
Efficient Direct Density Ratio Estimation for
Non-stationarity Adaptation and Outlier Detection

Takafumi Kanamori
Nagoya University, Nagoya, Japan

kanamori@is.nagoya-u.ac.jp

Shohei Hido
IBM Research, Kanagawa, Japan

hido@jp.ibm.com

Masashi Sugiyama
Tokyo Institute of Technology, Tokyo, Japan

sugi@cs.titech.ac.jp

Abstract

We address the problem of estimating the ratio of two probability density functions
(a.k.a. theimportance). The importance values can be used for various succeed-
ing tasks such asnon-stationarity adaptationor outlier detection. In this paper, we
propose a new importance estimation method that has a closed-form solution; the
leave-one-out cross-validation score can also be computed analytically. Therefore,
the proposed method is computationally very efficient and numerically stable. We
also elucidate theoretical properties of the proposed method such as the conver-
gence rate and approximation error bound. Numerical experiments show that the
proposed method is comparable to the best existing method in accuracy, while it
is computationally more efficient than competing approaches.

1 Introduction

In the context ofimportance sampling, the ratio of two probability density functions is called the
importance. The problem of estimating the importance is gathering a lot of attention these days
since the importance can be used for various succeeding tasks, e.g.,

Covariate shift adaptation:Covariate shift is a situation in supervised learning where the distri-
butions of inputs change between the training and test phases but the conditional distribution of
outputs given inputs remains unchanged [8]. Covariate shift is conceivable in many real-world
applications such as bioinformatics, brain-computer interfaces, robot control, spam filtering, and
econometrics. Under covariate shift, standard learning techniques such as maximum likelihood es-
timation or cross-validation are biased and therefore unreliable—the bias caused by covariate shift
can be compensated by weighting the training samples according to the importance [8, 5, 1, 9].

Outlier detection:The outlier detection task addressed here is to identify irregular samples in an
evaluation dataset based on a model dataset that only contains regular samples [7, 3]. The importance
values for regular samples are close to one, while those for outliers tend to be significantly deviated
from one. Thus the values of the importance could be used as an index of the degree of outlyingness.

Below, we refer to the two sets of samples as the training and test sets. A naive approach to estimat-
ing the importance is to first estimate the training and test densities from the sets of training and test
samples separately, and then take the ratio of the estimated densities. However, density estimation is
known to be a hard problem particularly in high-dimensional cases. In practice, such an appropriate
parametric model may not be available and therefore this naive approach is not so effective.

To cope with this problem, we propose a direct importance estimation method that does not involve
density estimation. The proposed method, which we callleast-squares importance fitting(LSIF), is

1

formulated as a convex quadratic program and therefore the unique global solution can be obtained.
We give a cross-validation method for model selection and a regularization path tracking algorithm
for efficient computation [4].

This regularization path tracking algorithm is turned out to be computationally very efficient since
the entire solution path can be traced without a quadratic program solver. However, it tends to share a
common weakness of path tracking algorithms, i.e.,accumulation of numerical errors. To overcome
this drawback, we develop an approximation algorithm calledunconstrained LSIF(uLSIF), which
allows us to obtain the closed-form solution that can be stably computed just by solving a system
of linear equations. Thus uLSIF is computationally efficient and numerically stable. Moreover,
the leave-one-out error of uLSIF can also be computed analytically, which further improves the
computational efficiency in model selection scenarios.

We experimentally show that the accuracy of uLSIF is comparable to the best existing method while
its computation is much faster than the others in covariate shift adaptation and outlier detection.

2 Direct Importance Estimation

Formulation and Notation: Let D ⊂ (Rd) be the data domain and suppose we are given inde-
pendent and identically distributed (i.i.d.) training samples{xtr

i }
ntr
i=1 from a training distribution

with densityptr(x) and i.i.d. test samples{xte
j }nte

j=1 from a test distribution with densitypte(x). We
assumeptr(x) > 0 for all x ∈ D. The goal of this paper is to estimate theimportance

w(x) = pte(x)
ptr(x)

from {xtr
i }

ntr
i=1 and {xte

j }nte
j=1. Our key restriction is that we want to avoid estimating densities

pte(x) andptr(x) when estimating the importancew(x).

