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Abstract 2

Optimally designing the location of training input points (active
learning) and choosing the best model (model selection) are
two important components of supervised learning and have
been studied extensively. However, these two issues seem to
have been investigated separately as two independent
problems. If training input points and models are
simultaneously optimized, the generalization performance
would be further improved. In this paper, we propose a new
approach called active learning for solving the problems of
active learning and model selection at the same time. We
demonstrate by numerical experiments that the proposed
method compares favorably with alternative approaches such
as iteratively performing active learning and model selection
In a sequential manner.



Regression Problem

f(x): Learning target function
{(xi, ;) }ieq : Training samples

£L; Zg\’d Ptrain (ZB) t f(.’L‘)

yi = f(xi) + €
i.i.d A

€; ~ mean 0, variance o

Goal: Learn f(x) from {(x;,y;)}i




Linear Regression Model

b
f(@) =Y aipi(x)
i=1

«; :Parameter

@i () :Basis function

We do NOT assume our model Is correct.
(f(=x) is not necessarily included in the model).



Error Metric

t :Test Input point (not included In training set)

est error: Prediction error at t

(7)) - Fv)

Generalization error: Expected test error over
all test input points

Learn a so that generalization error is minimized

b
f®) =) aipi(x) a=(a1,09,...,00)"
1=1




Common Assumption
A common assumption in most supervised
learning methods proposed so far:

Test input points follow the same
distribution as the training input points

6ol
Tt '~ Prrain(T)

e.g. standard text books such as Wahba (1990), Bishop (1995,2006),
Vapnik (1998), Hastie et al. (2001), Schdélkopf & Smola (2002)

-

Generalization error

6= [ (@)~ @) prrain(e)da




Covariate Shift !

Shimodaira (JSPI 2000)

Test and training input points follow
different distributions.

i.d.
&L S ptmm(w)

t ~ Ptest (t)

Ptrain (ZL’) # Ptest (ZE‘)

&

Generalization error

6= [ (f@) - @) vl




Example of Covariate Shift

(Weak) extrapolation:
Predict output values outside training region




Parameter Learning:
Ordinary Least-Squares
under Covariate Shift

n 2

min Z (f(fl?z') - Z/z)

OLS Is not consistent




Law of Large Numbers  *°
Sample average converges to
the population mean:

We want to estimate the
expectation over test input points
from training input points {x;};—,



Importance-Weighted Average

Importance: Ratio of test and training input

densities Drest ()
ptrain(w)
Importance-weighted average'
1 - es mz €S
_Z Dtest —>/ bt t ptrazn<w)dw
n P pt'razn mz ptrazn

t ~ ptest( ) /A( )ptest(w)dw

1.1.d.
Ti ~ Prain(Z)  (cf. importance sampling)



Importance-Weighted LS

12

for Covariate Shift

min
& P Ptrain (wz)

f(x) = o1 + asz

IWLS Is consistent

-0.5}

157

{Z Prest (@) (f(wayﬂ [

0.5r

0_

-0.5

Importance can be estimated efficiently,

e.g., by KLIEP.

Sugiyama et al. (2007)



Model Selection 13

Choice of models Is crucial:

Polynomial of order 1 Polynomial of order 2 Polynomial of order 3

f(x) = a1 + azx
—I—a3:1:2 + ayx

We want to determine the model so that
generalization error IS minimized:

6= [ (7@ - 1@) preal@)de = |F - 1]

3




Generalization Error Estimation*

— (|7 - fIP

Generalization error IS not accessible since
the target function f(z) is unknown.

Instead, we use a generalization error estimate.

Model compIeX|ty

"

— G

AN

— G

Model bomplexity ]



Assumption 1

We use linear parameter learning:

a = Ly L : matrix independent of
training output noise

. b T
f(a:):Zozigoi(w) Yy = (y1,y2,---7yn)
]

E.g., Importance-weighted least-squares

. T —1 5T
L=(X"DX)'X'D X = ()

min [i Drest(Ti) (]/C\(wz) - yz)2] D; ; = diag ( Prest(®) Ptest(Zn) )

& i—1 Ptrain (mz) Ptrain (wl) Ptrain (wn)




Estimating Generalization Error'®

G=|f- 7l
= || fI” + | f11° —2(f, f)
Accessible Constant Estimated
(ignored)
g(x) =) ajpi(x)
f=g+r =
<T7 90?/> =0

span({p; },—1) 7 Eb:&'so'(w)



Subspace Information Criterion*’

Sugiyama & Ogawa (Neural Comp. 2001)

~T Sugiyama & Muller (JMLR 2002
a Uao® aly ( )

ldea: Replace o* by a linear unbiased

estimator o N
a = Ly

Since a and a are estimated from the
same sample v, It causes a bias: a =Ly
N ~ T
Ela' Ua*—a'Ua] = o?tr(ULL )
K, : expectation over noise

Bias correction results in a generalization
error estimator (named SIC).
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Importance-Weighted SIC

Sugiyama & Mdller (Statistics & Decisions 2005)

IWSIC[L| = y "L ULy — 2y L ULy + 252tr(ULL )

Uij=(piv;) L=(X DX)'X D Xij=vjxi)

a = Ly X : X for largest model 5° =[Gyl /tx(G)

G —J — /X/(:\X/T:\X/>—1/X/T Di,j _ dlag ( ptest<w1> ..... ptest<wn) )

DrrarinlE®n ) el
IWSIC Is asymptotically unbiased (up to
relevant terms):

E.(IWSIC — G — C) = O, (6n~/?)

