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Abstract
Transductive inference on graphs such as label propagation

algorithms is receiving a lot of attention. In this paper, we

address a label propagation problem on multiple networks

and present a new algorithm that automatically integrates

structure information brought in by multiple networks. The

proposed method is robust in that irrelevant networks are

automatically deemphasized, which is an advantage over

Tsuda et al.’s approach [14]. We also show that the proposed

algorithm can be interpreted as an EM algorithm with a

Student-t prior. Finally, we demonstrate the usefulness of

our method in protein function prediction.
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1 Introduction

Recently, network-structured data is becoming increas-
ingly popular in the field of machine learning [2, 20, 14,
12, 19, 3, 7]. Network-structured data is usually rep-
resented as an undirected graph, each of whose nodes
represents an example, and each of whose edges rep-
resents a relationship between two examples. For ex-
ample, in protein networks, proteins are represented as
nodes, and relationships among proteins such as phys-
ical interactions and expression similarities are repre-
sented as edges. If we want to predict the functions of
the proteins in a network, the task is essentially formal-
ized as a classification problem on a network. Since we
are usually given both labeled examples and unlabeled
examples prior to the training stage, the task can be
handled as a semi-supervised problem or a transduc-
tion problem ([17, 2, 6, 20, 18, 14]). Learning in such a
setting is called graph-based learning (Section 2).

A generally accepted approach to graph-based
learning is label propagation [20] (Section 3). Label
propagation assumes that a pair of nodes connected by
an edge should have similar predictions, and the resul-
tant optimization problem is easily solved in a closed
form.
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Let us consider the situations where we are given
multiple data sources, or multiple networks. In the
case of protein function prediction, a wide variety of
data sources are available, such as gene expression
data, amino acid sequences, phylogenetic profiles, and
subcellular locations. For label propagation, we have
multiple networks corresponding to those multiple data
sources. Since different data sources are likely to
contain different information, we expect that effective
integration of the complementary pieces of information
will enhance the predictive performance.

To integrate multiple networks, a natural choice is
to take a weighted sum of the graph Laplacians [19].
Tsuda et al. [14] proposed a method which deter-
mines the weights automatically. However, as ex-
pected from the characteristics of support vector ma-
chines (SVMs) [11], their algorithm assigns large weights
to networks relevant to the task. Therefore, Tsuda et
al.’s method is not robust in a situation where noisy
networks are included in the set of given networks (See
also Section 6).

In Section 4, we present a new robust transduc-
tive learning method that makes predictions by inte-
grating different networks. Similar to Tsuda et al.’s
method, our algorithm optimizes the weights in a lin-
ear combination of graph Laplacians. The advantage of
our algorithm is that the weights are chosen so that in-
formative data sources for prediction are automaticaly
emphasized even in the presence of irrelevant networks.
Section 5 justifies our algorithm by using a probabilistic
framework for emphasizing the weights of relevant net-
works. Our probabilistic model employs the Student-t
distribution [9], which provides robust predictions. The
probabilistic model based on the Student-t distribution
can be interpreted as a latent variable model in which
the expectations of the latent variables are naturally
derived as the weights of the graph Laplacians. Accord-
ingly, our algorithm automatically yields an integrated
network with a statistically estimated linear combina-
tion. In Section 7, we conduct experiments on label
propagation for protein function classification. The ex-
perimental results reveal that the proposed methods are
promising. The final section summarizes this study and
discusses an extension and future work.



Notation In this paper, vectors are denoted by
bold-faced lower-case letters and matrices by bold-faced
upper-case letters. Elements of vectors and matrices
are not bold-faced. The transposition of a matrix A is
denoted by A�, and the inverse of A is by A−1. The n×
n identity matrix is denoted by In. The n-dimensional
vector all of whose elements are one is denoted by 1n.
We use R to denote the set of real numbers, R

n to
denote the set of n-dimensional real vectors, and R

m×n

to denote the set of m × n real matrices. The set
of real nonnegative numbers is denoted by R+, and
the set of n-dimensional real nonnegative vectors is by
R

n
+. We use S

n to denote the set of symmetric n × n
matrices, S

n
+ to denote the set of symmetric positive

semi-definite n×n matrices, and S
n
++ to denote the set

of symmetric strictly positive definite n × n matrices.
The symbols ≤ and ≥ are used to denote not only
the standard inequalities between scalars, but also the
componentwise inequalities between vectors.