Least-squares Approach: Let us model the importancew(x) by the following linear model:

ŵ(x) = α⊤φ(x), (1)

where⊤ denotes the transpose,α = (α1, . . . , αb)⊤, is a parameter to be learned,b is the number of
parameters,φ(x) = (φ1(x), . . . , φb(x))⊤ are basis functions such thatφ(x) ≥ 0b for all x ∈ D,
0b denotes theb-dimensional vector with all zeros, and the inequality for vectors is applied in the
element-wise manner. Note thatb and{φℓ(x)}b

ℓ=1 could be dependent on the samples i.e.,kernel
models are also allowed. We explain how the basis functions{φℓ(x)}b

ℓ=1 are chosen later.

We determine the parameterα so that the following squared error is minimized:

J0(α) = 1
2

∫ (
ŵ(x) − pte(x)

ptr(x)

)2

ptr(x)dx = 1
2

∫
ŵ(x)2ptr(x)dx −

∫
ŵ(x)pte(x)dx + C,

whereC = 1
2

∫
w(x)pte(x)dx is a constant and therefore can be safely ignored. Let

J(α) = J0(α) − C = 1
2α⊤Hα − h⊤α, (2)

where H =
∫

φ(x)φ(x)⊤ptr(x)dx, h =
∫

φ(x)pte(x)dx.

Using the empirical approximation and taking into account the non-negativity of the importance
functionw(x), we obtain

minα∈Rb

[
1
2α⊤Ĥα − ĥ

⊤
α + λ1⊤

b α
]

s.t.α ≥ 0b, (3)

where Ĥ = 1
ntr

∑ntr
i=1 φ(xtr

i)φ(xtr
i)⊤, ĥ = 1

nte

∑nte
j=1 φ(xte

j).

λ1⊤
b α is a regularization term for avoiding overfitting,λ ≥ 0, and1b is theb-dimensional vector

with all ones.

The above problem is a convex quadratic program and therefore the global optimal solution can be
obtained by a standard software. We call this methodLeast-Squares Importance Fitting(LSIF).

2

Convergence Analysis of LSIF: Here, we theoretically analyze the convergence property of the
solutionα̂ of the LSIF algorithm. Letα∗ be the optimal solution of the ‘ideal’ problem:

minα∈Rb

[
1
2α⊤Hα − h⊤α + λ1⊤

b α
]

s.t.α ≥ 0b. (4)

Let f(n) = ω(g(n)) mean thatf(n) asymptotically dominatesg(n), i.e., for allC > 0, there exists
n0 such that|Cg(n)| < |f(n)| for all n > n0. Then we have the following theorem.

Theorem 1 Assume that (a) the optimal solution of the problem(4) satisfies the strict comple-
mentarity condition, and (b)ntr and nte satisfy nte = ω(n2

tr). Then we haveE[J(α̂)] =
J(α∗) + O

(
n−1

tr

)
, whereE denotes the expectation over all possible training samples of sizentr

and all possible test samples of sizente.

Theorem 1 guarantees that LSIF converges to the ideal solution with ordern−1
tr . It is possible to

explicitly obtain the coefficient of the term of ordern−1
tr , but we omit the detail due to lack of space.

Model Selection for LSIF: The performance of LSIF depends on the choice of the regularization
parameterλ and basis functions{φℓ(x)}b

ℓ=1 (which we refer to as amodel). Since our objective is
to minimize the cost functionJ , it is natural to determine the model such thatJ is minimized.

Here, we employ cross-validation for estimatingJ(α̂), which has an accuracy guarantee for finite
samples: First, the training samples{xtr

i }
ntr
i=1 and test samples{xte

j }nte
j=1 are divided intoR disjoint

subsets{X tr
r }R

r=1 and{X te
r }R

r=1, respectively. Then an importance estimateŵr(x) is obtained using
{X tr

j }j ̸=r and{X te
j }j ̸=r, and the costJ is approximated using the held-out samplesX tr

r andX te
r as

Ĵ
(CV)
r = 1

2|X tr
r |

∑
xtr∈X tr

r
ŵr(xtr)2 − 1

|X te
r |

∑
xte∈X te

r
ŵr(xte).

