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Abstract

A situation where training and test samples follow different input distributions is
called covariate shift. Under covariate shift, standard learning methods such as max-
imum likelihood estimation are no longer consistent—weighted variants according
to the ratio of test and training input densities are consistent. Therefore, accurately
estimating the density ratio, called the importance, is one of the key issues in covari-
ate shift adaptation. A naive approach to this task is to first estimate training and
test input densities separately and then estimate the importance by taking the ratio
of the estimated densities. However, this naive approach tends to perform poorly
since density estimation is a hard task particularly in high dimensional cases. In
this paper, we propose a direct importance estimation method that does not in-
volve density estimation. Our method is equipped with a natural cross validation
procedure and hence tuning parameters such as the kernel width can be objectively
optimized. Furthermore, we give rigorous mathematical proofs for the convergence
of the proposed algorithm. Simulations illustrate the usefulness of our approach.

Keywords

Covariate shift, Importance sampling, Model misspecification, Kullback-Leibler di-
vergence, Likelihood cross validation.

1 Introduction

A common assumption in supervised learning is that training and test samples follow the
same distribution. However, this basic assumption is often violated in practice and then
standard machine learning methods do not work as desired. A situation where the input
distribution P (x) is different in the training and test phases but the conditional distribu-
tion of output values, P (y|x), remains unchanged is called covariate shift (Shimodaira,
2000). In many real-world applications such as robot control (Sutton and Barto, 1998;
Shelton, 2001; Hachiya et al., 2008), bioinformatics (Baldi and Brunak, 1998; Borgwardt
et al., 2006), spam filtering (Bickel and Scheffer, 2007), brain-computer interfacing (Wol-
paw et al., 2002; Sugiyama et al., 2007), or econometrics (Heckman, 1979), covariate shift
is conceivable and thus learning under covariate shift is gathering a lot of attention these
days.

The influence of covariate shift could be alleviated by weighting the log likelihood
terms according to the importance (Shimodaira, 2000):

w(x) :=
pte(x)

ptr(x)
,

where pte(x) and ptr(x) are test and training input densities. Since the importance is
usually unknown, the key issue of covariate shift adaptation is how to accurately estimate
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the importance1.
A naive approach to importance estimation would be to first estimate the training

and test densities separately from training and test input samples, and then estimate the
importance by taking the ratio of the estimated densities. However, density estimation is
known to be a hard problem particularly in high-dimensional cases (Härdle et al., 2004).
Therefore, this naive approach may not be effective—directly estimating the importance
without estimating the densities would be more promising.

Following this spirit, the kernel mean matching (KMM) method has been proposed
recently (Huang et al., 2007), which directly gives importance estimates without going
through density estimation. KMM is shown to work well, given that tuning parameters
such as the kernel width are chosen appropriately. Intuitively, model selection of impor-
tance estimation algorithms (such as KMM) is straightforward by cross validation (CV)
over the performance of subsequent learning algorithms. However, this is highly unreliable
since the ordinary CV score is heavily biased under covariate shift—for unbiased estima-
tion of the prediction performance of subsequent learning algorithms, the CV procedure
itself needs to be importance-weighted (Sugiyama et al., 2007). Since the importance
weight has to have been fixed when model selection is carried out by importance weighted
CV, it can not be used for model selection of importance estimation algorithms2.

The above fact implies that model selection of importance estimation algorithms
should be performed within the importance estimation step in an unsupervised manner.
However, since KMM can only estimate the values of the importance at training input
points, it can not be directly applied in the CV framework; an out-of-sample extension is
needed, but this seems to be an open research issue currently.

In this paper, we propose a new importance estimation method which can overcome
the above problems, i.e., the proposed method directly estimates the importance without
density estimation and is equipped with a natural model selection procedure. Our basic
idea is to find an importance estimate ŵ(x) such that the Kullback-Leibler divergence
from the true test input density pte(x) to its estimate p̂te(x) = ŵ(x)ptr(x) is minimized.
We propose an algorithm that can carry out this minimization without explicitly mod-
eling ptr(x) and pte(x). We call the proposed method the Kullback-Leibler Importance
Estimation Procedure (KLIEP). The optimization problem involved in KLIEP is convex,