2 Graph-based Learning Problem

Let us start with the definition of the graph-based learn-
ing problem, including two problem settings, learning
from a single network and learning from multiple net-
works. Suppose that we are given n examples: the
first � < n examples are labeled by y1, . . . , y�, where
yi ∈ {±1}. For learning from a single network, we use
an undirected network over n nodes. Each node repre-
sents an example. The network is described by a sym-
metric adjacency matrix A ∈ S

n. Every edge has a
positive weight and no edge is a self-loop (i.e. Aii = 0
for ∀i). The edge set is expressed as

E ≡ {(i, j) |Aij > 0, i, j = 1, . . . , n}.

In this paper, we wish to perform learning from multiple
networks. If the number of networks is K, we have
K adjacency matrices corresponding to the K different
networks, denoted by Ak (k = 1, . . . , K).

Graph-based learning determines the score vec-
tor f ∈ R

n from the given labels and the link informa-
tion (A in the case of a single network, and A1, . . . , AK

in the case of multiple networks). For calculating the
score vector f ∈ R

n, a typical formulation is the regu-
larized least squares problem.

Networks are usually constructed in two stages [2].
First, we compute the distances among all the pairs
of examples, and then determine the edges based on
the distances. From the distances, the edge set of
the network is determined by finding the k-nearest
neighbors or by picking pairs with distances smaller
than a threshold.

3 Existing Label Propagation Algorithm with
Single Network

In this section, we review a graph-based learning ap-
proach [20] for a single network. The task is here to
determine the score vector f ∈ R

n from the link infor-
mation A and the labels y. For calculating the score
vector f ∈ R

n, the typical algorithm we consider here
solves the regularized least squares problem defined by

f̂ ≡ argmin
f

(
βy

�∑
i=1

(yi − fi)
2 + βbias

n∑
i=1

f2
i(3.1)

+ βnet

∑
(i,j)∈E

Aij (fi − fj)
2

)

where βy, βbias and βnet are constant. If the score is
greater than a threshold, then it is classified as positive,
and otherwise it is classified as negative. Using the
graph Laplacian defined by L ≡ diag (A1n) − A, the
minimization problem can be re-written as

min
f

βy (f − y)� G (f − y) + f� (βbiasIn + βnetL)f

(3.2)

where G ∈ S
n
+ is a diagonal matrix with

Gii ≡
{

1 if 1 ≤ i ≤ �,

0 if � + 1 ≤ i ≤ n,
(3.3)

i.e. the i-th diagonal element of G is one if the i-th node
is labeled, or otherwise zero. Therein, we have defined
y ≡ [y1, . . . , y�, 0, . . . , 0]� ∈ R

n.

4 Robust Label Propagation Algorithm
This section presents a new algorithm for robust label
propagation on multiple networks. The task is to
predict the score vector f ∈ R

n from the labels y and
the network structures {Ak}K

k=1. A choice is integration
of multiple networks followed by applying the algorithm
for a single network described in the previous section.
A way for integration of networks is superimposition.
In order to emphasize the informative networks, we
consider weighted superimposition of K networks. Let
ū ∈ R

K
+ be the weights. The integrated adjacency

matrix and the integrated graph Laplacian are then
respectively given by

Aint(ū) =
K∑

k=1

ūkAk(4.4)

and

Lint(ū) =
K∑

k=1

ūkLk.(4.5)



Once the weights are determined, we obtain scores in
the same way as for the standard label propagation:

f̂ := argmin
f

(
βy (f − y)� G (f − y)(4.6)