This procedure is repeated forr = 1, . . . , R and its averagêJ (CV) is used as an estimate ofJ . We
can show that̂J (CV) gives an almost unbiased estimate of the true costJ , where the ‘almost’-ness
comes from the fact that the number of samples is reduced due to data splitting.

Heuristics of Basis Function Design: A good model may be chosen by cross-validation, given
that a family of promising model candidates is prepared. As model candidates, we propose using a
Gaussian kernel model centered at thetestinput points{xte

j }nte
j=1, i.e.,

ŵ(x) =
∑nte

ℓ=1 αℓKσ(x,xte
ℓ), where Kσ(x, x′) = exp

(
−∥x − x′∥2/(2σ2)

)
. (5)

The reason why we chose the test input points{xte
j }nte

j=1 as the Gaussian centers, not the training
input points{xtr

i }
ntr
i=1, is as follows. By definition, the importancew(x) tends to take large values

if the training input densityptr(x) is small and the test input densitypte(x) is large; conversely,
w(x) tends to be small (i.e., close to zero) ifptr(x) is large andpte(x) is small. When a function
is approximated by a Gaussian kernel model, many kernels may be needed in the region where the
output of the target function is large; on the other hand, only a small number of kernels would be
enough in the region where the output of the target function is close to zero. Following this heuristic,
we allocate many kernels at hightest input density regions, which can be achieved by setting the
Gaussian centers at the test input points{xte

j }nte
j=1.

Alternatively, we may locate(ntr + nte) Gaussian kernels at both{xtr
i }

ntr
i=1 and{xte

j }nte
j=1. How-

ever, in our preliminary experiments, this did not further improve the performance, but just slightly
increased the computational cost. Whennte is large, just using all the test input points{xte

j }nte
j=1 as

Gaussian centers is already computationally rather demanding. To ease this problem, we practically
propose using a subset of{xte

j }nte
j=1 as Gaussian centers for computational efficiency, i.e.,

ŵ(x) =
∑b

ℓ=1 αℓKσ(x, cℓ), (6)

wherecℓ is a template point randomly chosen from{xte
j }nte

j=1 andb (≤ nte) is a prefixed number.
In the experiments shown later, we fix the number of template points atb = min(100, nte), and
optimize the kernel widthσ and the regularization parameterλ by cross-validation with grid search.

3

Entire Regularization Path for LSIF: We can show that the LSIF solution̂α is piecewise linear
with respect to the regularization parameterλ. Therefore, theregularization path(i.e., solutions for
all λ) can be computed efficiently based on theparametric optimization technique[4].

A basic idea of regularization path tracking is to check the violation of the Karush-Kuhn-
Tucker (KKT) conditions—which are necessary and sufficient conditions for optimality of convex
programs—when the regularization parameterλ is changed. Although the detail of the algorithm
is omitted due to lack of space, we can show that a quadratic programming solver is no longer
needed for obtaining the entire solution path of LSIF—just computing matrix inverses is enough.
This highly contributes to saving the computation time. However, in our preliminary experiments,
the regularization path tracking algorithm is turned out to be numerically rather unreliable since the
numerical errors tend to be accumulated when tracking the regularization path. This seems to be a
common pitfall of solution path tracking algorithms in general.

3 Approximation Algorithm

Unconstrained Least-squares Approach: The approximation idea we introduce here is very sim-
ple: we ignore the non-negativity constraint of the parameters in the optimization problem (3). Thus

minβ∈Rb

[
1
2β⊤Ĥβ − ĥ

⊤
β + λ

2 β⊤β
]
. (7)

In the above, we included a quadratic regularization termλβ⊤β/2, instead of the linear oneλ1⊤
b α

since the linear penalty term does not work as a regularizer without the non-negativity constraint.
Eq.(7) is an unconstrained convex quadratic program, so the solution can be analytically computed.
However, since we dropped the non-negativity constraintβ ≥ 0b, some of the learned parameters
could be negative. To compensate for this approximation error, we modify the solution by

β̂ = max(0b, β̃), β̃ = (Ĥ + λIb)−1ĥ, (8)

whereIb is theb-dimensional identity matrix and the ‘max’ operation for vectors is applied in the
element-wise manner. This is the solution of the approximation method we propose in this section.

