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Abstract —This letter presents a Hebb-type learning agorithm for on-line linear calculation of
principal components. The proposed method is based on arecently proposed cooperative-competitive
concept, named the time-oriented hierarchica method. The agorithm performs deflation on the signal
power rather than on the signal itsdf. It will be aso shown when, or how, this algorithm can be used
as ablind signa separation agorithm. The proposed synaptic efficacy learning rule does not need the
explicit information about the vaue of the other efficacies to make individua efficacy modification.
The number of necessary global caculation circuitsisone.
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1. Introduction

Neura networks provide a way for paralld on-line computations of principa component andysis
(PCA) or principa subspace andysis (PSA) [1]. The god of PSA or PCA is to extract from a
stationary, random, zero-mean process x(i) 1 A" , with covariance matrix C=E{x(i)x(i)}, the
subspace spanned by the N principal e genvectors of C or principal vectors themsdves, respectively.
Within last years various PCA and PSA learning agorithms have been proposed and mathematically
investigated (see e.g. [1]). Most of the proposed algorithms are based on locad Hebbian learning - due
to locality it has been argued that these algorithms are biologicaly plausible. However, it is not
frequently andyzed how those agorithms could be related to the known biologicd neura
architectures or could they have multiple purposes.

In[2], biologicaly inspired PSA methods, named Modulated Hebbian (MH) and Modulated Hebb-
Oja (MHO) learning rules have been introduced. Mg or objectives for the methods' derivation were to
obtain a network which has a learning rule for individua synaptic efficacy that requires the least
possible amount of explicit information about the other synaptic efficacies, especially those related to
other neurons and to minimize the neura hardware that is necessary for implementation of the
proposed learning rule.

In this paper modification of the MHO agorithm, named the Multlpurpose Linear Component
Andyss MHO (MILICA-MHO) dgorithm is proposed and analyzed. Generdly speaking the
MILICA-MHO dgorithm performs PCA. If the input signa is prewhitened the same algorithm can
perform blind signal separation (BSS). The new agorithm is obtained by implementation of the
modified (generalized) time-oriented hierarchical method [5,6] on the MHO method. Comparing to
bigradient or related nonlinear PCA agorithms[7] which can be used in asimilar way, or Generdized
Hebbian Learning (GHA) [9] the proposed algorithm is much more based on local calculations.

2. Theory
Let x T A denote the input random variables with mean zero, and let y = W'x T A" denotes the

output, where W1 A" denote the synaptic weight matrix. In scalar form, for the n-th output, we

havey, =w,'x (n=1, ..., N), wherew, 1 A* denotes the column vector of W.



The Modulated Hebbian (Oja) (MHO) learning ruleisintroduced in [2] and andlyzed in [3, 4]. The
MH(O) rule can be derived as a gradient descent learning rule for minimization of the following cost

function:
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Asit was explained in [2-4] MHO learning algorithm represents the learning rule in which individual
synaptic efficacy modification does not require the explicit information about the other synaptic
efficacies, especially those related to other neurons. In order to obtain a new PCA dgorithm with the

same feature, we will introduce the following set of cost functions:
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It can be noticed that for every weight vector w,, we have a different learning rule which consists of
one common part and one part which is specific for the n-th output neuron. By minimization of the

proposed cost function the new learning rule for then-th weight vector can be written in theform
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where y(i) isthe learning factor, and i defines stepsin time (t). We actually have a system of equations

that have the same family (common) part of the learning rule, while dl individua (specific) parts of



the learning rules are different. While the GHA agorithm [9] for modification of synaptic vector w;,
(related to output neuron n) requires explicit information about al synaptic efficacies related to output
neurons 1 to n-1, the proposed agorithm does not need any explicit information about the synaptic
efficacies rdated to any other neurons.
Now we can state the following theorem (proof is diverted to Appendix):

Theorem 1. Columns of W evolve to span the principal subspace of C under the assumption that the
input is bounded and a is properly chosen (in asense that it is possible to achieve stable solution). If
rank[W] = N, then the space of locally-asymptotically-stable stationary points satisfy W'W = | and

columns of W will be equal to principa eigenvectors of C.

3. Numerical experiments
Here, we will examine the small scde numerica simulations results. The number of inputs was set at
K =5 and the number of output neurons was N = 3. Artificial zero-mean vectors with uncorrelated
elements were generated by the following equations:

x(1,i) =.45sin(i/2);

X(2,i) = .45((rem(i,23) -11)/9).15;

X(3,i) =.35sin(i/17.8);

X(4,i) =.145((rand(1,1) < .5)* 2-1).¥og(rand(1,1) +.5);
X(5,i) =.18 randn(1,1) ,

where rem, rand and randn represent standard MATLAB functions (rem- remainder after integer
division, rand — random number generator from uniform distribution and randn — random number
generator from normal distribution). The input signal is constructed as s = 0.47*mix*x, where the
mixing matrix mix is defined as mix = -.5 + rand(K).

In Fig.1 cosine of the angles between column vectors of matrix W and numerically calculated
eigenvectors of the input signad covariance matrix were used as illustration of the agorithm
efficiency. The learning rate was chosen constant, g = 3.45, for the first 15000 iterations, and then
was set at g = 0.115. The individual part was taken as 0=0.5. The initial value for matrix W was

sdected as W,,;;=-.5+rand(5,3).



