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2Overview of My Talk (1)
Consider the ratio of two probability densities.

If the ratio is known, various machine 
learning problems can be solved!

Non-stationarity adaptation, domain adaptation, 
multi-task learning, outlier detection, change 
detection in time series, feature selection, 
dimensionality reduction, independent 
component analysis, conditional density 
estimation, classification, two-sample test



3Overview of My Talk (2)

Estimating density ratio is substantially 
easier than estimating densities!
Various direct density-ratio estimation 
methods have been developed recently.

Vapnik said: When solving a problem of interest,
one should not solve a more general problem

as an intermediate step

Knowing densities Knowing ratio



4Organization of My Talk

1. Applications of Density Ratios:
Non-stationarity adaptation, domain adaptation, 
and multi-task learning
Outlier detection and change-point detection in 
time series
Feature selection, dimensionality reduction, 
and independent component analysis
Conditional density estimation

2. Density Ratio Estimation Methods



5Non-stationarity Adaptation

Training
samples

Test
samples

Function

Target
function

Covariate shift: training/test input distributions 
are different, but function remains unchanged

Questionnaire data analysis, robot control 
learning of brain-signal, speech, language, bio…

Input density



6Adaptation Using Density Ratios  

Ordinary least-squares 
is not consistent.

Applicable to any likelihood-based methods!

Shimodaira (JSPI2000), Sugiyama & Müller (ICANN2005, Stat&Deci2005)

Density-ratio weighted
least-squares is consistent.



7Brain-Computer Interface

Goal: Control computers by brain signals
Input: EEG,  output: left/right
Learn classification rules from data.
Different mental conditions cause 
distribution difference in training/test phases.

Sugiyama, Krauledat & Müller (DAGM2006, JMLR2007)



8Training Phase
Following the instruction on the screen, 
imagine left/right-hand movement.

Movie by Technical University of Berlin



9Test Phase
Control the pad by imagining hand movement.

Density-ratio weighted linear discriminant analysis 
Density-ratio weighted cross-validation



10Speaker Identification
Goal: Identify speakers from speeches
Speech signals are not stationary.

Microphone / room conditions
Speaker’s emotion

Performance improvement by
Density-ratio weighted logistic regression
Density-ratio weighted cross-validation

Yamada, Sugiyama & Matsui (ICASSP2009, Signal Processing 2009)
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11Robot Control

Inverted pendulum
State     :angle, angular velocity
Action      :left/right acceleration

Goal: Acquire a control policy of the car     
so that the pendulum is swung up and kept.

Hachiya, Akiyama, Sugiyama & Peters (AAAI2008, Neural Networks 2009)
Hachiya, Peters & Sugiyama (ECML2009)



12Reinforcement Learning
Framework for learning the control policy        

with maximum rewards
Rewards: “upper is better”

Density-ratio weighted linear regression
Density-ratio weighted cross-validation



13Covariate Shift
in Reinforcement Learning

Value function            :Sum of future rewards 
when taking action   at state   and following       
afterwards
Policy iteration:

Policy update causes                                
distribution change of         .

Value function
approximation

Policy 
update



14Word Partitioning

Training data: Conversation corpus
(Ex.) こんな／失敗／は／ご／愛敬／だ／よ／ ．

Test data: Medical manuals
(Ex.) 細胞膜には受容体があり、これによって

細胞を識別することができます．

Performance improvement by
Density-ratio weighted conditional random field
Density-ratio weighted cross-validation

Tsuboi, Kashima, Hido, Bickel & Sugiyama (JIP2009)

94.4394.4692.30F-value
with test labelsProposedExisting
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Outlier Detection
Goal: Find “irregular” samples in dataset

Inferior products in assembly lines
Intrusions in computer networks
New topics in blogs

We regard samples with low probability 
density as outliers.

Outlier
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Outlier Detection with Density-Ratio

Outliers tend to have low density-ratio.

Outlier

Hido, Tsuboi, Kashima, Sugiyama & Kanamori (ICDM2008)
Smola, Song & Teo (AISTATS2009)



18USPS Hand-written Digits

USPS test data contain unclear and 
mislabeled samples!

５ ０ ０ ０ ０

４ ８ ４ ５ ４



19Fault Diagnosis of Hard-disk Drive

Self-Monitoring And Reporting Technology 
(SMART)

LOF works well if #NN is chosen appropriately; 
but there is no model selection method!
Cross-validation is available for Density Ratio.