1Covariate shift matters in parameter learning only when the model used for function learning is
misspecified (i.e., the model is so simple that the true learning target function can not be expressed)
(Shimodaira, 2000)—when the model is correctly (or overly) specified, ordinary maximum likelihood
estimation is still consistent. Following this fact, there is a criticism that importance weighting is not
needed; just the use of a complex enough model can settle the problem. However, too complex models
result in huge variance and thus we practically need to choose a complex enough but not too complex
model. For choosing such an appropriate model, we usually use a model selection technique such as cross
validation (CV). However, the ordinary CV score is heavily biased due to covariate shift and we also need
to importance-weight the CV score (or any other model selection criteria) for unbiasedness (Shimodaira,
2000; Sugiyama and Müller, 2005; Sugiyama et al., 2007). For this reason, estimating the importance is
indispensable when covariate shift occurs.

2Once the importance weight has been fixed, importance weighted CV can be used for model selection
of subsequent learning algorithms.
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so the unique global solution can be obtained. Furthermore, the solution tends to be
sparse, which contributes to reducing the computational cost in the test phase.

Since KLIEP is based on the minimization of the Kullback-Leibler divergence, its
model selection can be naturally carried out through a variant of likelihood CV, which is
a standard model selection technique in density estimation (Härdle et al., 2004). A key
advantage of our CV procedure is that, not the training samples, but the test input samples
are cross-validated. This highly contributes to improving the model selection accuracy
when the number of training samples is limited but test input samples are abundantly
available.

The simulation studies show that KLIEP tends to outperform existing approaches in
importance estimation including the logistic regression based method (Bickel et al., 2007),
and it contributes to improving the prediction performance in covariate shift scenarios.

2 New Importance Estimation Method

In this section, we propose a new importance estimation method.

2.1 Formulation and Notation

Let D ⊂ (Rd) be the input domain and suppose we are given i.i.d. training input samples
{xtr

i }ntr
i=1 from a training input distribution with density ptr(x) and i.i.d. test input samples

{xte
j }nte

j=1 from a test input distribution with density pte(x). We assume that ptr(x) > 0
for all x ∈ D. The goal of this paper is to develop a method of estimating the importance
w(x) from {xtr

i }ntr
i=1 and {xte

j }nte
j=1:

3

w(x) :=
pte(x)

ptr(x)
.

Our key restriction is that we avoid estimating densities pte(x) and ptr(x) when estimating
the importance w(x).

2.2 Kullback-Leibler Importance Estimation Procedure
(KLIEP)

Let us model the importance w(x) by the following linear model:

ŵ(x) =
b∑

ℓ=1

αℓφℓ(x), (1)

3Importance estimation is a pre-processing step of supervised learning tasks where training output
samples {ytr

i }ntr
i=1 at the training input points {xtr

i }
ntr
i=1 are also available (Shimodaira, 2000; Sugiyama

and Müller, 2005; Huang et al., 2007; Sugiyama et al., 2007). However, we do not use {ytr
i }ntr

i=1 in the
importance estimation step since they are irrelevant to the importance.
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where {αℓ}bℓ=1 are parameters to be learned from data samples and {φℓ(x)}bℓ=1 are basis
functions such that

φℓ(x) ≥ 0 for all x ∈ D and for ℓ = 1, 2, . . . , b.

Note that b and {φℓ(x)}bℓ=1 could be dependent on the samples {xtr
i }ntr

i=1 and {xte
j }nte

j=1,

i.e., kernel models are also allowed—we explain how the basis functions {φℓ(x)}bℓ=1 are
chosen in Section 2.3.

Using the model ŵ(x), we can estimate the test input density pte(x) by

p̂te(x) = ŵ(x)ptr(x).

We determine the parameters {αℓ}bℓ=1 in the model (1) so that the Kullback-Leibler di-
vergence from pte(x) to p̂te(x) is minimized4:

KL[pte(x)∥p̂te(x)] =

∫
D
pte(x) log

pte(x)

ŵ(x)ptr(x)
dx

=

∫
D
pte(x) log

pte(x)

ptr(x)
dx−

∫
D
pte(x) log ŵ(x)dx. (2)

Since the first term in Eq.(2) is independent of {αℓ}bℓ=1, we ignore it and focus on the
second term. We denote it by J :

J :=

∫
D
pte(x) log ŵ(x)dx (3)

≈ 1

nte

nte∑
j=1

log ŵ(xte
j ) =

1

nte

nte∑
j=1

log

(
b∑

ℓ=1

αℓφℓ(x
te
j )

)
,

where the empirical approximation based on the test input samples {xte
j }nte

j=1 is used from
the first line to the second line above. This is our objective function to be maximized
with respect to the parameters {αℓ}bℓ=1, which is concave (Boyd and Vandenberghe, 2004).
Note that the above objective function only involves the test input samples {xte

j }nte
j=1, i.e.,

we did not use the training input samples {xtr
i }ntr

i=1 yet. As shown below, {xtr
i }ntr

i=1 will be
used in the constraint.

