrate on minimizing the variance. However, in the current settings, the
value of bias is not necessarily small, since the number of training points is much
smaller than the number of parameters. So reducing the variance and ignoring the
bias may not necessarily be an effective way of minimizing the generalization error.

• In the current settings, the size of y is smaller than the size of β, so optimizing
estimates of y (instead of estimates of β) may be more computationally efficient.

4.2 Method

The generalization error measures how well the estimated output values approximate the
true output values. Traditionally, active learning methods attempt to improve the gen-
eralization error indirectly by identifying training points that will improve the estimates
of the parameters (used in turn for obtaining the estimated output values). However,
in collaborative settings, improving the parameter estimates may not necessarily be an
effective way of reducing the generalization error (as discussed in Section 4.1). We note
that in the calculation of the generalization error, the true output values are not affected
by the addition of the new training point, while the estimates of the output values do
change. Therefore, we propose to estimate the effect of a new training point on the value
of the generalization error in terms of changes in the estimates of the output values.

First, let us reformulate the goal of minimizing the generalization error in terms of the
changes in its value that adding a training point causes. Let us denote the generalization
error when the number of training points is equal to t by Gt. Let us denote the input
of the next training point by δ; and the generalization error after the output value yδ is
obtained by Gt+1. Let us express Gt+1 as:

Gt+1 = Gt − (Gt −Gt+1).

The value of Gt is fixed in advance (since we are considering a sequential scenario). The
value of Gt+1 depends on the choice of δ. In order for Gt+1 to be minimized the difference
between generalization errors Gt and Gt+1 needs to be maximized i.e.:

minδGt+1 = Gt −maxδ(Gt −Gt+1).

So the original task of minimizing the generalization error could be reformulated as max-
imizing the difference between the generalization errors Gt and Gt+1 i.e.:

argminδGt+1 = argmaxδ(Gt −Gt+1). (12)

Let us denote ŷt as the estimates of output values when the number of training samples
is equal to t; and ŷt+1 as the estimates of output values after the value of yδ was obtained
and added to the existing ratings y. Let us rewrite the difference between generalization
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Figure 2: Location of the estimate of the output value ŷ after the training point δ is added
to the training set (making the number of training points equal to t+ 1).

errors Gt and Gt+1 (also referred to as △G) in terms of a difference between ŷt and ŷt+1:

△G = Gt −Gt+1

= ∥ŷt − y∗∥2 − ∥ŷt+1 − y∗∥2

= ∥ŷt∥2 − 2 ⟨ŷt,y
∗⟩+ ∥y∗∥2 − ∥ŷt+1∥2 + 2 ⟨ŷt+1,y

∗⟩ − ∥y∗∥2

= ∥ŷt∥2 − 2 ⟨ŷt − ŷt+1,y
∗⟩ − ∥ŷt+1∥2 .

Defining ϵ = y∗ − ŷt+1, we have

∥ŷt∥2 − 2 ⟨ŷt − ŷt+1,y
∗⟩ − ∥ŷt+1∥2

= ∥ŷt∥2 − 2 ⟨ŷt, ŷt+1⟩+ ∥ŷt+1∥2 + 2 ⟨ŷt+1 − ŷt, ϵ⟩
= ∥ŷt − ŷt+1∥2 + 2 ⟨ŷt+1 − ŷt, ϵ⟩ . (13)

Note that this decomposition is different from the standard bias-variance decomposition.
Let us denote the first term of the above Eq.(13) by T1:

T1 = ∥ŷt − ŷt+1∥2 ,

and the second term by T2:
T2 = 2 ⟨ŷt+1 − ŷt, ϵ⟩ .

The value of △G could not be calculated directly since the true output values y∗ are
not accessible. Estimating the value of term T2 relies on the estimate of the values in y∗,
since ϵ = y∗−ŷt+1 and y∗ is not accessible. In the current settings, the number of training
samples is small, so the estimate of y∗ is likely to be unreliable. However, estimating the
value of term T1 requires only the estimate of a single value y∗δ , so the estimate of T1 is
less likely to be error-prone than the estimate of T2.