One-class SVM:

LOF: Local outlier factor Breunig, Kriegel, Ng & Sander (SIGMOD2000)
Schölkopf, Platt, Shawe-Taylor, Smola & Williamson (NeCo2001)

0.843

One-class
SVM NN=30NN=5

0.9240.847

LOF

0.881

Density 
Ratio

AUC



20Beyond Outlier Detection

Change detection in time series:

Compute density-ratio in “sliding-window”:

Kawahara & Sugiyama (SDM2009)

Time

Time



21Change Detection from Breath

Original
time-series

Density-ratio
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23Mutual Information Estimation
Mutual information (MI):

MI as an independence measure:

MI can be computed using density ratio:

and are
statistically

independent

Suzuki, Sugiyama, & Tanaka (ISIT2009)
Nguyen, Wainwright & Jordan (IEEE-IT2009)



24MI-Based Feature Selection

Goal: For                                , find the 
input variable        which is the most 
responsible for explaining output value 

Gene selection, brain activity localization, 
drug discovery etc.

Feature extraction is also possible.
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Suzuki, Sugiyama, Sese & Kanamori (FSDM2008, BMC Bioinformatics 2009)

Suzuki & Sugiyama (submitted)



25MI-Based Independent
Component Analysis

Goal: Separate mixed signals into 
independent ones

Cross-validation is available for model selection 
(cf. no CV for kernel ICA etc.)

Suzuki & Sugiyama (ICA2009)

Mixing Separation
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Conditional Density Estimation

Regression: Estimating conditional mean
When conditional density            is complicated, 
regression is not informative enough:

Multi-modality
Asymmetry
Hetero-scedasticity

Estimate conditional                                  
density via density ratio:

Sugiyama, Takeuchi, Suzuki, Kanamori & Hachiya (submitted)



28Robots’ Transition Estimation

Transition probability              : 
Distribution of destination state     
when taking action    at current state

Kherera robot
State: infra-red sensors
Action: wheel speed
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1. Applications of Density Ratios
2. Density ratio estimation methods:

A) Kullback-Leibler Importance Estimation 
Procedure (KLIEP)

B) Least-Squares Importance Fitting (LSIF)
C) Unconstrained LSIF (uLSIF)



30Density Ratio Estimation

Density ratios are shown to be versatile.
In practice, however, the ratio should be 
estimated from data.

Naïve approach: Estimate two densities 
separately and take the ratio



31Vapnik’s Principle

Estimating density-ratio is substantially 
easier than estimating densities!
We estimate density-ratio without going 
through density estimation.

When solving a problem, don’t solve
more difficult problems as an intermediate step

Knowing densities Knowing ratio
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33Kullback-Leibler Importance
Estimation Procedure (KLIEP)

Linear model:

Parameters are learned so that KL divergence 
from          to                               is minimized:

Sugiyama, Nakajima, Kashima, von Bünau & Kawanabe (NIPS2007)
Sugiyama, Suzuki, Nakajima, Kashima, von Bünau & Kawanabe (AISM2008)

(ex. Gauss kernel)



34KLIEP: Formulation
Decomposition of KL divergence:

is probability density:

Constant

(Constraint)



35KLIEP: Algorithm
Approximate expectation by sample average:

This is convex optimization, so repeating
Gradient ascent
Constraint satisfaction

converges to global solution.
Global solution is sparse!



36KLIEP: Theoretical Properties

Parametric case:

Learned parameter converge to the optimal 
value with order         .

Non-parametric case:

Learned function converges to the optimal 
function with order slightly slower than         
(depending on complexity of function class).

Sugiyama, Suzuki, Nakajima, Kashima, von Bünau & Kawanabe (AISM2008)
Nguyen, Wainwright & Jordan (NIPS2007)



37KLIEP: Example



38KLIEP: Model Selection
Choice of Gaussian width is crucial.
Cross-validation (CV):

Divide numerator samples for estimation and 
evaluation purposes.

Repeat this for all combinations
CV gives an unbiased estimate of KL.

Group Group  Group  Group  …
Estimation Validation



39KLIEP: Example of CV

CV is very accurate!