ŵ(x) is an estimate of the importance w(x) which is non-negative by definition. There-
fore, it is natural to impose ŵ(x) ≥ 0 for all x ∈ D, which can be achieved by restricting

αℓ ≥ 0 for ℓ = 1, 2, . . . , b.

4One may also consider an alternative scenario where the inverse importance w−1(x) is parame-
terized and the parameters are learned so that the Kullback-Leibler divergence from ptr(x) to p̂tr(x)
(= ŵ−1(x)pte(x)) is minimized. We may also consider using KL[p̂te(x)∥pte(x)]—however, this involves
the model ŵ(x) in a more complex manner and does not seem to result in a simple optimization problem.
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In addition to the non-negativity, ŵ(x) should be properly normalized since p̂te(x) (=
ŵ(x)ptr(x)) is a probability density function:

1 =

∫
D
p̂te(x)dx =

∫
D
ŵ(x)ptr(x)dx (4)

≈ 1

ntr

ntr∑
i=1

ŵ(xtr
i ) =

1

ntr

ntr∑
i=1

b∑
ℓ=1

αℓφℓ(x
tr
i ),

where the empirical approximation based on the training input samples {xtr
i }ntr

i=1 is used
from the first line to the second line above.

Now our optimization criterion is summarized as follows.

maximize
{αℓ}b

ℓ=1

[
nte∑
j=1

log

(
b∑

ℓ=1

αℓφℓ(x
te
j )

)]

subject to
ntr∑
i=1

b∑
ℓ=1

αℓφℓ(x
tr
i ) = ntr and α1, α2, . . . , αb ≥ 0.

This is a convex optimization problem and the global solution can be obtained, e.g., by
simply performing gradient ascent and feasibility satisfaction iteratively5. A pseudo code
is described in Figure 1(a). Note that the solution {α̂ℓ}bℓ=1 tends to be sparse (Boyd
and Vandenberghe, 2004), which contributes to reducing the computational cost in the
test phase. We refer to the above method as Kullback-Leibler Importance Estimation
Procedure (KLIEP).

2.3 Model Selection by Likelihood Cross Validation

The performance of KLIEP depends on the choice of basis functions {φℓ(x)}bℓ=1. Here we
explain how they can be appropriately chosen from data samples.

Since KLIEP is based on the maximization of the score J (see Eq.(3)), it would
be natural to select the model such that J is maximized. The expectation over pte(x)
involved in J can be numerically approximated by likelihood cross validation (LCV) as
follows: First, divide the test samples {xte

j }nte
j=1 into R disjoint subsets {X te

r }Rr=1. Then
obtain an importance estimate ŵr(x) from {X te

j }j ̸=r and approximate the score J using
X te

r as

Ĵr :=
1

|X te
r |

∑
x∈X te

r

log ŵr(x).

5If necessary, we may regularize the solution, e.g., by adding a penalty term (say,
∑b

ℓ=1 α2
ℓ ) to the

objective function or by imposing an upper bound on the solution. The normalization constraint (4) may
also be weakened by allowing a small deviation. These modification is possible without sacrificing the
convexity.
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Input: m = {φℓ(x)}bℓ=1, {xtr
i }ntr

i=1, and {xte
j }nte

j=1

Output: ŵ(x)

Aj,ℓ ←− φℓ(x
te
j ) for j = 1, 2, . . . , nte and ℓ = 1, 2, . . . , b;

bℓ ←− 1
ntr

∑ntr

i=1 φℓ(x
tr
i ) for j = 1, 2, . . . , nte;

Initialize α (> 0) and ε (0 < ε≪ 1);
Repeat until convergence

α←− α + εA⊤(1./Aα); % Gradient ascent

α←− α + (1− b⊤α)b/(b⊤b); % Constraint satisfaction
α←− max(0,α); % Constraint satisfaction

α←− α/(b⊤α); % Constraint satisfaction
end

ŵ(x)←−
∑b

ℓ=1 αℓφℓ(x);

