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Abstract

The runtime for Kernel Partial Least Squares
(KPLS) to compute the fit is quadratic in
the number of examples. However, the ne-
cessity of obtaining sensitivity measures as
degrees of freedom for model selection or con-
fidence intervals for more detailed analysis re-
quires cubic runtime, and thus constitutes a
computational bottleneck in real-world data
analysis. We propose a novel algorithm for
KPLS which not only computes (a) the fit,
but also (b) its approximate degrees of free-
dom and (c) error bars in quadratic runtime.
The algorithm exploits a close connection be-
tween Kernel PLS and the Lanczos algorithm
for approximating the eigenvalues of symmet-
ric matrices, and uses this approximation to
compute the trace of powers of the kernel ma-
trix in quadratic runtime.

1 INTRODUCTION

Partial Least Squares (PLS) (Wold, 1975; Wold et al.,
1984) is a supervised dimensionality reduction tech-
nique. Given n observations (xi, yi) ∈ Rd×R, it itera-
tively constructs an orthogonal set T = (t1, . . . , tm) ∈
Rn×m of m latent features which have maximal co-
variance with the target variable y = (y1, . . . , yn). For
regression, these latent components are used as predic-
tors in a least squares fit instead of the original data
leading to fitted values

ŷm = T
(
T>T

)−1
T>y = PT y , (1)
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where P denotes the orthogonal projection opera-
tor. PLS is the standard tool e.g. in chemomet-
rics (Martens and Naes, 1989), and has been success-
fully applied in various other scientific fields such as
chemoinformatics, physiology or bioinformatics (Saigo
et al., 2008; Rosipal et al., 2003; Boulesteix and Strim-
mer, 2007). In combination with the kernel trick (Rosi-
pal and Trejo, 2001), Kernel Partial Least Squares
(KPLS) performs dimensionality reduction and regres-
sion in a non-linear fashion. KPLS has some appealing
properties over existing kernel methods. Due to its it-
erative nature, it only relies on matrix-vector multipli-
cations. Hence its runtime is quadratic in the number
of training examples , as opposed to – for example
– Kernel Ridge Regression, which requires the inver-
sion of a large symmetric matrix, having time complex-
ity O(n3). Furthermore, it is possible to compute the
derivative of the KPLS solution with respect to y by
differentiating the iterative formulation itself. Taking
the trace of the derivative of the fitted values, one ob-
tains an estimate of the degrees of freedom for KPLS,
which can be used, for example, for effective model se-
lection based on information criteria like AIC, BIC, or
gMDL (Krämer and Braun, 2007). The first order Tay-
lor approximation can also be used to construct confi-
dence intervals for PLS (Denham, 1997; Phatak et al.,
2002). However, since we take the derivative of a vec-
tor (1), the derivative is a matrix, and the computation
of the derivative involves a number of matrix-matrix
multiplications which have time complexity O(n3) for
all practical considerations.

In this work, we propose an algorithm which computes
(a) the fit of KPLS as well as (b) its approximate de-
grees of freedom and (c) confidence intervals for the
KPLS solutions, all in quadratic runtime. These re-
sults are based on the fact that PLS is equivalent to the
Lanczos method for approximating the eigenvalues of
the kernel matrix K by the eigenvalues of a tridiagonal
m × m matrix D. The main contribution is to com-
pute these approximate eigenvalues using KPLS itself .
Then, using a different formulation of the derivative of
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the fit in KPLS, one can approximate the trace of pow-
ers Kj of the kernel matrix using the matrix D. Since
D is typically small (as it scales with the number of
components), the runtime for computing the eigenval-
ues is cubic in m, and therefore, unproblematic. Since
the powers of the Kernel matrices Kj are the only
matrix-matrix multiplications of order n in the for-
mula for the degrees of freedom, the approximation
leads to quadratic runtime. Hence, we use the KPLS
fit to approximate its degrees of freedom. In addition,
using the alternative formulation of the derivative, one
can perform a sensitivity analysis of KPLS resulting in
confidence intervals on the estimates, also in quadratic
runtime.

This paper is structured as follows. In Section 2, we
review the connection between KPLS and Lanczos ap-
proximations, and summarize the state-of-the-art for
computing the derivative of Kernel PLS. In Sections 3
and 4, we propose our novel formulation of the deriva-
tive together with the quadratic runtime algorithms
for the degrees of freedom and the confidence inter-
vals. We conclude with some practical examples.