0 :model error (= ||7||)
K. : expectation over noise
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Accuracy and Model Error
Model selection: choose the most promising
model from candidates

Easy to distinguish too simple models from
good ones by a rough gen. error estimator.

Therefore, our real interest Is to find an
excellent model from good models.

IWSIC Is useful Iin this respect
since It IS more accurate
for better models.

E.(IWSIC — G — C) = O, (6n"/?)

J : model error

»

Model complexity ]




Numerical Examples

20

Importance Is estimated =
by KLIEP with automatic L. ™
model selection (no tuning | N

parameters remains).
Sugiyama et al. (2007) i



Numerical Examples (cont.) 4

Polynomial of order 1 Polynomial of order 2 Polynomial of order 3

f(z) = a1 + asx

—|—a3:132 S 044:133
IWLS+IWSIC works
. better than others.

|

0.05-

IWLS+HIWSIC IWLS+SIC  LS+IWSIC LS+3IC



Active Learning 22

Choice of training input location is crucial:

Good inputs Poor inputs

We want to determine training input location
so that generalization error is minimized:

6= [ (f@) - @) pea(@)ia



Batch Active Learning 23

Batch active learning: optimize location of all
training inputs {;};—; in the beginning.
However, this iIs computationally hard since

n points are simultaneously optimized
Incremental approach: optimize inputs one
by one, which is popular but greedy optimal.
We optimize training input density ptrain ()
and draw training inputs from It.



Generalization Error Estimation®*

G=|If - fIP
Generalization error IS not accessible since the
target function f(x) is unknown.

Instead, we use a generalization error estimate.

A — G
- ) e
Trainingj Input der:sity Trainiﬁg Input der:sity

Similar to model selection, but horizontal axis Is
different (model or training input density).



Remarks 23

We need to estimate generalization error
before observing training outputs {¥: }i—; .

Thus generalization error estimation in active
learning would be harder than model selection.

We design training input density by ourselves.

Thus covariate shift always occurs In active
learning.



Assumption 20
We use importance-weighted least-squares:

. = Ptest (wz) i 2-

m(in _; pt’r'az'n(wz’) <f(w2) B yZ) |
b

f(x) = Zai%’(w)
1=1
a = Ly

L=(X'DX)'X'D D, = dig ( Preat(®) Prest (@n) )

ptrain(ml) ptrain(wn>
Yy = (y17y27 S 7yn)T



Bias/Variance Decomposition °’

LG =Ef - flI°=0"+B+V
Model error:
6= ||f—g|
Bias: R / /
b = H tef _gH2 { 1o )
Variance: R
V =E|Eef — H2

K, : expectation over noise



Bias/Variance of IWLS for 2°
Approximately Correct Models

EGG:EGHJ/F\_fHQ:dz"‘B"‘V

We want to estimate E.G without using {v: };—;.
e Model error: constant and can be ignored

0 =|lf — gl
e \/ariance: computable up to scaling factor o°:
V =E|Ecf — f||? = c’tr(ULL") = O, (n~ ")

e Bias: hard to estimate, but can be safely ignored
if 0 =o0(1): N . —
B = |Ecf — gl = 0,(6°n~")



ALICE 29

Sugiyama (JMLR 2006)

Active Learning using Importance-weighted least-squares
based on Conditional Expectation of generalization error

ALICE[pirain] = tr(ULL")

Xij=pj(xi)
Ptest (wz) 5
ptrain(wi)

Uij = (¢i ;)
L=(X'DX)"'X'D D, =

157

ALICE Is consistent (up to relevant terms)
for approximately correct models with 6 = o(1) :

0?ALICE — G + 6% = O,(n™ )



Simulation Results 30

Mean over 100 trials (normalized by passive)

1.1 -

1.05 -

0.95 -

09 -

=== (ALICE)

mem (OLS)

mmm (Passive)
I

0.85 ~

1
Bank—8fm Bank—-8fh Bank—-8nm Bank—-8nh Kin—8fm Kin—8fh Kin—8nm Kin—8nh

OLS-based is sometimes good, but unstable.
Cohn et al. (JAIR 1996), Fukumizu (IEEE-TNN 2000)

ALICE works well in a stable manner.