+ f� (βbiasIn + βnetLint(ū))f

)

=
(

G +
βbias

βy
In +

βnet

βy
Lint(ū)

)−1

Gy.(4.7)

How do we compute the weights? We determine the
weights iteratively with the following update rule using
the current f :

ūk :=
ν + n

ν + βnetf�Lkf
,(4.8)

where ν is a positive constant. In Section 5.4, we will
show that the update rule is naturally derived from EM
algorithm. Note that

f�Lkf =
∑

(i,j)∈Ek

A
(k)
ij (fi − fj)

2
,(4.9)

where A
(k)
ij is the (i, j)th element in Ak. If a node

is likely to belong to the same class as an adjacent
node, label propagation algorithms work well. In other
words, an informative network should have the property
that adjacent nodes tend to have similar predictions.
For that reason, the value of f�Lkf is large for a
network irrelevant to the task, whereas f�Lkf is small
for a relevant network. Since the term f�Lkf is in
the denominator of Eq. (4.8), the weights of relevant
networks become large and the weights of irrelevant
networks become small. Our algorithm is summarized
in Fig. 1.

5 Probabilistic Interpretation

In this section, we give a probabilistic interpretation of
our algorithm. We begin by presenting a probabilistic
model for label propagation with a single network,
and show that the MAP estimation coincides with the
solution of the label propagation approach. We next
extend the probabilistic model to the case of integration
of multiple networks with fixed weights. We then
introduce a prior distribution of the weights. Finally we
derive an EM algorithm for MAP estimation according
to that probabilistic model, and show the equivalence
between the EM algorithm and the iterative algorithm
described in Section 4.

5.1 Label Progapagation with Single Network
We here give a probabilistic interpretation of label prop-
agation with a single network. The label propagation

Set the initial weights: 

repeat

until convergence. 

Update the scores: 

Update the weights: 

Figure 1: Robust Label Propagation Algorithm.

method can be viewed as performing MAP estimation
of the score vector f in the probabilistic model described
below. The score vector f ∈ R

n is in the set of model
parameters. The observations y1, . . . , y� are drawn ac-
cording to the Gaussian distribution

p(yi|f) = N
(

yi ; fi,
1
βy

)
,(5.10)

where N (x ; m, S) is a Gaussian density function of
the observation x ∈ R

n with mean m ∈ R
n and

covariance S ∈ S
n
++ defined by

N (x ; m, S)

(5.11)

≡ 1
(2π)n/2|S|1/2

exp
(
−1

2
(x − m)� S−1 (x − m)

)
.

The prior distribution of the model parameters is de-
fined by the multivariate Gaussian distribution

p(f) = N
(
f ; 0n, (βbiasIn + βnetL)−1

)
.(5.12)

MAP estimation finds the value of the model parame-
ters f which maximizes the posterior probability

p(f |y) =
p(f)

∏�
i=1 p(yi|f)
p(y)

.(5.13)

Since the denominator of Eq. (5.13) is constant for max-
imization, MAP estimation is equivalent to maximizing



the following objective function

log p(f) +
�∑

i=1

log p(yi|fi)

(5.14)

= −1
2
(
βy(f − y)�G(f − y) + f� (βbiasIn + βnetL)f

)
+ const.

We can see that the values of f at the maximum of the
posterior probability function are equal to the solution
of Eq. (3.2). Thus the probabilistic interpretation is
established.