PLS is closely related to Krylov methods. Therefore,
we briefly recall the definition of Krylov subspaces.
For a matrix C ∈ Rc×c and c ∈ Rc, we call the set
of vectors c, Cc, . . . , Cm−1c the Krylov sequence of
length m. The space spanned by these vectors is called
a Krylov space and is denoted by Km (C, c).

2 BACKGROUND: PLS, LANCZOS
METHODS, AND SENSITIVITY
ANALYSIS

In this paper, we focus on the NIPALS algorithm
(Wold, 1975) for PLS. For different forms of PLS, see
Rosipal and Krämer (2006). The n centered observa-
tions (xi, yi) are pooled into a n × d data matrix X
and a vector y ∈ Rn. PLS constructs m orthogonal la-
tent components T = (t1, . . . , tm) ∈ Rn×m in a greedy
fashion. The first component t1 = Xw1 fulfills

w1 = arg max
‖w‖=1

cov(Xw, y)2 =
1

‖X>y‖X>y. (2)

Subsequent components t2, t3, . . . are chosen such that
they maximize the squared covariance to y and that all
components are mutually orthogonal. Orthogonality
can be ensured by deflating the original variables X

Xi = X −Pt1,...,ti−1X ,

and then replacing X by Xi in (2). The matrix W =
(w1, . . . , wm) ∈ Rd×m can be shown to be orthogonal
as well (e.g. Hoskuldsson (1988)). Note furthermore
that the latent components are usually scaled to unit

norm. Kernel PLS (Rosipal and Trejo, 2001) can be
derived by noting that wi = X>ri with

ri = (y − ŷi−1) /‖K1/2 (y − ŷi−1) ‖ (3)

denoting the normalized residuals, and by deflating the
kernel matrix K instead of X,

Ki =
(
In −Pti−1

)
Ki−1

(
In − Pti−1

)
.

In contrast to e.g. Principal Component Analysis,
the latent components T depend on the response, and
hence the fitted values (1) are a nonlinear function of
y.

Recall that in the nonlinear case, KPLS depends on
the kernel parameters (e.g. the width of an rbf-
kernel) and the optimal number m of latent compo-
nents. Thus, for model selection, one has to select the
optimal combination on a grid of possible kernel pa-
rameters and components from 1 to a maximal amount
m∗ of components.

2.1 KRYLOV METHODS AND LANCZOS
APPROXIMATION

To predict the output for a new observation, we have
to derive the regression coefficients β̂m (in the lin-
ear case) and kernel coefficients α̂m (in the nonlinear
case), which are defined via ŷm = Xβ̂m = Kα̂m.
This can be done by using the fact that PLS is equiv-
alent to the Lanczos bidiagonalization of X (Lanc-
zos, 1950): The orthogonal matrices T and W rep-
resent a decomposition of X into a bidiagonal matrix
L ∈ Rm×m via

XW = TL (4)

with lij = 0 for i > j or i < j − 1. This matrix is
defined as L = T>XW . This implies (Manne, 1987;
Hoskuldsson, 1988; Rosipal and Trejo, 2001)

β̂m = WL−1T>y and α̂m = RL−1T>y

with R = (r1, . . . , rm) ∈ Rn×m. Furthermore, it can
be shown (Phatak and de Hoog, 2002) that PLS is
equivalent to the conjugate gradient (CG) algorithm
(Hestenes and Stiefel, 1952). The latter is a proce-
dure that iteratively computes approximate solutions
of the normal equation Aβ = b (with A = X>X
and b = X>y) by minimizing the quadratic func-
tion 1/2β>Aβ − β>b along directions that are A-
orthogonal. These search directions span the Krylov
space defined by A and b. The approximate solution
of CG obtained after m steps is equal to the PLS es-
timate β̂m with m components. Moreover, the weight
vectors W are an orthogonal basis of Km(A, b).
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Krylov methods are also used to approximate eigen-
values of A by “restricting” A onto Krylov subspaces:
In terms of the orthogonal basis W of Km(A, b), the
map D = PKm(A,b)APKm(A,b) is represented by

D = W>AW . (5)

