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Abstract –This letter presents a Hebb-type learning algorithm for on-line linear calculation of 

principal components. The proposed method is based on a recently proposed cooperative-competitive 

concept, named the time-oriented hierarchical method. The algorithm performs deflation on the signal 

power rather than on the signal itself. It will be also shown when, or how, this algorithm can be used 

as a blind signal separation algorithm. The proposed synaptic efficacy learning rule does not need the 

explicit information about the value of the other efficacies to make individual efficacy modification. 

The number of necessary global calculation circuits is one.  
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1. Introduction 
 
Neural networks provide a way for parallel on-line computations of principal component analysis 

(PCA) or principal subspace analysis (PSA) [1]. The goal of PSA or PCA is to extract from a 

stationary, random, zero-mean process x(i) ∈ ℜK , with covariance matrix C=E{x(i)x(i)T}, the 

subspace spanned by the N principal eigenvectors of C or principal vectors themselves, respectively. 

Within last years various PCA and PSA learning algorithms have been proposed and mathematically 

investigated (see e.g. [1]). Most of the proposed algorithms are based on local Hebbian learning - due 

to locality it has been argued that these algorithms are biologically plausible. However, it is not 

frequently analyzed how those algorithms could be related to the known biological neural 

architectures or could they have multiple purposes.  

In [2], biologically inspired PSA methods, named Modulated Hebbian (MH) and Modulated Hebb-

Oja (MHO) learning rules have been introduced. Major objectives for the methods’ derivation were to 

obtain a network which has a learning rule for individual synaptic efficacy that requires the least 

possible amount of explicit information about the other synaptic efficacies, especially those related to 

other neurons and to minimize the neural hardware that is necessary for implementation of the 

proposed learning rule. 

 In this paper modification of the MHO algorithm, named the MultIpurpose LInear Component 

Analysis MHO (MILICA-MHO) algorithm is proposed and analyzed. Generally speaking the 

MILICA-MHO algorithm performs PCA. If the input signal is prewhitened the same algorithm can 

perform blind signal separation (BSS). The new algorithm is obtained by implementation of the 

modified (generalized) time-oriented hierarchical method [5,6] on the MHO method. Comparing to 

bigradient or related nonlinear PCA algorithms [7] which can be used in a similar way, or Generalized 

Hebbian Learning (GHA) [9] the proposed algorithm is much more based on local calculations. 

 2. Theory 

Let x ∈ ℜK denote the input random variables with mean zero, and let y = WTx ∈ ℜN denotes the 

output, where W ∈ ℜKxN denote the synaptic weight matrix. In scalar form, for the n-th output, we 

have yn =wn
Tx (n = 1, …, N), where wn ∈ ℜK denotes the column vector of W.  



The Modulated Hebbian (Oja) (MHO) learning rule is introduced in [2] and analyzed in [3, 4]. The 

MH(O) rule can be derived as a gradient descent learning rule for minimization of the following cost 

function: 
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or, under assumption WTW=I (I is identity matrix), in compact notation  
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As it was explained in [2-4] MHO learning algorithm represents the learning rule in which individual 

synaptic efficacy modification does not require the explicit information about the other synaptic 

efficacies, especially those related to other neurons. In order to obtain a new PCA algorithm with the 

same feature, we will introduce the following set of cost functions: 
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It can be noticed that for every weight vector wn we have a different learning rule which consists of 

one common part and one part which is specific for the n-th output neuron. By minimization of the 

proposed cost function the new learning rule for the n-th weight vector can be written in the form 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ,,..,1,)()(

)()()1(

1

222

222

Nniyiiyiiyiif

iiiyiiyiiii

n

j
jnnn

nnnnn

=












−−+

−−+=+

∑
=

xwx

yxwxww

γα

γ

 

(3) 

where γ(i) is the learning factor, and i defines steps in time (t). We actually have a system of equations 

that have the same family (common) part of the learning rule, while all individual (specific) parts of 



the learning rules are different. While the GHA algorithm [9] for modification of synaptic vector wn 

(related to output neuron n) requires explicit information about all synaptic efficacies related to output 

neurons 1 to n-1, the proposed algorithm does not need any explicit information about the synaptic 

efficacies related to any other neurons.  