An advantage of the above unconstrained formulation is that the solution can be computed just by
solving a system of linear equations. Therefore, the computation is fast and stable. We call this
methodunconstrained LSIF(uLSIF). Due to theℓ2 regularizer, the solution tends to be close to
0b to some extent. Thus, the effect of ignoring the non-negativity constraint may not be so strong.
Below, we theoretically analyze the approximation error of uLSIF.

Convergence Analysis of uLSIF: Here, we theoretically analyze the convergence property of
the solutionβ̂ of the uLSIF algorithm. Letβ∗ be the optimal solution of the ‘ideal’ problem:

β∗ = max(0b, β
◦), whereβ◦ = argminβ∈Rb

[
1
2β⊤Hβ − h⊤β + λ

2 β⊤β
]
. Then we have

Theorem 2 Assume that (a)β◦
ℓ ̸= 0 for ℓ = 1, . . . , b, and (b)ntr and nte satisfynte = ω(n2

tr).
Then we haveE[J(β̂)] = J(β∗) + O

(
n−1

tr

)
.

Theorem 2 guarantees that uLSIF converges to the ideal solution with ordern−1
tr . It is possible to

explicitly obtain the coefficient of the term of ordern−1
tr , but we omit the detail due to lack of space.

We can also derive upper bounds on the difference between LSIF and uLSIF and show that uLSIF
gives a good approximation to LSIF. However, we do not go into the detail due to space limitation.

Efficient Computation of Leave-one-out Cross-validation Score: Another practically very im-
portant advantage of uLSIF is that the score of leave-one-out cross-validation (LOOCV) can also
be computed analytically—thanks to this property, the computational complexity for performing
LOOCV is the same order as just computing a single solution. In the current setting, we are given
two sets of samples,{xtr

i }
ntr
i=1 and{xte

j }nte
j=1, which generally have different sample size. For sim-

plicity, we assume thatntr < nte and thei-th training samplextr
i and thei-th test samplexte

i are
held out at the same time; the test samples{xte

j }nte
j=ntr+1 are always used for importance estimation.

4

Let β̂
(i)

λ be a parameter learned without thei-th training samplextr
i and thei-th test samplexte

i .
Then the LOOCV score is expressed as

1
ntr

∑ntr
i=1[

1
2 (φ(xtr

i)⊤β̂
(i)

λ)2 − φ(xte
i)⊤β̂

(i)

λ].

Our approach to efficiently computing the LOOCV score is to use theSherman-Woodbury-Morrison

formulafor computing matrix inverses—̂β
(i)

λ can be expressed as

β̂
(i)

λ =max{0b,
(ntr−1)nte
ntr(nte−1) (a + a⊤φ(xtr

i)·ate

ntr−φ(xtr
i)⊤ate

) − (ntr−1)
ntr(nte−1) (atr + a⊤

teφ(xtr
i)·atr

ntr−φ(xtr
i)⊤atr

)},

where a = A−1ĥ,atr = A−1φ(xtr
i), ate = A−1φ(xte

i), A = Ĥ + (ntr−1)λ
ntr

Ib.

This implies that the matrix inverse needs to be computed only once (i.e.,A−1) for calculating
LOOCV scores. Thus LOOCV can be carried out very efficiently without repeating hold-out loops.

4 Relation to Existing Methods

Kernel density estimator(KDE) is a non-parametric technique to estimate a probability density func-
tion. KDE can be used for importance estimation by first estimatingp̂tr(x) and p̂te(x) separately
from {xtr

i }
ntr
i=1 and{xte

j }nte
j=1 and then estimating the importance byŵ(x) = p̂te(x)/p̂tr(x). KDE

is efficient in computation since no optimization is involved, and model selection is possible by
likelihood cross validation. However, KDE may suffer from the curse of dimensionality.