D is shown to be tridiagonal, and the m distinct eigen-
values µ1 > µ2 > . . . > µm of D – called Ritz values –
are good approximations of the eigenvalues of A (Saad,
1996). One immediate consequence of the connection
between PLS and Krylov spaces is the fact that the
latent components span the Krylov space defined by
K and Ky. This implies that

ŷm = PKm(K,Ky)y . (6)

2.2 SENSITIVITY ANALYSIS FOR KPLS

Sensitivity measures are crucial in at least two impor-
tant scenarios. On the one hand, they are needed to
select the correct model (in terms of a suitable kernel
and the number of components) when using informa-
tion criteria. On the other hand, to assess the stability
of the solution, one needs to measure the influence of
small noise in the training points on the learned func-
tion. For example, areas with a high sensitivity require
further data points to stabilize the solution in an am-
biguous area. Furthermore, if for some regions, the
prediction does not depend on the training points at
all, this indicates that further data points are neces-
sary.

Both of these questions – model selection and stability
analysis – can be addressed by computing the deriva-
tives of the KPLS solution with respect to y, either
of the fitted labels ŷm, or of the learned kernel coeffi-
cients α̂m. Let us consider the regression model

Yi = f(xi) + εi , εi ∼ N (0, σ2) . (7)

For a general regression method with fitted values ŷ,
the degrees of freedom are defined as (Ye, 1998; Efron,
2004)

DoF = E [trace (∂ŷ/∂y)]

with the expectation E taken with respect to
Y1, . . . , Yn. An unbiased plug-in estimate of the de-
grees of freedom is therefore given by

D̂oF = trace (∂ŷ/∂y) . (8)

Degrees of freedom in combination with information
criteria can be used for model selection. As the KPLS
solution depends nonlinearly on y, the computation of
the derivative is necessary. Krämer and Braun (2007)
derive an algorithm for the derivative of ŷm by trans-
forming the Lanczos decomposition (4) into a Kernel

representation and by exploiting its sparsity. The re-
sulting iterative algorithm for (8) is then used success-
fully for model selection. This method scales cubically
in the number of examples.

For the construction of confidence intervals for a fitted
kernel function

f̂(x) =
n∑

i=1

α̂ik(x, xi) .

one needs to study the influence of an infinitesimal per-
turbation in the values of y. If the kernel coefficients
depended linearly on y via α̂ = Hy, the distribution
of the prediction f̂(x) at any point x would be given
by

f̂(x) ∼ N (
k(x)>E [α̂] , σ2k(x)>HH>k(x)

)
(9)

with k(x) = (k(x, x1), . . . , k(x, xn)) ∈ Rn. However,
as KPLS depends nonlinearly on y, the distribution of
α̂m can only be determined approximately by using a
first order Taylor expansion, i.e. one uses

Hm ≈ (∂α̂m/∂y) . (10)

To the best of our knowledge, confidence intervals for
PLS have only been constructed in the linear setting,
but the results can easily been extended to the Kernel
case. Phatak et al. (2002) use (6) to explicitly calculate
the derivative of the PLS coefficients β̂m, and obtain
an approximate distribution of β̂m. As the formula de-
pends on matrix multiplications of order (nm)×(nm),
this approach is computationally expensive. Further-
more, as the Krylov sequence Ky, . . . , Kmy is nearly
collinear, the formula is numerically unstable. In Den-
ham (1997) and Serneels et al. (2004), an iterative for-
mulation of PLS is used to construct the derivative of
β̂m. Finally, we remark that the approach by Krämer
and Braun (2007) using the Lanczos decomposition
can be extended to the derivative of the kernel coeffi-
cients.

The drawback of all of these approaches is their poor
scalability. All algorithms are cubic in the number of
observations. In the following two sections we exploit
that we do not need the derivative itself, but only the
trace of the derivative for the degrees of freedom, and
(9) for the construction of confidence intervals. The
key advantage is that we can compute these approxi-
mation schemes in quadratic runtime.

3 APPROXIMATE DEGREES OF
FREEDOM IN QUADRATIC
RUNTIME

The key ingredients for the derivation of approximate
degrees of freedom are (1) the identification of those
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terms that are cubic in n, and (2) the approximation
of those terms using Lanczos approximations.