Let us investigate if T1 alone is a good predictor of △G. Let us consider three possible
cases of the location of ŷt+1 (an element of ŷt+1) in relation to the corresponding elements
ŷt and y∗, as illustrated in Figure 2. In case (b), adding a training point improves the
estimate of the true output value. In this case, maximizing T1 also maximizes △G. In
case (a), adding a training point deteriorates the estimate of the true output value. In
case (c), adding a training point causes the estimate to overshoot the true output value.
In both cases (a) and (c) maximizing T1 does not maximize △G. In Figure 3, we show
the distribution of the location of ŷt+1 relative to ŷt and y∗ (plotted from the data from
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ŷt+1

P (ŷt+1)
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Figure 3: Distribution of ŷt+1 in relation to y∗ and ŷt+1 (Section 5.3).

the numerical experiment described in Section 5.3). Case (b) is much more frequent than
cases (a) and (c). Even when cases (a) and (c) do occur, the probability of the output
estimate significantly deteriorating is low. Since T1 is less prone to error and is more likely
to be applicable, we use it as an estimator of △G and define the active learning criterion
J as:

J(δ) = ∥ŷt − ŷt+1∥2 . (14)

The training point is then selected as:

argmaxδJ(δ). (15)

4.3 Criterion Formulation in Linear Regression Settings

Let us formulate the proposed criterion for the linear regression settings (Section 2.1) as:

J(δ) = ∥ŷt − ŷt+1∥2 =
∥∥∥X∗

(
β̂t − β̂t+1

)∥∥∥2 , (16)
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where the least-squares estimators β̂t, β̂t+1 of the parameter values are obtained by using
Eq.(3). Let

A = X⊤X+ αI, (17)

where αI is a regularization parameter (where 0 < α ≪ 1), this ensures that matrix A is

invertible. We can rewrite the parameter estimate β̂t as:

β̂t = A−1X⊤y. (18)

The parameters β̂t+1, after the output value for the input δ was added could be expressed
as:

β̂t+1 = (A+ xδx
⊤
δ )

−1(X⊤y + xδyδ)

= (A+ xδx
⊤
δ )

−1X⊤y + (A+ xδx
⊤
δ )

−1xδyδ. (19)

We can rewrite the first term of Eq.(19) by using the Woodbury formula 14) as:

(A+ xδx
⊤
δ )

−1 = A−1 − A−1xδx
⊤
δ A

−1

1 + x⊤
δ A

−1xδ

.

Then expand the terms of Eq.(19) as:

(A+ xδx
⊤
δ )

−1X⊤y = A−1X⊤y − A−1xδx
⊤
δ A

−1X⊤y

1 + x⊤
δ A

−1xδ

, (20)

(A+ xδx
⊤
δ )

−1xδyδ = A−1xδyδ −
A−1xδx

⊤
δ A

−1xδyδ
1 + x⊤

δ A
−1xδ

. (21)

The difference between the parameter estimates could then be expressed as:

β̂t+1 − β̂t = A−1xδyδ −
A−1xδx

⊤
δ A

−1xδyδ
1 + x⊤

δ A
−1xδ

− A−1xδx
⊤
δ A

−1X⊤y

1 + x⊤
δ A

−1xδ

= A−1xδyδ −
1 + x⊤

δ A
−1xδ − x⊤

δ A
−1xδ

1 + x⊤
δ A

−1xδ

− A−1xδx
⊤
δ A

−1X⊤y

1 + x⊤
δ A

−1xδ

=
A−1xδ(yδ − x⊤

δ β̂t)

1 + x⊤
δ A

−1xδ

.

The difference between the output values could now be expressed as:

ŷt+1 − ŷt = X∗A
−1xδ(yδ − x⊤

δ β̂t)

1 + x⊤
δ A

−1xδ

.

The proposed criterion is then formulated as:

J(δ) = ∥ŷt+1 − ŷt∥2

=

(
yδ − x⊤

δ β̂t

1 + x⊤
δ A

−1xδ

)2

x⊤
δ A

−1X∗⊤X∗A−1xδ. (22)
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4.4 Interpretation

Let us look at a possible interpretation of the proposed criterion (Eq.(22)) and its relation
to existing active learning criterions. Let us rewrite the criterion as:

J(δ) = (yδ − x⊤
δ β̂t)

2x
⊤
δ A

−1X∗⊤X∗A−1xδ

(1 + x⊤
δ A

−1xδ)2

= JR
JS
JP

, (23)

where

JR = (yδ − x⊤
δ β̂t)

2, (24)

JS = x⊤
δ A

−1X∗⊤X∗A−1xδ, (25)

JP = (1 + x⊤
δ A

−1xδ)
2. (26)

The term JR = (yδ − x⊤
δ β̂t)

2 represents the residual value, i.e. the squared error

between the actual output value yδ and its estimate x⊤
δ β̂t. The xδ with larger residual

value is then favored by the term JR. Taking the residual value into account corresponds
to the residual-based active learning methods12).