Thekernel mean matching(KMM) method allows us to directly obtain an estimate of the importance
values at training points without going through density estimation [5]. KMM can overcome the curse
of dimensionality by directly estimating the importance using a special property of the Gaussian
reproducing kernel Hilbert space. However, there is no objective model selection method for the
regularization parameter and kernel width. As for the regularization parameter, we may follow a
suggestion in the original paper, which is justified by a theoretical argument to some extent [5].
As for the Gaussian width, we may adopt a popular heuristic to use the median distance between
samples, although there seems no strong justification for this. The computation of KMM is rather
demanding since a quadratic programming problem has to be solved.

Other approaches to directly estimating the importance is to directly fit an importance model to the
true importance—a method based onlogistic regression(LogReg) [1], or a method based on the
kernel model (6) (which is called theKullback-Leibler importance estimation procedure, KLIEP)
[9, 6]. Model selection of these methods is possible by cross-validation, which is a significant
advantage over KMM. However, LogReg and KLIEP are computationally rather expensive since
non-linear optimization problems have to be solved.

The proposed LSIF is qualitatively similar to LogReg and KLIEP, i.e., it can avoid density estima-
tion, model selection is possible, and non-linear optimization is involved. However, LSIF is advan-
tageous over LogReg and KLIEP in that it is equipped with a regularization path tracking algorithm.
Thanks to this, model selection of LSIF is computationally much more efficient than LogReg and
KLIEP. However, the regularization path tracking algorithm tends to be numerically unstable.

The proposed uLSIF inherits good properties of existing methods such as no density estimation
involved and a build-in model selection method equipped. In addition to these preferable properties,
the solution of uLSIF can be computed analytically through matrix inversion and therefore uLSIF
is computationally very efficient and numerically stable. Furthermore, the closed-form solution of
uLSIF allows us to compute the LOOCV score analytically without repeating hold-out loops, which
highly contributes to reducing the computation time in the model selection phase.

5 Experiments

Importance Estimation: Let ptr(x) be thed-dimensional normal disribution with mean zero and
covariance identity; letpte(x) be thed-dimensional normal disribution with mean(1, 0, . . . , 0)⊤ and
covariance identity. The task is to estimate the importance at training input points:{w(xtr

i)}ntr
i=1.

We fixed the number of test input points atnte = 1000 and consider the following two settings for

5

5 10 15 20
10

−6

10
−5

10
−4

10
−3

A
ve

ra
ge

 N
M

S
E

 o
ve

r
10

0
T

ria
ls

 (
in

 L
og

 S
ca

le
)

d (Input Dimension)

KDE
KMM
LogReg
KLIEP
uLSIF

(a) Whend is changed

50 100 150

10
−6

10
−5

10
−4

10
−3

A
ve

ra
ge

 N
M

S
E

 o
ve

r
10

0
T

ria
ls

 (
in

 L
og

 S
ca

le
)

n
tr
 (Number of Training Samples)

(b) Whenntr is changed

Figure 1: NMSEs averaged
over100 trials in log scale.

5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

C
om

pu
ta

tio
n

T
im

e
[s

ec
]

d (Input Dimension)

KDE
KMM
LogReg
KLIEP
uLSIF

(a) Whend is changed

50 100 150
0

0.05

0.1

0.15

C
om

pu
ta

tio
n

T
im

e
[s

ec
]

n
tr
 (Number of Training Samples)

(b) Whenntr is changed

Figure 2: Mean computation
time (after model selection)
over100 trials.

5 10 15 20
0

5

10

15

T
ot

al
 C

om
pu

ta
tio

n
T

im
e

[s
ec

]

d (Input Dimension)

LogReg
uLSIF

(a) Whend is changed

50 100 150
0

2

4

6

8

10

12

T
ot

al
 C

om
pu

ta
tio

n
T

im
e

[s
ec

]

n
tr
 (Number of Training Samples)

(b) Whenntr is changed

Figure 3: Mean computation
time (including model selec-
tion ofσ andλ over9×9 grid).

the numberntr of training samples and the input dimensiond: (a) ntr = 100 andd = 1, 2, . . . , 20,
(b) d = 10 andntr = 50, 60, . . . , 150. We run the experiments100 times for eachd, eachntr, and
each method, and evaluate the quality of the importance estimates{ŵi}ntr

i=1 by thenormalized mean
squared error(NMSE):

1
ntr

∑ntr
i=1 (ŵ(xtr

i) − w(xtr
i))2 ,

where
∑ntr

i=1 ŵ(xtr
i) and

∑ntr
i=1 w(xtr

i) are normalized to be one, respectively.