Now we can state the following theorem (proof is diverted to Appendix): 

Theorem 1: Columns of W evolve to span the principal subspace of C under the assumption that the 

input is bounded and α is properly chosen (in a sense that it is possible to achieve stable solution). If 

rank[W] = N, then the space of locally-asymptotically-stable stationary points satisfy WTW = I and 

columns of W will be equal to principal eigenvectors of C.  

 

3. Numerical experiments 

Here, we will examine the small scale numerical simulations results. The number of inputs was set at 

K = 5 and the number of output neurons was N = 3. Artificial zero-mean vectors with uncorrelated 

elements were generated by the following equations: 
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where rem, rand and randn represent standard MATLAB functions (rem- remainder after integer 

division, rand – random number generator from uniform distribution and randn – random number 

generator from normal distribution). The input signal is constructed as s = 0.47*mix*x, where the 

mixing matrix mix is defined as mix = -.5 + rand(K).  

In Fig.1 cosine of the angles between column vectors of matrix W and numerically calculated 

eigenvectors of the input signal covariance matrix were used as illustration of the algorithm 

efficiency. The learning rate was chosen constant, γi = 3.45, for the first 15000 iterations, and then 

was set at γi = 0.115. The individual part was taken as α=0.5. The initial value for matrix W was 

selected as Winit=-.5+rand(5,3).  



In Fig. 2 we can see that proposed method can be efficiently used for extraction of the deterministic 

input signals (under the assumption that mixing matrix is orthogonal). The first column in Fig. 2 

represents original signals, the second column represents the input signals obtained from the original 

signals by multiplication with the orthonormal matrix mix, and the last column represents the output 

obtained by implementation of MILICA-MHO. 
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Fig. 1.  Cosine of angles between column vectors of W and three principal eigenvectors of input 

covariance matrix versus the number of iterations 
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Fig. 2.  Blind signal extraction of deterministic components (mixing matrix is orthonormal) 

 



 4. Can we use the proposed method for Blind Signal Separation? 

In order to show how the algorithm proposed in this paper can be used as a BSS algorithm in some 

cases and in order to explain results obtained in Fig. 2, we will consider the simplest case k = n = 2. 

Also, we will assume that the input data is prewhitened. Then, the MILICA-MHO algorithm can be 

represented by the following equations: 
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that are obtained by minimization of the following two cost functions 
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We can see that both cost functions contain a part which is used for symmetric orthogonalization 

while J1
MHPCA contains also an additional part which directs the solution in some particular direction. 

Since we know that the input data is priwhitened and that the final solution will be an orthogonal 

matrix, we can approximately rewrite (5) as 

.E)(

E)()(

2
2

1

2
2

1

2
2

2
2
1

2

1

2
21






























−=























−+≈

∑∑

∑

==

=

j
j

k
k

MHPSA

k
k

MHPSAMHPCA

yxJ

yyJJ

W

WW α

 

(6) 

or 

( )

.E)(

E)()(
2

2

1

2
2

1

2
2

4
221






























−=

+≈

∑∑
== j

j
k

k
MHPSA

MHPSAMHPCA

yxJ

yJJ

W

WW α

 

(7) 

since, in the vicinity of the solution it holds 
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So, if at most one of the input signals is supergaussian our method will perform signal separation from 

their prewhitened mixture, since the algorithm (7) is going to minimize the 4th moment of the output 

[7]. This can be easily extended to dimensions higher than 2. 

If all signals, except one, are supergaussian, then the algorithm can perform BSS, given that the 

output is calculated as yn = - wn
Tx (n = 1, …, N), where wn ∈ ℜK denotes the column vector of W. This  

can also be extended to higher dimensions.  