5.2 Label Progapagation with Fixed-Weight
Network Integration We next extend the probabilis-
tic model introduced above to the integration of multi-
ple networks with fixed weight ū ∈ R

K
+ . A probabilistic

model associated with this weighted integration is given
by the conditional probabilities

p(yi|f) = N
(

yi ; fi,
1
βy

)
, i = 1, . . . , �(5.15)

and the prior

p(f) = N
(
f ; 0n, (βbiasIn + βnetLint(ū))−1

)
.(5.16)

Using a small constant ε such that βbias > ε > 0, we
add a small positive value to the diagonal elements of
the graph Laplacian

L̃k ≡ Lk +
ε

Kβnet
In.(5.17)

Since any graph Laplacian is positive semi-definite, the
matrices L̃k are strictly positive definite. We exploit
this feature for the following rearrangement of the prior:

p(f) =
1
Z ′N

(
f ; 0n,

1
βbias − ε

In

)
(5.18)

K∏
k=1

N
(

f ; 0n,
1

βnetūk
L̃−1

k

)
,

where Z ′ is a normalizing constant. Thus we see
that the prior of the model parameters for the fixed
weight integration of multiple networks is expressed
as the product-of-Gaussians [1]. This rearrangement
facilitates development of the probabilistic version of
our robust label propagation algorithm on multiple
networks.

5.3 Prior Distribution over Network Weights
We have seen the probabilistic model for label propa-
gation with given weights. Here let us consider the sit-
uation where the weights are unknown. We introduce
a prior distribution of the weights and marginalize out
the random variables of the weights from the expres-
sions. The weights are finally obtained as the expected
values. We employ the Gamma distribution for the prior
of the weights. The Gamma distribution is defined by

Gamma(u; α, β) =
βα

Γ(α)
uα−1 exp(−βu)(5.19)

for u ≥ 0, α ≥ 0, β ≥ 0. In the probabilistic
model described here, each component of a network in
Eq. (5.18),

N
(

f ; 0n,
1

βnetūk
L̃−1

k

)
,

is replaced with an infinite mixture of Gaussians:∫ ∞

0

duk Gamma
(

uk;
1
2
ν,

1
2
ν

)
(5.20)

N
(

f ; 0n,
1

βnet

(
ukL̃k

)−1
)

where ν is a positive constant. In this model, the mix-
ture coefficients are expressed by the Gamma distribu-
tion, and the weights u ≡ [u1, . . . , uK ]� can be viewed
as latent variables. If ν is chosen to be smaller, the prior
of weights is flatter.

Our probabilistic model can be seen to employ a
robust prior for the score vector. The function in
Eq. (5.20) is equal to the Student-t density function [9]
with zero-mean, covariance β−1

netL̃
−1
k , and the degree-of-

freedom ν, where the density function of the Student-t
distribution is generally defined by

T (x; μ,Σ, ν)(5.21)

=
Γ
(

ν+n
2

)√
detΣ

(
√

πν)n Γ
(

ν
2

) (√
1 + ‖x− μ‖2

Σ−1/ν
)ν+n ,

with the mean μ ∈ R
n, covariance Σ ∈ S

n
++, and the

degree of freedom ν ∈ R+. Thus, the prior can be
viewed as the product of Student-t distributions [16]
given by

p(f) =
1
Z
N
(

f ; 0n,
1

βbias − ε
In

)
(5.22)

K∏
k=1

T
(
f ; 0n, β−1

netL̃
−1
k , ν

)



where Z is a normalizing constant. Student-t distribu-
tions are often used for modeling noisy data robustly [4],
since heavy-tailed distributions such as Student-t dis-
tributions are robust against outliers. The algorithm
described below offers a robust tool for label propaga-
tion, implicitly exploiting the heavy-tailed property of
Student-t distributions.

5.4 EM Algorithm for MAP Estimation We
devised an EM algorithm for MAP estimation of f
according to the model with the prior in Eq. (5.22).
The constants ν, βy, βbias and βnet are determined in
advance. MAP estimation finds the model parameters
which maximize the objective function:

Jlp(f) ≡ log p(f) +
�∑

i=1

log p(yi|fi).(5.23)

From Eq. (5.20), the logarithm of the prior is re-written
as

log p(f) = log Z + logN
(

f ; 0n,
1

βbias − ε
In

)
(5.24)

+
K∑

k=1

log
∫ ∞

0

duk hk(f , uk),

where Z is a normalizing constant, and the func-
tion hk(·, ·) is defined by

hk(f , uk)

(5.25)

≡ Gamma
(

uk;
1
2
ν,

1
2
ν

)
N
(

f ; 0n,
1

ukβnet
L̃−1

k

)
.