In Fig. 2 we can see that proposed method can be efficiently used for extraction of the deterministic
input signals (under the assumption that mixing matrix is orthogona). The first column in Fig. 2
represents origina signas, the second column represents the input signals obtained from the original
signas by multiplication with the orthonormal matrix mix, and the last column represents the output

obtained by implementation of MILICA-MHO.
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Fig. 1. Cosine of angles between column vectors of W and three principad egenvectors of input

covariance matrix versus the number of iterations
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Fig. 2. Blind signal extraction of deterministic components (mixing matrix is orthonormal)



4. Can we use the proposed method for Blind Signal Separation?
In order to show how the agorithm proposed in this paper can be used as a BSS agorithm in some
cases and in order to explain results obtained in Fig. 2, we will consider the smplest casek =n = 2.
Also, we will assume that the input data is prewhitened. Then, the MILICA-MHO algorithm can be

represented by the following equations:
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that are obtained by minimization of the following two cost functions
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We can see that both cost functions contain a part which is used for symmetric orthogonalization
while J;""P contains aso an additiona part which directs the solution in some particular direction.
Since we know that the input data is priwhitened and that the final solution will be an orthogonal

matrix, we can approximately rewrite (5) as

L0 (6)
JMHPCA(W) JMHPSQ(VV)_'_aE ga yk y]_ : y
18k=1 a b
wongyy - el B8 2. & 20T
J W) = Bréad X-avi.y
lak=1 =l g b
I
or
IMHPCAGN Y 5, JMHPSA(\N)+aE(y§) (7)
MHPSA lae°2 2 g 20 5
P W)=Eiga x- @ viLy
feka j=1 zb

since, in the vicinity of the solution it holds
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So, if a most one of theinput signalsis supergaussian our method will perform signal separation from
their prewhitened mixture, since the agorithm (7) is going to minimize the 4" moment of the output
[7]. This can be easily extended to dimensions higher than 2.

If al signals, except one, are supergaussian, then the agorithm can perform BSS, given that the
output is calculated asy, = - W, 'X (n=1,...,N), wherew, 1 AK denotes the column vector of W. This

can aso be extended to higher dimensions.

5. Conclusion
In this letter, we have proposed a novel PCA/BSS agorithm based on modification of the PSA
MH(O) agorithm. The agorithm employs a deflation technique that is implemented on the signd
power, which could be seen as a more naturd solution (especiadly in the PCA case). Locality of
caculations could be seen as a desirable property for possible implementation in parallel hardware. If
we know in advance the number of supergaussian and subgaussian signds, the adgorithm can be easily
adjusted to perform BSS of any kind of signds. If it is not the case, the dgorithm and network
gtructure have to be additionally modified. Theory and simulations indicate that the algorithm works
well.

Appendix
Proof of Theorem 1:

Equation (3) can be written in the following form
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where C(i) = x(i)x(i)", and 6(i) is defined as
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Differential counterpart of this difference equation can be written in theform [8, 9]
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It is not difficult to conclude that, at stationary points, equation (11) represents system of equations
for calculations of eigenvector of matrices F,,. It is possible to prove that al matrices F,, have same
eigenvectors as matrix C=E(xx") — it can be done by straight caculaion if we use empirica
expectations and than show that matrices F, commute with matrix C. Also, it can easily be shown that
al matrices F,, are symmetric — they represent expectation of the symmetric matrix multiplied by
some scaar. Since F,, are red and symmetric then, if matrix W is of maximum rank for al i (for al
timet), it iseasy to see that matrix W is an orthonorma matrix.

In the analysis that follows, stable points of equation (11) will be investigated. In order to prove
that origina agorithm (9) will converge toward the same stable points, it should be proved that

outputs are bounded and that (9) visitsinfinitely often, amost surely, a compact subset of the domain



of attraction of the asymptoticaly stable solution of (11) [8]. By implementation of the same method
that was proposed in [4], it can be shown that synaptic vectors have bounded norms under some
reasonable assumptions. This, together with assumptions of the boundness of the input signals, means
that outputs are bounded. However, it must be said that proving that (9) visitsinfinitely often, amost
surely, a compact subset of the domain of attraction of the asymptotically stable solution of (11) is
very difficult. Such kind of proof does not exist for many of the known agorithms. Based on
experience, generdly can be said that if the desired limit of the discrete agorithm is not an
asymptoticaly stable point of the averaged differentid equation, then the convergence will not take
place and the behavior of the discrete agorithm is not good [4]. Here will be said that in dl
smulaionsin which (9) converged it had the same stable points as (11).

Now, wewill rewrite the equation (11) in thefollowing form

dw (14)
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Without a loss of generdlity, we can assume that coordinate system coincides with eigenvectors of
matrix C. Then, the input data is decorrdated and covariance matrix of input datais diagond. In that
case anadysis that was carried on in [4] could be applied. From [4, Theorem 4.3] we know that if W
spans any subspace defined by some of the eigenvectors of matrix C then family part of the learning

eguations (11), denoted by dwf/dt, is zero, so equation (14) can be written as

dw, _ dwi (15)

dt dt

L=Fi,w,- w,Qi, n=12,...,N.

In the case n=1 equation (15) represents the equation for calculation of the principal eigenvector of
matrix C (having in mind [4]). Then, for n=2, this equation represents the equation for calculation of
the eigenvector which is orthonormal to the first principal eigenvector wy of C (W is an orthonormal
matrix) and corresponds to the maximum possible eignvaue. So, it represents eqution for calculation
of eigenvector that corresponds to the second largest eigenval ue of the matrix C. Thiscan be seen asa

deflation procedure in which the data are not back projected and then subtracted from the origina



data, but rather the energy of input signa is decreased by the amount that corresponds to the energy
contained in the direction of the principa component. So, for n > 2 we can continue the same way of
reasoning and conclude that w, represents the eigenvector of matrix C which corresponds to n-th
biggest eigenvalue of the matrix C. This concludes the proof. Proper range of the parameter a can be

assessed trough stability analysis.
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