 

 5. Conclusion 

In this letter, we have proposed a novel PCA/BSS algorithm based on modification of the PSA 

MH(O) algorithm. The algorithm employs a deflation technique that is implemented on the signal 

power, which could be seen as a more natural solution (especially in the PCA case). Locality of 

calculations could be seen as a desirable property for possible implementation in parallel hardware. If 

we know in advance the number of supergaussian and subgaussian signals, the algorithm can be easily 

adjusted to perform BSS of any kind of signals. If it is not the case, the algorithm and network 

structure have to be additionally modified. Theory and simulations indicate that the algorithm works 

well. 

 Appendix 

Proof of Theorem 1: 

Equation (3) can be written in the following form 
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where ,)()()( Tiii xxC =  and θ(i) is defined as 
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Differential counterpart of this difference equation can be written in the form [8, 9] 

 

where Fn is defined as 
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where expectation is over x and Θn is defined as 
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It is not difficult to conclude that, at stationary points, equation (11) represents system of equations 

for calculations of eigenvector of matrices Fn. It is possible to prove that all matrices Fn have same 

eigenvectors as matrix C=E(xxT) – it can be done by straight calculation if we use empirical  

expectations and than show that matrices Fn commute with matrix C. Also, it can easily be shown that 

all matrices Fn are symmetric – they represent expectation of the symmetric matrix multiplied by 

some scalar. Since Fn are real and symmetric then, if matrix W is of maximum rank for all i (for all 

time t), it is easy to see that matrix W is an orthonormal matrix. 

In the analysis that follows, stable points of equation (11) will be investigated.  In order to prove 

that original algorithm (9) will converge toward the same stable points, it should be proved that 

outputs are bounded and that (9) visits infinitely often, almost surely, a compact subset of the domain 

Nn
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=Θ−= wwF
w , (11) 



of attraction of the asymptotically stable solution of (11) [8]. By implementation of the same method 

that was proposed in [4], it can be shown that synaptic vectors have bounded norms under some 

reasonable assumptions. This, together with assumptions of the boundness of the input signals, means 

that outputs are bounded. However, it must be said that proving that (9) visits infinitely often, almost 

surely, a compact subset of the domain of attraction of the asymptotically stable solution of (11) is 

very difficult. Such kind of proof does not exist for many of the known algorithms. Based on 

experience, generally can be said that if the desired limit of the discrete algorithm is not an 

asymptotically stable point of the averaged differential equation, then the convergence will not take 

place and the behavior of the discrete algorithm is not good [4]. Here will be said that in all 

simulations in which (9) converged it had the same stable points as (11).   

Now, we will rewrite the equation (11) in the following form 
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 Without a loss of generality, we can assume that coordinate system coincides with eigenvectors of 

matrix C. Then, the input data is decorrelated and covariance matrix of input data is diagonal. In that 

case analysis that was carried on in [4] could be applied. From [4, Theorem 4.3] we know that if W 

spans any subspace defined by some of the eigenvectors of matrix C then family part of the learning 

equations (11), denoted by dwfn/dt, is zero, so equation (14) can be written as 

Nni
tt nnnn
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d
=Θ−== wwFiwiw . (15) 

In the case n=1 equation (15) represents the equation for calculation of the principal eigenvector of 

matrix C (having in mind [4]). Then, for n=2, this equation represents the equation for calculation of 

the eigenvector which is orthonormal to the first principal eigenvector w1 of C (W is an orthonormal 

matrix) and corresponds to the maximum possible eignvalue. So, it represents eqution for calculation 

of eigenvector that corresponds to the second largest eigenvalue of the matrix C. This can be seen as a 

deflation procedure in which the data are not back projected and then subtracted from the original 



data, but rather the energy of input signal is decreased by the amount that corresponds to the energy 

contained in the direction of the principal component. So, for n > 2 we can continue the same way of 

reasoning and conclude that wn represents the eigenvector of matrix C which corresponds to n-th 

biggest eigenvalue of the matrix C. This concludes the proof. Proper range of the parameter α can be 

assessed trough stability analysis. 
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