We introduce an arbitrary distribution q(uk) such that

q(uk) ≥ 0 and
∫ ∞

0

duk q(uk) = 1.(5.26)

Using Jensen’s inequality, each component in the second
term in Eq. (5.24) is bounded from below as

log
∫ ∞

0

duk hk(f , uk)(5.27)

= log
∫ ∞

0

duk q(uk)
hk(f , uk)

q(uk)

≥
∫ ∞

0

duk q(uk) log
hk(f , uk)

q(uk)

=
∫ ∞

0

duk q(uk) log hk(f , uk) + H[q(uk)],

where H[q(uk)] denotes the entropy of the distribu-
tion q(uk). The inequality holds with equality when the

density function q(uk) maximizes the lower-bound [10].
Specifically,

log
∫ ∞

0

duk hk(f , uk)(5.28)

=
∫ ∞

0

duk q̂(uk) log hk(f , uk) + H[q̂(uk)],

where q̂(uk) is the optimal distribution. Our EM
algorithm attempts to maximize the lower-bound in
Eq. (5.27). The EM algorithm consists in E-step and M-
step: E-step computes the optimal distribution q̂(uk),
and M-step maximizes the logarithm of the posterior
probability function with respect to the model param-
eters f . Note that Eq. (5.28) implies that the loga-
rithm of the posterior probability function is equal to
the lower-bound in the M-step. Variational analysis de-
rives the optimal distribution q̂(uk) to be computed in
the E-step as

log q̂(uk)(5.29)
= log hk(f , uk) + const

= −ukβnet

2
f�L̃kf +

n

2
log uk

+
(ν

2
− 1
)

log uk − ν

2
uk + const

= log Gamma
(
uk ;

ν + n

2
,

ν

2
+

βnet

2
f�L̃kf

)
,

where ‘const’ denotes the terms independent of uk. Let
us denote the expectation of uk over q̂(uk) by

ūk ≡
∫ ∞

0

duk q̂(uk)uk =
ν + n

ν + βnetf�L̃kf
.(5.30)

We now derive the update rule of the M-step. With
the help of Eqs. (5.23), (5.24), (5.28), and (5.30), the
logarithm of the posterior probability function can be
re-written as

Jlp(f) = −βy

2
(f − y)� G (f − y) − βbias − ε

2
‖f‖2

(5.31)

− βnet

2
f�
(

K∑
k=1

ūkL̃k

)
f + const

where ‘const’ denotes the terms independent of f . From
this expression, we can see that the ūks play the role
of the weights for the linear combination of networks.
Hence ūks will now be called weights. The derivative



with respect to f is expressed as

∂Jlp(f)
∂f

= −1
2
βyG (f − y)

(5.32)

− 1
2

(
(βbias − ε) In + βnet

K∑
k=1

ūkL̃k

)
f ,

which leads to representing the update rule for the score
vector f as

f =

(
G +

βbias − ε

βy
In +

βnet

βy

K∑
k=1

ūkL̃k

)−1

Gy.

(5.33)

If we take the limit ε → 0, Equations (5.30) and (5.33)
become Eqs (4.8) and (4.7), respectively.

The EM algorithm is then summarized as follows:

E-step Update ūk using Eq. (4.8)
for k = 1, . . . , K.

M-step Update f using Eq. (4.7).

The two steps are repeated until convergence. Thus the
equivalence between the iterative algorithm given in the
previous section and the EM algorithm is established.

EM algorithms are guaranteed to converge to a local
optimum [5]. So is our algorithm. Currently we just
choose the equal weights as the initial point; we may
use a multi-point search strategy to further improve the
performance, although this increases the computational
cost.