(a) KLIEP main code

Input: M = {mk | mk = {φ(k)
ℓ (x)}b(k)

ℓ=1}, {xtr
i }ntr

i=1, and {xte
j }nte

j=1

Output: ŵ(x)

Split {xte
j }nte

j=1 into R disjoint subsets {X te
r }Rr=1;

for each model m ∈M
for each split r = 1, 2, . . . , R

ŵr(x)←− KLIEP(m, {xtr
i }ntr

i=1, {X te
j }j ̸=r);

Ĵr(m)←− 1
|X te

r |
∑
x∈X te

r
log ŵr(x);

end

Ĵ(m)←− 1
R

∑R
r=1 Ĵr(m);

end

m̂←− argmaxm∈M Ĵ(m);
ŵ(x)←− KLIEP(m̂, {xtr

i }ntr
i=1, {xte

j }nte
j=1);

(b) Model selection by LCV

Figure 1: The KLIEP algorithm in pseudo code. ‘./’ indicates the element-wise division
and ⊤ denotes the transpose. Inequalities and the ‘max’ operation for vectors are applied
element-wise. A MATLAB implementation of the KLIEP algorithm is available from
‘http://sugiyama-www.cs.titech.ac.jp/~sugi/software/KLIEP’.

We repeat this procedure for r = 1, 2, . . . , R, compute the average of Ĵr over all r, and
use the average Ĵ as an estimate of J :

Ĵ :=
1

R

R∑
r=1

Ĵr. (5)

For model selection, we compute Ĵ for all model candidates (the basis functions

{φℓ(x)}bℓ=1 in the current setting) and choose the one that minimizes Ĵ . A pseudo code
of the LCV procedure is summarized in Figure 1(b).
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One of the potential limitations of CV in general is that it is not reliable in small sample
cases since data splitting by CV further reduces the sample size. On the other hand, in
our CV procedure, the data splitting is performed only over the test input samples, not
over the training samples. Therefore, even when the number of training samples is small,
our CV procedure does not suffer from the small sample problem as long as a large number
of test input samples are available.

A good model may be chosen by the above CV procedure, given that a set of promising
model candidates is prepared. As model candidates, we propose using a Gaussian kernel
model centered at the test input points {xte

j }nte
j=1, i.e.,

ŵ(x) =
nte∑
ℓ=1

αℓKσ(x,xte
ℓ ),

where Kσ(x,x′) is the Gaussian kernel with kernel width σ:

Kσ(x,x′) := exp

(
−∥x− x′∥2

2σ2

)
. (6)

The reason why we chose the test input points {xte
j }nte

j=1 as the Gaussian centers, not
the training input points {xtr

i }ntr
i=1, is as follows. By definition, the importance w(x) tends

to take large values if the training input density ptr(x) is small and the test input density
pte(x) is large; conversely, w(x) tends to be small (i.e., close to zero) if ptr(x) is large
and pte(x) is small. When a function is approximated by a Gaussian kernel model, many
kernels may be needed in the region where the output of the target function is large;
on the other hand, only a small number of kernels would be enough in the region where
the output of the target function is close to zero. Following this heuristic, we decided to
allocate many kernels at high test input density regions, which can be achieved by setting
the Gaussian centers at the test input points {xte

j }nte
j=1.

Alternatively, we may locate (ntr+nte) Gaussian kernels at both {xtr
i }ntr

i=1 and {xte
j }nte

j=1.
However, in our preliminary experiments, this did not further improve the performance,
but slightly increased the computational cost. When nte is very large, just using all the test
input points {xte

j }nte
j=1 as Gaussian centers is already computationally rather demanding.

To ease this problem, we practically propose using a subset of {xte
j }nte

j=1 as Gaussian centers
for computational efficiency, i.e.,

ŵ(x) =
b∑

ℓ=1

αℓKσ(x, cℓ), (7)

where cℓ is a template point randomly chosen from {xte
j }nte

j=1 and b (≤ nte) is a prefixed
number.

3 Theoretical Analyses

In this section, we investigate the convergence properties of the KLIEP algorithm. The
theoretical statements we prove in this section are roughly summarized as follows.
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• When a non-parametric model (e.g., kernel basis functions centered at test samples)
is used for importance estimation, KLIEP converges to the optimal solution with
convergence rate slightly slower than Op(n

− 1
2 ) under n = ntr = nte (Theorem 1 and

Theorem 2).