NMSEs averaged over100 trials (a) as a function of input dimensiond and (b) as a function of
the training sample sizentr are plotted in log scale in Figure 1. Error bars are omitted for clear
visibility—instead, the best method in terms of the mean error and comparable ones based on the
t-test at the significance level1% are indicated by ‘◦’; the methods with significant difference are
indicated by ‘×’. Figure 1(a) shows that the error of KDE sharply increases as the input dimension
grows, while LogReg, KLIEP, and uLSIF tend to give much smaller errors than KDE. This would
be the fruit of directly estimating the importance without going through density estimation. KMM
tends to perform poorly, which is caused by an inappropriate choice of the Gaussian kernel width.
This implies that the popular heuristic of using the median distance between samples as the Gaussian
width is not always appropriate. On the other hand, model selection in LogReg, KLIEP, and uLSIF
seems to work quite well. Figure 1(b) shows that the errors of all methods tend to decrease as the
number of training samples grows. Again LogReg, KLIEP, and uLSIF tend to give much smaller
errors than KDE and KMM.

Next we investigate the computation time. Each method has a different model selection strategy,
i.e., KMM does not involve any cross-validation, KDE and KLIEP involve cross-validation over
the kernel width, and LogReg and uLSIF involve cross-validation over both the kernel width and
the regularization parameter. Thus the naive comparison of the total computation time is not so
meaningful. For this reason, we first investigate the computation time of each importance estimation
method after the model parameters are fixed. The average CPU computation time over100 trials
are summarized in Figure 2. Figure 2(a) shows that the computation time of KDE, KLIEP, and
uLSIF is almost independent of the input dimensionalityd, while that of KMM and LogReg is
rather dependent ond. Among them, the proposed uLSIF is one of the fastest methods. Figure 2(b)
shows that the computation time of LogReg, KLIEP, and uLSIF is nearly independent of the training
sample sizentr, while that of KDE and KMM sharply increase asntr increases.

Both LogReg and uLSIF have very good accuracy and their computation time after model selection
is comparable. Finally, we compare the entire computation time of LogReg and uLSIF including

6

cross-validation, which is summarized in Figure 3. We note that the Gaussian widthσ and the
regularization parameterλ are chosen over the9 × 9 equidistant grid in this experiment for both
LogReg and uLSIF. Therefore, the comparison of the entire computation time is fair. Figures 3(a)
and 3(b) show that uLSIF is approximately5 to 10 times faster than LogReg.

Overall, uLSIF is shown to be comparable to the best existing method (LogReg) in terms of the
accuracy, but is computationally more efficient than LogReg.

Covariate Shift Adaptation in Regression and Classification: Next, we illustrate how the im-
portance estimation methods could be used incovariate shift adaptation[8, 5, 1, 9]. Covariate shift is
a situation in supervised learning where the input distributions change between the training and test
phases but the conditional distribution of outputs given inputs remains unchanged. Under covariate
shift, standard learning techniques such as maximum likelihood estimation or cross-validation are
biased; the bias caused by covariate shift can be asymptotically canceled by weighting the samples
according to the importance. In addition to training input samples{xtr

i }
ntr
i=1 following a training

input densityptr(x) and test input samples{xte
j }nte

j=1 following a test input densitypte(x), suppose
that trainingoutputsamples{ytr

i }ntr
i=1 at the training input points{xtr

i }
ntr
i=1 are given. The task is to

predict the outputs for test inputs.

We use the kernel model
f̂(x; θ) =

∑t
ℓ=1 θℓKh(x, mℓ)

for function learning, whereKh(x, x′) is the Gaussian kernel (5) andmℓ is a template point ran-
domly chosen from{xte

j }nte
j=1. We set the number of kernels att = 50. We learn the parameterθ by

importance weighted regularized least-squares(IWRLS):

minθ

[∑ntr
i=1 ŵ(xtr

i)
(
f̂(xtr

i ; θ) − ytr
i

)2

+ γ∥θ∥2
]
. (9)

It is known that IWRLS is consistent when the true importancew(xtr
i) is used as weights—

unweighted RLS is not consistent due to covariate shift, given that the true learning target function
f(x) is not realizable by the model̂f(x) [8].