The next term JS may be rewritten further as:

JS = x⊤
δ A

−1X∗⊤X∗A−1xδ

=
∑

xt∈X∗

(
x⊤
δ A

−1xt

)2
, (27)

where X∗ denotes a set of row vectors of the matrix X∗. By noticing that xδ ∈ X∗, we
can further rewrite the above term as:

JS = (x⊤
δ A

−1xδ)
2 +

∑
xt∈X∗\xδ

(
x⊤
δ A

−1xt

)2
. (28)

The part JS
JP

of the proposed criterion could now be rewritten as:

JS
JP

=
(x⊤

δ A
−1xδ)

2 +
∑

xt∈X∗\xδ

(
x⊤
δ A

−1xt

)2
(1 + x⊤

δ A
−1xδ)2

=
(x⊤

δ A
−1xδ)

2

(1 + x⊤
δ A

−1xδ)2
+

∑
xt∈X∗\xδ

(
x⊤
δ A

−1xt

)2
(1 + x⊤

δ A
−1xδ)2

=JO + JT , (29)

where

JO =
(x⊤

δ A
−1xδ)

2

(1 + x⊤
δ A

−1xδ)2
, (30)

JT =

∑
xt∈X∗\xδ

(
x⊤
δ A

−1xt

)2
(1 + x⊤

δ A
−1xδ)2

. (31)
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In order to interpret the meaning of the terms JO and JT , let us eigen-decompose the
matrix X⊤X into its eigenvalues and eigenvectors as:

X⊤X =

p∑
i=1

λiφiφ
⊤
i , (32)

where λi are eigenvalues such that λ1 ≥ λ2 ≥ . . . ≥ λm > λm+1 = . . . = λd = 0 and
associated eigenvectors φi, and m is the rank of the matrix X⊤X. We can also rewrite
the matrix A as:

A = X⊤X+ αI

=

p∑
i=1

λiφiφ
⊤
i + αI. (33)

Let us examine the conditions under which the value of JO increases. Let x⊤
δ A

−1xδ =
a, then we can rewrite JO as:

JO =
a2

(a+ 1)2
(34)

The value of JO is non-negative and is monotone increasing with respect to a. So let us
examine under which conditions the value of a is large. We can rewrite a as:

a =

p∑
i=1

(
x⊤
δ φi

)2 1

λi + α

=
m∑
i=1

(
x⊤
δ φi

)2 1

λi + α
+

1

α

p∑
i=m+1

(
x⊤
δ φi

)2
. (35)

Since α is set to a value close to zero (Eq.(17)), the 1
α

∑p
i=m+1

(
x⊤
δ φi

)2
part dominates in

the above equation. We may then approximate a as:

a ≈ 1

α

p∑
i=m+1

(
x⊤
δ φi

)2
. (36)

The value of 1
α

∑p
i=m+1

(
x⊤
δ φi

)2
is large when we choose xδ that belongs to the null space

of X⊤X spanned by {φi}
p
i=m+1. This is equivalent to xδ being orthogonal to the training

space (the range of X⊤X spanned by {φi}
m
i=1). So the JO part of the criterion favors

xδ that is ‘not close’ to the training space. This would be related to variance-based AL
methods 10),3),5),13).

Let us examine the conditions under which the value of JT increases. Let us try
to simplify the formulation of the JT . By using the fact that the denominator (1 +
x⊤
δ A

−1xδ)
2 ≥ 1, we may obtain the lower bound of JT as:

JT ≥
∑

xt∈X∗\xδ

(
x⊤
δ A

−1xt

)2
. (37)
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We can rewrite the x⊤
δ A

−1xt part of the above equation as:

x⊤
δ A

−1xt =

p∑
i=1

(
x⊤
δ φi

) (
x⊤
t φi

) 1

λi + α

=
m∑
i=1

(
x⊤
δ φi

) (
x⊤
t φi

) 1

λi + α
+

1

α

p∑
i=m+1

(
x⊤
δ φi

) (
x⊤
t φi

)
. (38)

Since α is set to a value close to zero (Eq.(17)), the 1
α

∑p
i=m+1

(
x⊤
δ φi

) (
x⊤
t φi

)
part domi-

nates in the above equation. We may then approximate the above equation as:

x⊤
δ A

−1xt ≈
1

α

p∑
i=m+1

(
x⊤
δ φi

) (
x⊤
t φi

)
, (39)

and may now approximate the lower bound of the term JT as:

JT ≥
∑

xt∈X∗\xδ

(
x⊤
δ A

−1xt

)2
≈

∑
xt∈X∗\xδ

(
1

α

d∑
i=m+1

(
x⊤
δ φi

) (
x⊤
t φi

))2

. (40)

The term JT favors xδ whose projection onto the null space of X⊤X is ‘close’ to the
projections of the vectors X∗ \xδ onto the null space. Taking the test points into account
is related to the transductive active learning method 15).

4.5 Implementation Considerations

In this section we address the details that need to be considered for the implementation
of the proposed active learning criterion.