First, we extend the results of Phatak et al. (2002)
to the computation of the derivative of ŷm. We de-
fine the m × m matrix B via bij =

〈
ti, K

jy
〉

. The
matrix is regular and upper triangular, as the latent
components T are an orthogonal basis of the Krylov
subspace Km(K,Ky).

Proposition 1. Let c = B−1T>y and V =
(v1, . . . , vm) = TB−>. We have

∂ŷm

∂y
=

[
c> ⊗ (In −PT )

]
Q>

+
[
V ⊗ (y − ŷm)>

]
Q> + PT

=
m∑

j=1

cj

(
In − TT>)

Kj

+
m∑

j=1

vj (y − ŷm)>Kj + TT> .

Here, ⊗ is the Kronecker product and Q =(
K, K2, . . . , Km

) ∈ Rn×nm.

Proof. The first line follows by computing the deriva-
tive of the projection operator (6) and by apply-
ing a basis transformation from the Krylov sequence
Ky, . . . , Kmy to the orthogonal basis t1, . . . , tm. The
latter ensures that the formula is numerically more sta-
ble. For the second line, we represent the Kronecker
product as a sum.

As a consequence, we yield a formula for the degrees
of freedom of KPLS.

Corollary 2. An unbiased estimated of the degrees of
freedom of KPLS with m components is given by

D̂oF(m) =
m∑

j=1

cj trace
[(

In − TT>)
Kj

]

+
m∑

j=1

(y − ŷm)>Kjvj + m

=
m∑

j=1

cj trace
(
Kj

)
+ m

−
m∑

j=1

(
m∑

l=1

tl
>Kjtl

)

+(y − ŷm)>
m∑

j=1

Kjvj

This representation of the DoF of KPLS reveals an
interesting feature. The computation of the two last

lines is quadratic in n, as it only involves matrix-vector
multiplications. The first line however is cubic in n, as
we need to compute the trace of powers of the kernel
matrix Kj for j = 1, . . . ,m.

3.1 APPROXIMATE DEGREES OF
FREEDOM VIA RITZ VALUES

As explained above, PLS is equivalent to Lanczos ap-
proximations, and can be used to approximate the
eigenvalues of X>X via the tridiagonal matrix D de-
fined in (5). Note that D has a kernel representation

D = R>K2R = L>L . (11)

with R the matrix of normalized residuals defined in
(3). The eigenvalues of D are called Ritz values and
constitute approximations of the eigenvalues of X>X
(Saad, 1996). The quality of the approximation in-
creases with the number m of latent components, and
as the computation of the Ritz values scales cubically
only in m, an efficient strategy is to allow a generous
amount of components for the computation of D.

As the eigenvalues of X>X correspond to the eigen-
values of K in the kernel setting, we can use Ritz val-
ues to derive an approximation of the trace of Kj .

Definition 3 (Approximate Degrees of Freedom). We
define the approximate degrees of freedom of KPLS
with m components as

D̂oFappr(m) =
m∑

j=1

cj trace
(
Dj

mmax

)
+ m

−
m∑

j=1

(
m∑

l=1

tl
>Kjtl

)

+ (y − ŷm)>
m∑

j=1

Kjvj ,

where Dmmax is the tridiagonal matrix defined in (11)
computed with mmax ≥ m latent components.

The computation of D only requires one additional
mmax×mmax matrix multiplication L>L. As the ma-
trix D is of size mmax × mmax, the runtime for the
computation is cubic in the number of maximal com-
ponents mmax (which is typically small), and quadratic
in the number n of examples.

3.2 QUALITY OF THE APPROXIMATION

Theoretically, the validity of this approximation can
be justified in terms of a deviation bound.

Proposition 4 ((Saad, 1996)). Denote by µ1, . . . , µm

the eigenvalues of D and by λ1 ≥ . . . ≥ λn the eigen-
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values of the Kernel matrix K. We have

0 ≤ λi − µi ≤ (λ1 − λn)
(

κi tan θi

Cm−i(1 + 2γi)

)2

with ui the ith eigenvector of K,

θi = acos

〈
y,
√

λiui

〉

‖y‖K

and

κi =
i−1∏

j=1

µj − λn

µj − λi
γi =

λi − λi−1

λi+1 − λn
.

Here, Cl denotes the Chebychev polynomial of order
l.