The kernel widthh and the regularization parameterγ in IWRLS (9) are chosen byimportance
weighted CV(IWCV) [9]. More specifically, we first divide the training samples{ztr

i | ztr
i =

(xtr
i , ytr

i)}ntr
i=1 into R disjoint subsets{Ztr

r }R
r=1. Then a functionf̂r(x) is learned using{Ztr

j }j ̸=r

by IWRLS and its mean test error for the remaining samplesZtr
r is computed:

1
|Ztr

r |
∑

(x,y)∈Ztr
r

ŵ(x)loss
(
f̂r(x), y

)
, (10)

whereloss (ŷ, y) is (ŷ − y)2 in regression and12 (1 − sign{ŷy}) in classification. We repeat this
procedure forr = 1, . . . , R and choose the kernel widthh and the regularization parameterγ so
that the average of the above mean test error over allr is minimized. We set the number of folds in
IWCV at R = 5. IWCV is shown to be an (almost) unbiased estimator of the generalization error,
while unweighted CV with misspecified models is biased due to covariate shift.

The datasets provided by DELVE and IDA are used for performance evaluation, where training in-
put points are sampled with bias in the same way as [9]. We set the number of samples atntr = 100
andnte = 500 for all datasets. We compare the performance of KDE, KMM, LogReg, KLIEP, and
uLSIF, as well as the uniform weight (Uniform, i.e., no adaptation is made). The experiments are
repeated100 times for each dataset and evaluate themean test error: 1

nte

∑nte
j=1 loss(f̂(xte

j), yte
j).

The results are summarized in Table 1, where all the error values are normalized by that of the uni-
form weight (no adaptation). For each dataset, the best method and comparable ones based on the
Wilcoxon signed rank testat the significance level1% are described in bold face. The upper half cor-
responds to regression datasets taken from DELVE while the lower half correspond to classification
datasets taken from IDA.

The table shows that the generalization performance of uLSIF tends to be better than that of Uniform,
KDE, KMM, and LogReg, while it is comparable to the best existing method (KLIEP). The mean
computation time over100 trials is described in the bottom row of the table, where the value is
normalized so that the computation time of uLSIF is one. This shows that uLSIF is computationally
more efficient than KLIEP. Thus, proposed uLSIF is overall shown to work well in covariate shift
adaptation with low computational cost.

7

Table 1: Covariate shift adaptation. Mean and standard
deviation of test error over100 trials (smaller is better).
Dataset Uniform KDE KMM LogReg KLIEP uLSIF
kin-8fh 1.00(0.34) 1.22(0.52) 1.55(0.39) 1.31(0.39)◦0.95(0.31)◦1.02(0.33)
kin-8fm 1.00(0.39) 1.12(0.57) 1.84(0.58) 1.38(0.57)◦0.86(0.35)◦0.88(0.39)
kin-8nh ◦1.00(0.26) 1.09(0.20) 1.19(0.29) 1.09(0.19)◦0.99(0.22)◦1.02(0.18)
kin-8nm ◦1.00(0.30) 1.14(0.26) 1.20(0.20) 1.12(0.21)◦0.97(0.25) 1.04(0.25)
abalone ◦1.00(0.50) 1.02(0.41)◦0.91(0.38)◦0.97(0.49)◦0.97(0.69)◦0.96(0.61)
image ◦1.00(0.51) 0.98(0.45) 1.08(0.54)◦0.98(0.46)◦0.94(0.44)◦0.98(0.47)

ringnorm 1.00(0.04) 0.87(0.04)◦0.87(0.04) 0.95(0.08) 0.99(0.06) 0.91(0.08)
twonorm 1.00(0.58) 1.16(0.71)◦0.94(0.57)◦0.91(0.61)◦0.91(0.52)◦0.88(0.57)
waveform 1.00(0.45) 1.05(0.47) 0.98(0.31)◦0.93(0.32)◦0.93(0.34)◦0.92(0.32)
Average 1.00(0.38) 1.07(0.40) 1.17(0.37) 1.07(0.37) 0.95(0.35) 0.96(0.36)