6 Related Work
Besides our algorithm, there exist several studies [2, 19,
14] on learning with multiple networks. Tsuda et al. [14]
have proposed a label propagation algorithm. The task
in their paper is exactly same as ours: to predict the
labels of nodes from multiple networks. We refer to their
algorithm as TSS. They pose the following optimization
problem:

min (f − y)�(f − y) + cγ + c0‖ξ‖1(6.34)

wrt. f ∈ R
n, γ ∈ R, ξ ∈ R

K
+

subj. to f�Lkf ≤ γ + ξk, k = 1, . . . , K.

The dual problem is given by

min y�
(

In +
∑

k

ūkLk

)−1

y(6.35)

wrt. ū ∈ R
K
+

subj. to ū ≤ c01k, ū�1K ≤ c.

where ūk is the dual variable corresponding to the
inequality f�Lkf ≤ γ + ξk. Once the optimal values of
the dual variables are obtained, the scores are recovered
by minimizing

(f − y)�(f − y) + f�Lint(ū)f(6.36)

with respect to the score vector f where

Lint(ū) =
K∑

k=1

ūkLk.(6.37)

Equation (6.36) implies that TSS also integrates net-
works and performs label propagation. The dual vari-
ables are the weights of integration. In terms of this
point, TSS is similar to our label propagation algorithm.
However, TSS suffers from a serious weakness. If the
weights are positive, the equality of the constraint holds.
When the value of the quadratic form f�Lkf is less
than γ, the weights ūk are zero. As the value f�Lkf
becomes smaller, the corresponding network is more rel-
evant to the prediction task. For those reasons, irrele-
vant networks are likely to have positive weights and
the weights of relevant networks vanish. Hence, TSS
cannot be expected to achieve good performance when
noisy networks are included.

Argyriou et al. [2] have proposed a kernel-based ap-
proach for combining different networks. Their method
is based on SDP/SVM [8], which is formulated as a
semidefinite programming problem, and which performs
training of the SVM and optimization of the weights
of the kernel matrices simultaneously. First, they con-
vert each graph Laplacian into the Laplacian kernel ma-
trix, and then efficiently solve the optimization prob-
lem by exploiting the sparsity of the graph Laplacians.
However, their method yields an integrated kernel ma-
trix, not the integrated graph Laplacians. Hence, if one
wanted to obtain the predictions as well as the inte-
grated network, their approach could not meet that re-
quirement directly.

Let us discuss the computational complexity of the
proposed algorithm. A Laplacian matrix is typically
sparse and the number of non-zero elements is |E|+n =
O(|E|). According to Spielman and Teng’s work [13], our
M-step in Eq. (4.7) can be computed in O(|E|), while
the E-step in Eq. (4.8) takes in time nearly linear in |E|.
Thus the total complexity is nearly linear in |E|R where
R is the number of iterations. This is the same order of
Tsuda et al’s method (TSS) [14]. Thus our method is
as computationally efficient as TSS, while ours is more
robust against noisy networks.

7 Experiments

We demonstrate the utility of our label propagation
algorithm with a synthetic dataset. We then show the
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Figure 2: Here we are given three networks A1, A2 and A3, as depicted in (a),(b),(c) where up-pointing triangles,
down-pointing triangles, and circles denote nodes with yi = +1, yi = −1, and unknown label, respectively. The
true class labels of nodes are depicted in (i). (d),(e),(f) are the prediction results of label propagation on a
individual network. The results of our algorithm and TSS are shown in (g),(h). The shade of the edges represents
the network weights.



performance of our algorithm with real biological data.

7.1 A Synthetic Example The three artificial net-
works we used for the demonstration are depicted in
Fig. 2(a),(b),(c). Note that they have ten common
nodes. We assume that the first five nodes are the pos-
itive nodes, and the last five nodes are in the negative
class. Nodes 1, 3, 6 and 8 are assumed to be labeled,
and the remaining nodes are unlabeled. Most of edges
in A1 and A2 connect nodes with the same class labels,
whereas the edges in A3 connect nodes with opposite
class labels. Hence, A1 and A2 are relevant to the task,
but A3 is irrelevant.