4.6 Criterion Estimation

We are not able to calculate the value of the proposed criterion directly since the output
value of the sample yδ is not known. Let us denote by J(δ| yδ = r) the value of the
criterion J(δ) when yδ = r. We may then approximate the value of the criterion as:

J(δ) ≈
∑
r

P (yδ = r)J(δ| yδ = r),

Since we assume no prior knowledge of P (yδ = r), we approximate it by the non-
informative uniform distribution.
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4.7 Handling Missing Data

In collaborative settings, the data matrix is assumed to be very sparse, so proper handling
of missing values (e.g. items that the user provided no ratings for) is important. We
handle missing values in the following way. First, we calculate the mean output value
of a function and use it to centralize the output values of the given function. Missing
values are then assigned a value of zero, which corresponds to the mean output value of
the function.

5 Numerical Experiments

5.1 Experiment Settings

Let us describe the settings that are common to the experiments. We have selected a
popular collaborative dataset MovieLens 8) for the numerical experiments. The Movie-
Lens dataset consists of approximately 1 million ratings for 3, 900 movies by 6, 040 users.
We randomly select 100 users that have each rated at least 100 items. For each user,
we randomly select 50 points (items) as potential training points and use the rest of the
points as a test set. All of the users’ output values (ratings) are withheld. For each user,
training points are selected in a sequential manner by an active learning algorithm. After
the training point is selected, its output value is revealed and the point is added to the
training set. For the random active learning method, training points are selected following
the uniform distribution. For all of the applicable active learning methods, the value of
α (of the regularization parameter in Eq.(17)) is set to 0.1.

5.2 Effect of Active Learning

In this experiment, we investigate the effect of active learning (training point selection)
on the generalization error. We use a random active learning algorithm to sequentially
select 20 training points for each user. At each step, we record the change in the gener-
alization error △G. Results of the experiment are presented in Figure 4. In line with the
expectations, the effect of training point selection on generalization error is large when the
number of training points is small. As the number of training points increases, the effect
of training point selection decreases, and flattens out after the number of training points is
larger than 10. In order to better distinguish the effect of active learning on generalization
error, we limit the size of the training set to 10 for the rest of the experiments.

5.3 Validity of Assumptions

In this experiment, we investigate whether the assumptions that the proposed algorithm
relies upon are satisfied. As discussed in Section 4.2, the proposed criterion relies on the
value of the error (of the output estimate) not increasing, and the output estimate not
overshooting the true value. We use the experiment settings described in Section 5.1 and
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Figure 4: Effect of the training point selection (active learning) on the generalization error
with respect to the training set size (Section 5.2).

the random active learning method. For each run, we record the values of ŷt, ŷt+1 and
y∗and then plot the distribution of the ŷt+1 normalized by ŷt − y∗. From results shown in
Figure 3, we can see that deterioration of the estimate and overshooting of the true value
occurs with the low probability and the value of the resulting error is likely to be small.
Therefore, due to only a mild violation of the assumptions, the proposed criterion is still
likely to be accurate.

5.4 Criterion Accuracy Evaluation

In this experiment, we evaluate how accurately the proposed criterion estimates the change
in the generalization error (caused by the addition of the new training point). We use the
experiment settings described in Section 5.1 and the random active learning method. For
each run, we record the actual values of the proposed criterion T1, and the value that it
estimates △G. Results are presented in Figure 5. The term T1 models △G well, except
in a relatively rare situations where △G < 0. However, for the active learning task, we
are interested in the training points that improve the model i.e. △G > 0. Therefore for
the task of active learning, the proposed criterion could be considered a good predictor
of △G.
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Figure 5: Relation between the value of T1 = ∥ŷt − ŷt+1∥ and the value that it tries to
approximate △G (Section 5.4).

5.5 Comparison with existing Active Learning algorithms

In this experiment, we evaluate how the proposed method compares with existing meth-
ods (Section 3), a random active learning method, and an optimal method (that selects
the best possible training sample that results in the largest possible reduction of the gen-
eralization error). In order to calculate the value of the proposed criterion, the estimate
of the output value yδ is required. We assume no prior knowledge, and estimate the ex-
pected value of the criterion by assuming a uniform distribution over the output values
of the input δ (Section 4.5). Results are presented in Figure 6. Existing methods appear
to perform poorly under collaborative settings, since most of the existing methods (with
the exception of transductive active learning at the later stages) are outperformed by the
random method. Existing algorithms do not specifically consider collaborative settings,
and this appears to be detrimental to their performance. The proposed algorithm has the
best performance (at the statistical significance level of 95%); hence it appears to be a
promising active learning method for collaborative settings.
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Figure 6: Evaluation of active learning criterions (Section 5.5).

6 Conclusion

We proposed an active learning criterion that aims to directly improve the estimates of
the output values. To accomplish this, we select new training points to be added to the
training set, that cause a large change in the estimates of output values. As a result,
the proposed criterion favors training points that are not represented by the existing
training set and are representative of many other points (Section 4.4). In experiments,
the proposed approach performs favorably under collaborative settings in comparison with
traditional approaches.
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