Time — 0.82 3.50 3.27 3.64 1.00

Table 2: Outlier detection. Mean AUC
values over20 trials (larger is better).
Dataset uLSIF KLIEP LogReg KMM OSVM LOF KDE
banana .851 .815 .447 .578 .360 .915 .934

b-cancer .463 .480 .627 .576 .508 .488 .400
diabetes .558 .615 .599 .574 .563 .403 .425
f-solar .416 .485 .438 .494 .522 .441 .378
german .574 .572 .556 .529 .535 .559 .561
heart .659 .647 .833 .623 .681 .659 .638
image .812 .828 .600 .813 .540 .930 .916
splice .713 .748 .368 .541 .737 .778 .845
thyroid .534 .720 .745 .681 .504 .111 .256
titanic .525 .534 .602 .502 .456 .525 .461
t-norm .905 .902 .161 .439 .846 .889 .875
w-form .890 .881 .243 .477 .861 .887 .861
Average .661 .685 .530 .608 .596 .629 .623

Time 1.00 11.7 5.35 751 12.4 85.5 8.70

Outlier Detection: Here, we consider an outlier detection problem of finding irregular samples
in a dataset (“evaluation dataset”) based on another dataset (“model dataset”) that only contains
regular samples. Defining the importance over two sets of samples, we can see that the importance
values for regular samples are close to one, while those for outliers tend to be significantly deviated
from one. Thus the importance values could be used as an index of the degree of outlyingness in
this scenario. Since the evaluation dataset has wider support than the model dataset, we regard the
evaluation dataset as the training set (i.e., the denominator in the importance) and the model dataset
as the test set (i.e., the numerator in the importance). Then outliers tend to have smaller importance
values (i.e., close to zero).

We again test KMM, LogReg, KLIEP, and uLSIF for importance estimation; in addition, we test
native outlier detection methods such as theone-class support vector machine(OSVM) [7], the
local outlier factor (LOF) [3], and thekernel density estimator(KDE). The datasets provided by
IDA are used for performance evaluation. These datasets are binary classification datasets consisting
of training and test samples. We allocate all positive training samples for the “model” set, while all
positive test samples and1% of negative test samples are assigned in the “evaluation” set. Thus, we
regard the positive samples as regular and the negative samples as irregular.

The mean AUC values over20 trials as well as the computation time are summarized in Table 2,
showing that uLSIF works fairly well. KLIEP works slightly better than uLSIF, but uLSIF is com-
putationally much more efficient. LogReg overall works rather well, but it performs poorly for
some datasets and therefore the average AUC value is small. KMM and OSVM are not comparable
to uLSIF both in AUC and computation time. LOF and KDE work reasonably well in terms of
AUC, but their computational cost is high. Thus, proposed uLSIF is overall shown to work well and
computationally efficient also in outlier detection.

6 Conclusions

We proposed a new method for importance estimation that can avoid solving a substantially more
difficult task of density estimation. We are currently exploring various possible applications of
important estimation methods beyond covariate shift adaptation and outlier detection, e.g., feature
selection, conditional distribution estimation, and independent component analysis—we believe that
importance estimation could be used as a new versatile tool in machine learning.

References
[1] S. Bickel et al. Discriminative learning for differing training and test distributions. ICML 2007.
[2] S. Bickel et al. Dirichlet-enhanced spam filtering based on biased samples. NIPS 2006.
[3] M. M. Breunig et al. LOF: Identifying density-based local outliers. SIGMOD 2000.
[4] T. Hastie et al. The entire regularization path for the support vector machine. JMLR 2004.
[5] J. Huang et al. Correcting sample selection bias by unlabeled data. NIPS 2006.
[6] X. Nguyen et al. Estimating divergence functions and the likelihood ratio. NIPS 2007.
[7] B. Scḧolkopf et al. Estimating the support of a high-dimensional distribution.Neural Computation,

13(7):1443–1471, 2001.
[8] H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood

function. Journal of Statistical Planning and Inference, 90(2):227–244, 2000.
[9] M. Sugiyama et al. Direct importance estimation with model selection. NIPS 2007.

8