Note that θi is the angle between b and the ith eigen-
vector of X>X - computed in feature space. This
inequality implies that the approximation for the ith
eigenvalue is good under two different scenarios. Ei-
ther λi is already close to zero, so µi ≤ λi is close
to zero as well. For large eigenvalues λi, the approxi-
mation is good if (a) the eigenvalues of K decay fast,
(b) the angle θi corresponding to the ith eigenvector
is small, and (c) the index i is not too large compared
to m. Property (a) is a feature of rbf-kernels, which
we use throughout the rest of the paper. Condition
(b) is typically fulfilled for the leading eigenvectors of
K (Braun et al., 2007, 2008), and condition (c) can
be fulfilled by using a sufficient large amount mmax of
components.

In practical applications, two important issues are the
quality of the approximate degrees of freedom, and
the quality of the model selection criteria based on
these approximate degrees of freedom. In accordance
with Krämer and Braun (2007), we choose generalized
minimum description length (gMDL) (Hansen and Yu,
2001) as model selection criterion.

The simulation setting follows the regression model (7)
with f(x) = sinc(x). We draw n = 100 inputs Xi uni-
formly from [−π, π] and set the standard deviation to
σ = 0.1. We fit KPLS with three different rbf-kernels
of width 0.01, 0.1, 1 and use different numbers mmax

of maximal components. In addition, we compute the
DoF, the approximate DoF, the gMDL criterion, and
gMDL based on the approximate DoF.

Figure 1 displays the results for the different kernel
widths 0.01 (left), 0.1 (center) and 1 (right). The first
row shows the degrees of freedom of KPLS (blue line)
and approximate degrees of freedom of KPLS depend-
ing on the number of maximal components (red dashed
line). As indicated by Proposition 4, the approxima-
tion becomes more accurate if mmax is large. Fur-
thermore, the approximation depends on the width of

the rbf-kernel. For very small kernel widths (left), the
eigenvalues of the kernel matrix decay very slowly, and
more components are needed to compensate. In the
second line of Figure 1, we display gMDL (blue line)
and the approximate gMDL depending on the number
of maximal components (red dashed line). The behav-
ior of the approximation is qualitatively the same: It
depends on the size of the kernel widths, and in gen-
eral, it becomes more accurate if more components are
used to compute D.

3.3 RUNTIME COMPARISON

As shown above, the approximation of the Degrees of
Freedom of KPLS leads to reduction in runtime from
cubic to quadratic. We now illustrate that this leads to
a considerable speed up even for medium sized data.
We used the kin regression data set from the delve
repository1. This eight-dimensional synthetic data set
is based on a model of a robotic arm, and the task
consists in predicting the position of the arm based
on the angles of its joints. It consists of 8192 data
points. For sub-samples of size 100, 200, . . . , 1000, we
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Figure 2: Comparison of runtime on the ”kin” data
set. Jagged line: KPLS with exact Degrees of Freedom
for m = 10 components. Solid line: KPLS with ap-
proximate Degrees of Freedom for m = 10 components
and mmax = 30 components for the approximation of
the eigenvalues of the kernel matrix. Hence, for the
approximation, the effective number of components is
three times higher.

compute (a) KPLS and its Degrees of Freedom for up
to m = 10 components and (b) KPLS and its approx-
imate Degrees of Freedom for up to m = 10 compo-
nents. In both cases, we use a Gaussian Kernel. Note
that for (b), we compute mmax = 30 components in or-
der to obtain a close approximation, hence the number
of KPLS iterations is three times higher for alternative

1http://www.cs.toronto.edu/~delve/
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Figure 1: Quality of the approximate degrees of freedom. Results for kernel widths 0.01 (left), 0.1 (center), and
1 (right). Top row: DoF (blue line) and approximate DoF (red dashed line) for different numbers of maximal
components. Bottom row: gMDL (blue line) and approximate gMDL (red dashed line) for different numbers of
maximal components.

(b). The runtime of both variants are displayed in Fig.
2. The gap between the two methods is clearly visi-
ble already for small sample sizes, and the two graphs
show the expected quadratic versus cubic form. While
the latter is an empirical illustration of the theoretical
runtime analysis that we present above, it is important
to stress that the improvement from O (

n3
)

to O (
n2

)
is not an asymptotic result but also leads to a signifi-
cant improvement in runtime already for medium sized
data.