We begin with a demonstration of label propagation
individually on a single network. The prediction results
are shown in Fig. 2(d),(e),(f). For A1, nodes 2 and
7 are correctly predicted, but nodes 4, 5, 9, 10 can
not be predicted because these four have no paths to
any labeled nodes. For A2, no unlabeled nodes can be
classified because of the same reason. For A3, nodes
4, 5, 9, 10 are classified, but the predictions are wrong
due to the irrelevant edges. The results suggest that
predictions can not be made individually from any single
network. We have to at least combine these networks
at least for better predictions.

Now let us see the results of label propagation on
the integration of networks. Figure. 2(g) depicts the
prediction results of our algorithm. All the nodes are
correctly classified. The resultant weights are ū =
[2.98, 3.78, 0.53]�. The shading of the edges in the
figures represents the weights ūk. The weight of the
third network ū3 is automatically determined to be
small. As a result, the labels of all of the nodes
are correctly predicted. Figure. 2(h) is the results of
TSS. The values of weights produced by TSS were
ū = [4.00, 2.00, 4.00]�. The algorithm thus assigned
a large weight to A3, which caused poor predictions.

7.2 Protein Function Prediction Next we
performed an experiment on protein function
prediction [8]. (The data set is available from
http://noble.gs.washington.edu/proj/sdp-svm/.)
The task is a binary classification problem to predict
whether or not each protein is ribosomal. Out of
760 proteins in total, 92 proteins are ribosomal. We
used two types of input data consisting of the protein
interaction network [15] and the gene expression
data [8]. The gene expression data was converted to
a 5-nearest-neighbor network. The two networks are
denoted by Avm and Ae, respectively. In order to test
the robustness to the presence of noise, we added two
decoy networks. Decoy network Ar1 was made from
Avm by randomly shuffling the node indices. Decoy

network Ar2 was made in the same way from Ae. We
tested two cases: in the first case only the two relevant
networks Avm and Ae were used for the primary input,
and, in the second case all four networks were used. All
the graph Laplacians derived from these networks were
normalized so that the diagonal elements were one, and
divided by the number of edges. We randomly choose
20% of the nodes as unlabeled nodes. We performed
5-fold cross validation over the labeled nodes to choose
βy, βbias, βnet, and ν for the proposed algorithm. For
performance evaluation, we performed ROC analysis
while changing the threshold of classification, and
computed the ROC scores (i.e. the areas under the
ROC curves).

We compared our method with two existing meth-
ods, Tsuda et al.’s method (TSS) [14], and Argyriou
et al.’s kernel-based method (SDP/SVM) [2]. The
hyper-parameters of TSS and SDP/SVM are also cho-
sen using five-fold cross-validation. Table 1 summarizes
the results evaluated with ROC scores averaged over
ten trials. Each row represents the predictive perfor-
mance as an ROC score and the weights for each of
the networks. The weights for networks are denoted by
ūvm, ūe, ūr1, and ūr2.

We used the Wilcoxon test for the statistical signif-
icance of the difference among the ROC scores. With-
out decoy networks, no significant differences can be
observed among the three methods. Next we statis-
tically tested whether or not each algorithm lost sig-
nificant performance due to the presence of noisy net-
works. Adding the decoy networks, the performance
of TSS degrades significantly (P-value=0.006, respec-
tively). In particular, TSS assigns large weights to
noisy networks, and thereby damages the prediction
performance severely. In contrast, no significant per-
formance loss was seen for Proposed and SDP/SVM
(P-value=0.100 and 0.181, respectively).

In order to further investigate the robustness of the
proposed method, we increased the number of decoy
networks. Figure 3 shows the ROC scores of Proposed,
TSS, and SDP/SVM methods. TSS performs consider-
ably less well as the number of decoy networks increases.
However, Proposed and SDP/SVM successfully main-
tain their performance.

In summary, the Proposed algorithm achieves com-
parable classification accuracy to SDP/SVM, yet pro-
vides the optimally integrated network Lint(ū).