True KL
(without constant)

Estimates
by CV



40Experiments
Setup: d-dim. Gaussian with covariance identity and

Denominator: mean (0,0,0,…,0)
Numerator: mean (1,0,0,…,0)

Kernel density estimation (KDE):
Estimate two densities separately and take ratio.
Gaussian with is chosen by CV.

KLIEP:
Estimate density-ratio directly.
Gaussian with is chosen by CV.
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KDE: “curse of dimensionality”
KLIEP: works well

KDE
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of Input Dimensionality



42KLIEP: Summary
Works well in high-dimensions.
Sparse global solution is available.
CV by model selection is possible.
Domains of denominator/numerator could 
be different (conditional density estimation).
KL is consistent with mutual information.
Applicable to various models such as log-
linear models and Gaussian mixture models.

Tsuboi, Kashima, Hido, Bickel & Sugiyama (SDM2008, JIP2009)
Yamada & Sugiyama (IEICE2009)
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44Least-Squares Importance Fitting
(LSIF)

Linear model:

Squared-loss:

(ex. Gauss kernel)

Kanamori, Hido & Sugiyama (NIPS2008, JMLR2009)



45LSIF: Formulation
Decomposition of squared-loss:

Constraint:

constant



46LSIF: Algorithm
Approximate expectation by sample average 
and include a regularizer, we have:

This is a convex quadratic program (QP),   
so the global solution can be efficiently 
computed by standard optimization software.
The optimal solution is sparse!



47LSIF: Regularization Path Tracking

Solution is piece-wise linear with respect to 
the regularization parameter    .

Solutions for all    can be computed 
efficiently without QP solvers!



48LSIF: Examples

Regularization
path

Regularization parameter and 
Gaussian width are chosen by CV



49LSIF: Summary

Squared-loss is often preferred to 
KL divergence in conditional 
density estimation.
Regularization path algorithm is 
computationally very efficient.

However, it is numerically rather 
unstable.
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51Unconstrained LSIF (uLSIF)

Slightly modify LSIF:
Ignore non-negativity
Use a quadratic regularizer

Kanamori, Hido & Sugiyama (NIPS2008, JMLR2009)



52uLSIF: Algorithm

Solution can be computed analytically!

Ignored non-negativity constraint is 
imposed as post-processing:



53uLSIF：Model Selection
Leave-one-out CV (LOOCV):

LOOCV generally requires     repetitions.
However, for uLSIF, it is analytic!
（Sherman-Woodbury-Morrison formula）
Computation time including model 
selection is dramatically improved!

Sample Sample  Sample  Sample  

Estimation Validation

…



54Density-Ratio Estimation Methods

Kernel density estimation (KDE)
Kernel mean matching (KMM)

Logistic regression based method (LogReg)

Computation
time

Model
selection

Domains of
denom/nume

Density
estimationMethod

FastPossibleCould differFreeuLSIF
Rather fastPossibleCould differFreeLSIF

SlowPossibleCould differFreeKLIEP
SlowPossibleSameFreeLogReg
SlowNot possibleSameFreeKMM

Very fastPossibleCould differInvolvedKDE

Qin (Biometrica1998), Cheng & Chu (Bernoulli2004)
Bickel, Brückner & Scheffer (ICML2007)

Huang, Smola, Gretton, Borgwardt & Schölkopf (NIPS2006)



55Conclusions
Many ML tasks can be formulated as the 
problem of estimating density ratios.

Non-stationarity adaptation, domain adaptation, 
multi-task learning, outlier detection, change 
detection in time series, feature selection, 
dimensionality reduction, independent 
component analysis, conditional density 
estimation, classification, two-sample test

Directly estimating density ratios without 
going through density estimation is the key.

KMM, LogReg, KLIEP, LSIF, and uLSIF.
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Dataset Shift in Machine Learning, 
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57The World of Density Ratios

Theoretical analysis:
Convergence, Information criteria, Numerical stability

Density ratio estimation:
Fundamental algorithms (KMM, LogReg, KLIEP, LSIF, uLSIF)
Large-scale, High-dimensionality, Stabilization, Robustification

Machine learning algorithms:
Importance sampling (domain adaptation, multi-task learning)

Statistical test (two-sample test, outlier/change detection)
Conditional density estimation (visualization, transition estimation)
Mutual information estimation (feature selection/extraction, ICA)

Real-world applications:
Brain-computer interface, Robot control, Speech recognition

Image recognition, Natural language processing, Bioinformatics