4 CONFIDENCE INTERVALS IN
QUADRATIC RUNTIME

For the derivation of (approximate) confidence inter-
vals (9), we need to compute the quantity Hmk(x),
where Hmy is the first order Taylor approximation
of the kernel coefficients α̂m. Using the representa-
tion from proposition 1, we can directly compute this
matrix-vector product, even without approximating
the eigenvalues and thus compute the exact expression
in quadratic runtime.

Note that Taylor expansions occur in both types of ap-
proximations, for the Degrees of Freedom as well as for

the confidence intervals. However, there are essential
conceptual differences. For the Degrees of Freedom,
the representation in terms of derivatives (8) is in fact
no approximation but due to Stein’s lemma, using the
the assumption of normally distributed errors in (7).
In this case, the Degrees of Freedom are approximated
using Lanczos methods and Ritz values. In contrast,
for the confidence intervals, we have to use the Taylor
expansion (10) to obtain an approximate distribution
(9) for the KPLS parameters. The computation of the
Taylor expansion Hm defined in (10) is cubic in n as it
involves multiplications of matrices of size n×n. Here,
we reduce the computational cost to O (

n2
)

by clev-
erly exploiting the fact that the matrix-vector product
Hmk(x) is a sufficient statistic.
Proposition 5. We have

H>
mk(x) =

m∑

j=1

Kj−1
{
cj

(
In −KTNR>)

+ K (y − ŷm)u>j
}

k(x) + TNR>k(x) .

with R denoting the matrix of normalized residuals,
N denoting the m ×m diagonal matrix consisting of
elements nii = 1/‖Kri‖ and

U = (u1, . . . , um) = RNB−> .
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Proof. As ∂ŷm/∂y = K (∂α̂m/∂y) , the formula can
be shown by “canceling out” K in the formula of the
derivative of ŷm, and then multiplying the formula
with k(x).

Illustration Again, we use the regression model (7),
with f(x) = (x − 1)(x + 2)(x − 1.5) exp(−x2/10) and
σ = 1. We draw n = 40 points Xi from a mixture of
two normal distribution with mean−2 and 3 a variance
of 1 in both cases. We fit KPLS with for two different
models, (1) KPLS with 15 components and an rbf-
kernel of width 0.1 and (2) KPLS with 9 components
and an rbf kernel of width 1. Figure 3 shows the KPLS
fit and its confidence intervals (based on a level of 98%)
for the two models.

In areas with high data density, the prediction is quite
stable with small confidence intervals. Next to such
high density areas, the predictions becomes unstable,
as they can depend quite sensitively on the neighboring
data. Finally, when one moves far away from the data
points, their influence decreases to zero. This is much
more apparent in the left plot with the small kernel
widths.

5 CONCLUSION

We proposed an implementation of the Kernel PLS
method which not only computes the fit in quadratic
time, but a degree-of-freedom estimate and confidence
intervals based on a sensitivity analysis, which for-
merly required cubic runtime. The latter estimates can
be used, for example, for model selection, or to mea-
sure the local stability of the learned function. The ap-
proximation schemes exploit the fact that Kernel PLS
can be extended to compute Lanczos type approxima-
tions of the eigenvalues as well. Together with a novel
formula for computing the derivatives of the kernel pa-
rameters α, these approximations allow us to replace
costly computation of powers of the kernel matrix. In
summary, one obtains a Kernel PLS algorithm which
also provides relevant additional information for model
selection and provide further insight into the complex-
ity and stability of the learned function.

Our results capitalize on the close connection between
the dimensionality reduction technique PLS on the one
hand and Krylov methods and Lanczos approxima-
tions on the other hand. While the latter two methods
are commonly used in numerical linear algebra, their
benefits for data analysis have not yet been exploited
sufficiently. Only recently (e.g. Ong et al. (2004);
de Freitas et al. (2006); Ide and Tsuda (2007)) they
are utilized explicitly in a machine learning frame-
work. Recent research results on the correspondence
of penalization techniques and preconditioning of lin-

ear systems (Kondylis and Whittaker, 2008; Krämer
et al., 2008) further underpin the strong potential of
these methods. We strongly believe that the interplay
between numerical linear algebra and machine learning
will further stimulate the field of data analysis.
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