8 Conclusion

This paper proposes using Student-t distributions to
perform robust label propagation with different net-
works including the presence of irrelevant networks.
Our algorithm consists of two phases: weighted net-



Table 1: Protein function prediction using graph-learning algorithms. The upper table reports the ROC scores
(areas under the ROC curves) and the weights using Avm and Ae. The bottom table is with the two decoy
networks, Ar1, Ar2 added. The shown weights are normalized so that the sum is one.

Method ROC score ūvm ūe

Proposed 1.000 0.377 0.623
TSS 0.999 0.500 0.500

SDP/SVM 0.999 - -

Method ROC score ūvm ūe ūr1 ūr2

Proposed 0.998 0.279 0.408 0.16 0.154
TSS 0.721 0.200 0.000 0.400 0.400

SDP/SVM 0.999 - - - -

0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8
Number of Decoy Networks

R
O

C
 S

co
re

Proposed
TSS
SDP/SVM

Figure 3: Accuracy of prediction against the number of decoy networks.



work integration and label propagation. The network
integration is done so that the weights reflect how rele-
vant each network is to the task. The label propagation
is performed on the integrated network. We described
the two operations as the E-step and M-step operations,
respectively, of the EM algorithm. Thus our algorithm
is intuitively understandable and statistically well sup-
ported.

Although our algorithm already has the compelling
property of functioning with the integrated networks, it
are considering how to modify our algorithm so as to
produce a sparse solution. That will be future work for
this area.

We finally finish this article by presenting a possible
extension of our algorithm. Extending our technique,
we would perform robust manifold regularization [3].
Manifold regularization is a semi-supervised framework
which uses a network to regularize a general-purpose
learning algorithm. We here focus on the regularized
least squares. If we have multiple networks, we can
perform manifold regularization by using the integrated
network. The application of our technique to manifold
regularization allows us to emphasize the relevant net-
works and learn the prediction rule simultaneously.

Suppose we have � labeled examples {xi, yi}�
i=1 and

n − � unlabeled examples {xi}n
i=�+1 where each xi is a

d-dimensional feature vector. In addition, we are given
K networks for the n examples. The kernel function and
the kernel matrix are denoted by k(·, ·) and K ∈ S

n
++,

respectively.
Manifold regularization assumes that the score

function is expressed by f(x; α) =
∑n

i=1 k(xi, x)αi,
where α ∈ R

n is the adaptive parameter. We define the
score vector function as f(α) = Kα ∈ R

n. The regular-
ized least squares algorithm finds the parameter α ∈ R

n

which minimizes

βy

�∑
i=1

(yi − f(xi; α))2 + βbiasα
�Kα(8.38)

+ βnetf(α)�Lint(ū)f(α).

We define the prior of α as

p(α) =
1

Z ′′N
(

α ; 0n,
1

βbias − ε
K−1

)(8.39)

K∏
k=1

T
(

α ; 0n,
1

βnet

(
KL̃k(ū)K

)−1

, ν

)
,

where L̃k is re-defined by

L̃k ≡ Lk +
ε

Kβnet
K−1.(8.40)

Z ′′ is the normalizing constant of this prior. Using a
similar derivation described in Section 5.4, we can ob-
tain the EM algorithm for obtaining the MAP estima-
tion of the parameter α. Taking ε → 0, the update rules
for the E-step and M-step are given as

ūk :=
ν + n

ν + βnetα�KLkKα
(8.41)

and

α :=
(

GK +
βbias

βy
I +

βnet

βy
Lint(ū)K

)−1

Gy,(8.42)

respectively. We can see that, when K = In, this robust
manifold regularization is equivalent to the robust label
propagation algorithm described in Section 4. Hence,
this robust manifold regularization is a generalization
of the robust label propagation.

In our formulation, p(yi|fi) is modeled by Gaussian.
Employing the Student-t distribution instead may pos-
sibly increase the robustness against label errors.
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