Active Learning with 51

Model Selection (ALMS)

MS: optimize model M

min G(M)
M

AL: optimize training input density pirain ()
min G(ptrain)

Ptrain

ALMS: optimize both M and ptrain()



Optimal Solution 32

Sugiyama & Ogawa (IEICE Trans. 2003)

Suppose there exist the common optimal
training input density for all model candidates.

p:rain — argmin G(-/\/l,ptmm) for all M

Ptrain

Then using p;,..., and choose a model by
an existing MS method is optimal.

This scenario can be realized for correct
trigonometric polynomial models.

However, not possible for general models.



AL/MS Dilemma 33

Can we simply employ existing MS and AL
methods for simultaneously optimizing M
and pirain(x) ?

AL/MS dilemma:

e MS methods require to fix Dirain ().

e AL methods require to fix M.

Batch ALMS can not be solved by simply
combining existing MS and AL methods.



Sequential Approach

Iteratively choose

® A training input point Choose an initial model M(i)l
(or a small portion) L A—
Choose the next training input point ;41
e a model _T—I

IS | Gather output value ¥; ;
This is commonly ather output value Yi+1at Tit1

used In practice. Choose a model MU}

No




Model Drift

However, sequential approach is not effective.
e Target model varies through learning process.
e Good training input density depends heavily on

the target model.
e Training input points
determined in early

stages could be poor
for finally chosen model.

e AL overfits to target
models.

The choice of models

>

|

35

Finally
chosen
model

Very good
Poor
| |

——

: >

1 2 e n
The number of training samples
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Batch Approach

Perform batch AL for an initially chosen model.
This does not suffer from model drift.

>

Choose an initial model M/ (%) 5

3 Optimal

— S —
Choose all training input points{ﬂ% i=1 ©
—_[—l S
n n .8
Gather all output values {yi}izl at {xi}izl & Poor
()
i = — —

Choose the final model M (") 1 2 e n
The number of training samples

End



Difficulty in Initial Model Choice®’

We need to choose an initial model before
observing training samples {(z;, v:)}i; .
e [WSIC can not be computed without{(x;, i)} .

e ALICE can be computed without{ (i, ¥i) }iz1 ,
but the simplest model is always chosen
since It Is a variance estimator.

In practice, we may have to determine the
Initial model randomly.

Therefore, batch approach is not reliable.



Ensemble Active Learning 38

Sugiyama & Rubens (2007)
Choose training input density for all models:

> G(Maptmm)}
M

This reduces the risk of
overfitting to a single

- - . . . . . ’)’L
(|nfer|or) model. Choose all training input points {x; } 4
for ensemble of all models
A
Gather all output values {yi}?zl at {x;}i 4 I
. _

Choose the final model M ™)

min

Ptrain

End

The choice of models

—] —
The number of training samples




Simulation Results

39

Dataset Passive |Sequential| Batch |Ensemble
Bank-8fm |1.00(1.22)| 0.59(0.85) | 0.46(0.25) | 0.45(0.28)
Bank-8fh 1.00(0.42) | 0.53(0.22) {0.46(0.18) | 0.44(0.11)
Bank-8nm [1.00(0.76)| 0.63(0.19) |0.58(0.21) | 0.56(0.10)
Bank-8nh 11.00(0.28)|0.61(0.19) |0.53(0.14) |0.51(0.11)
Pumadyn-8fm | 1.00(0.22) | 0.83(0.36) {0.92(0.68) | 0.91(0.73)
Pumadyn-8fh [1.00(0.17)| 0.80(0.17) |0.76(0.22) |0.71(0.19)
Pumadyn-8nm|1.00(0.18) | 0.86(0.15) | 0.85(0.20) | 0.81(0.18)
Pumadyn-8nh |1.00(0.19) | 0.85(0.14) |{0.81(0.17) [ 0.77(0.15)

All methods outperform passive.
Ensemble method works the best!




Conclusions 40

We have proposed
e SIC for model selection
e ALICE for active learning

e Ensemble active learning for active
learning with model selection

Key issues of these methods are:

e Input-dependence of generalization
error estimation.

e Approximate correctness of models.



Data-Independent Approach *

Evaluation of generalization error Is in terms
of average over both training inputs and noise.

¢ G(x,€)
e
LN Bl B, ©
- \‘
T

e Model selection:
Akaike information criterion (Akaike, IEEE-AC 1974)
Cross validation

e Active learning:
Wiens (JSPI 2000)
Kanamori & Shimodaira (JSPI 2003)



Input-Dependent Approach 44

Evaluation of generalization error is Iin terms
of average over only noise (with fixed inputs).
G(x,e€)

Efeyn G

Input-dependent approach (such as SIC and
ALICE) Is provably more accurate than data-

Independent approach.

Sugiyama & Ogawa (Neural Comp. 2001)
Sugiyama & Mduller (JMLR 2002, Stat. & Dec. 2005)
Sugiyama (JMLR 2006)



Approximate Correctness of Modéls

Our model can never be correct in practice.
However, our models may not be that bad.

Learning with approximately correct models
IS practically important:

SIC and ALICE are provably more accurate
than other approaches for approximately
correct models.

Span({%}gzl)



