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Summary
• The Degrees of Freedom of Kernel Partial Least Squares (KPLS) require all eigenvalues of the kernel matrix
K, hence the computation is cubic in the number of observations n.
•We use Kernel PLS itself to approximate the eigenvalues of the kernel matrix.
−→ We can compute approximate Degrees of Freedom of KPS in O

(
n2
)

!
•We can also compute approximate confidence intervals for KPLS in O

(
n2
)

!

Main Results
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• Find m orthogonal latent components ti = Xw̃i with
maximal covariance to the response y.

w̃i = arg max
‖w̃‖=1

cov (Xw̃,y)

s.t. Xw̃ ⊥Xw̃l = 0 for l < i .

→ The latent components T = (t1, . . . , tm) depend on
the output y as well.

• T is used instead of X in a least-squares fit

ŷm = T
(
T>T

)−1
T>y = PTy

(P = projection operator)

Degrees of Freedom of KPLS

Unbiased estimate for the Degrees of Freedom of KPLS [2]

D̂oF(m) = trace

(
∂ŷm
∂y

)
.

Bad News

D̂oF(m) =

m∑
j=1

cjtrace
(
Kj
)

+O
(
n2
)

We need the eigenvalues of the kernel matrix K for the computation of the Degrees of Freedom of KPLS.
The computation of the degrees of freedom of KPLS is cubic in the number of observations.

Lanczos Approximations

Partial Least Squares is equivalent to the Lanczos decomposition of X

TL = XW

with T and W orthogonal and L upper bidiagonal. The eigenvalues of the m × m tridiagonal matrix
D = L>L are good approximations of the eigenvalues of K [4].

Good News

The eigenvalues of the kernel matrix can be approximated by KPLS itself. Replace Kj by Dj in the formula
for the degrees of freedom. The approximate Degrees of Freedom can be computed in quadratic runtime.

Approximate Confidence Intervals for KPLS

First order Taylor approximation of the kernel coefficients

Hm = (∂α̂m/∂y) .

leads to an approximate distribution of the predictions ŷ(x).

More Good News

The product of Hm with a vector is a sufficient statistic for the confidence intervals of KPLS. It can be
computed in O(n2).

Details

PLS Implementation

Partial Least Squares

Input: X1 = X, y, m
for i=1,. . . ,m do
wi = X>i y
ti = Xiwi (component)
Xi+1 = Xi − PtiXi (deflation)

end for
L = T>XW (upper diagonal m×m matrix)

β̂m = WL−1T>y (regression vector)

Kernel Partial Least Squares

Input: K, y, m, ŷ0 = t0 = 0
for i=1,. . . ,m do
r̃i = y − ŷi−1 (residuals)
ti =

(
In − Pti−1

)
Kr̃i (component)

ŷi = ŷi−1 + Ptiy (fitted values)
end for
L = T>KR̃ (upper diagonal m×m matrix)

α̂m = R̃L−1T>y (kernel coefficients)

The columns of T span the same space as the Krylov sequence Ky,K2y, . . . ,Kmy. Hence

ŷm = P(Ky,K2y,...,Kmy)y . (1)

The first derivative of KPLS is computed either via an iterative algorithm [2] or via formula (1) [3]. The
computation time is cubic in the number of observations (as it involves matrix-matrix multiplications). Un-
fortunately, this is also true for its trace:

D̂oF(m) =

m∑
j=1

cjtrace
(
Kj
)

+m−
m∑
j=1

 m∑
l=1

tl
>Kjtl

 + (y − ŷm)>
m∑
j=1

Kjvj (2)

with bij =
〈
ti,K

jy
〉

, c = B−1T>y and V = (v1, . . . ,vm) = TB−>.

KPLS and Lanczos Decompositions

L = T>XW =


∗ ∗ 0 0 . . . 0
0 ∗ ∗ 0 . . . 0

... ...
0 . . . 0 0 ∗ ∗
0 . . . 0 0 0 ∗

 ∈ Rm×m and D = L>L ∈ Rm×m

The eigenvalues of D are good approximations of the eigenvalues of K (a) for the leading eigenvalues of K,
(b) if m� 0, (c) if the eigenvalues of K decay fast [4].

Approximate Degrees of Freedom in O(n2)

Compute D for a large number of components mmax ≥ m and replace Kj by Dj in formula (2).

D̂oFappr(m) =

m∑
j=1

cjtrace
(
D
j
mmax

)
+m−

m∑
j=1

 m∑
l=1

tl
>Kjtl

 + (y − ŷm)>
m∑
j=1

Kjvj ,

Approximate Confidence Intervals in O(n2)

ŷ(x) ∼ N
(
k(x)>E [α̂] , σ2k(x)>HmH

>
mk(x)

)
with k(x) = (k(x,x1), . . . , k(x,xn)) ∈ Rn and σ the noise level.

H>mk(x) =

m∑
j=1

Kj−1
{
cj

(
In −KTNR>

)
+ K (y − ŷm)u>j

}
k(x) + TNR>k(x) .

with ri = r̃i/‖r̃i‖K (residuals) N = diag (1/‖Kr̃i‖) and U = (u1, . . . ,um) = RNB−> .

Experiments

Runtime Comparison

Comparison of runtime on the ”kin” data set [1] (p = 8 dimen-
sions and n = 8192 observations). Jagged line: KPLS with exact
Degrees of Freedom for m = 10 components. Solid line: KPLS
with approximate Degrees of Freedom for m = 10 components
and mmax = 30 components for the approximation of the eigen-
values of the kernel matrix. Hence, for the approximation, the
effective number of components is three times higher.

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

50

problem size (number of points)

tim
e 

(s
)

 

 

approximate DoF
exact DoF

Quality of the Approximation

Computation of KPLS with rbf-kernels on simulated data

f (x) = sinc(x) + ε, ε ∼ N (0, 0.12) xi ∼ U [−π, π] , i = 1, . . . , 100 .
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Results for kernel widths 0.01
(left), 0.1 (center), and 1
(right). Top row: DoF (blue
line) and approximate DoF
(red dashed line) for differ-
ent numbers of maximal com-
ponents. Bottom row: gen-
eralized Mimimum Descrip-
tion Length (gMDL) (blue
line) and approximate gMDL
(red dashed line) for different
numbers of maximal compo-
nents.

Approximate Confidence Intervals for KPLS

Computation of KPLS with rbf-kernels on simulated data

f (x) = (x− 1)(x + 2)(x− 1.5) exp(−x2/10) + ε, ε ∼ N (0, 1)

n = 40 observations xi are drawn from a mixture of N (−2, 1) and N (3, 1).
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KPLS with kernel width 0.1 and 15 components
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KPLS with kernel width 1 and 9 components

Confidence intervals for two different
kernel widths. Left: KPLS with 15
components and an rbf-kernel of width
0.1 and Right: KPLS with 9 compo-
nents and an rbf kernel of width 1.
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