• When a fixed set of basis functions is used for importance estimation, KLIEP con-
verges to the optimal solution with convergence rate Op(n

− 1
2 ). Furthermore, KLIEP

has asymptotic normality around the optimal solution (Theorem 3 and Theorem 4).

3.1 Mathematical Preliminaries

Since we give rigorous mathematical convergence proofs, we first slightly change our no-
tation for clearer mathematical exposition.

Below, we assume that the numbers of training and test samples are the same, i.e.,

n = nte = ntr.

We note that this assumption is just for simplicity; without this assumption, the conver-
gence rate is solely determined by the sample size with the slower rate.

For arbitrary measure P̃ and P̃ -integrable function f , we express its “expectation” as

P̃ f :=

∫
fdP̃ .

Let P and Q be the probability measures which generate test and training samples,
respectively. In a similar fashion, we define the empirical distributions of test and training
samples by Pn and Qn, i.e.,

Pnf =
1

n

n∑
j=1

f(xte
j ), Qnf =

1

n

n∑
i=1

f(xtr
i ).

The set of basis functions is denoted by

F := {φθ | θ ∈ Θ},

where Θ is some parameter or index set. The set of basis functions at n samples are
denoted using Θn ⊆ Θ by

Fn := {φθ | θ ∈ Θn} ⊂ F ,

which can behave stochastically. The set of finite linear combinations of F with positive
coefficients and its bounded subset are denoted by

G :=

{∑
l

αlφθl

∣∣∣αl ≥ 0, φθl
∈ F

}
,

GM := {g ∈ G | ∥g∥∞ ≤M} ,
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and their subsets at n samples are denoted by

Gn :=

{∑
l

αlφθl

∣∣∣αl ≥ 0, φθl
∈ Fn

}
⊂ G,

GM
n := {g ∈ Gn | ∥g∥∞ ≤M} ⊂ GM .

Let Ĝn be the feasible set of KLIEP:

Ĝn := {g ∈ Gn | Qng = 1}.

Under the notations described above, the solution ĝn of (generalized) KLIEP is given as
follows:

ĝn := arg max
g∈Ĝn

Pn log (g) .

For simplicity, we assume the optimal solution is uniquely determined. In order to derive
the convergence rates of KLIEP, we make the following assumptions.
Assumption 1

1. P and Q are mutually absolutely continuous and have the following property:

0 < η0 ≤
dP

dQ
≤ η1

on the support of P and Q. Let g0 denote

g0 :=
dP

dQ
.

2. φθ ≥ 0 (∀φθ ∈ F), and ∃ϵ0, ξ0 > 0 such that

Qφθ ≥ ϵ0, ∥φθ∥∞ ≤ ξ0, (∀φθ ∈ F).

3. For some constants 0 < γ < 2 and K,

sup
Q̃

logN(ϵ,GM , L2(Q̃)) ≤ K

(
M

ϵ

)γ

, (8)

where the supremum is taken over all finitely discrete probability measures Q̃, or

logN[](ϵ,GM , L2(Q)) ≤ K

(
M

ϵ

)γ

. (9)

N(ϵ,F , d) and N[](ϵ,F , d) are the ϵ-covering number and the ϵ-bracketing number
of F with norm d, respectively (van der Vaart and Wellner, 1996).
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We define the (generalized) Hellinger distance with respect to Q as

hQ(g, g′) :=

(∫
(
√
g −

√
g′)2dQ

)1/2

,

where g and g′ are non-negative measurable functions (not necessarily probability den-
sities). The lower bound of g0 appeared in Assumption 1.1 will be used to ensure the
existence of a Lipschitz continuous function that bounds the Hellinger distance from the
true. The bound of g0 is needed only on the support of P and Q. Assumption 1.3 con-
trols the complexity of the model. By this complexity assumption, we can bound the tail
probability of the difference between the empirical risk and the true risk uniformly over
the function class GM .

3.2 Non-Parametric Case

First, we introduce a very important inequality that is a version of Talagrand’s concentra-
tion inequality. The original form of Talagrand’s concentration inequality is an inequality
about the expectation of a general function f(X1, . . . , Xn) of n variables, so the range of
applications is quite large (Talagrand, 1996a,b).

Let
σP (F)2 := sup

f∈F
(Pf 2 − (Pf)2).

For a functional Y : G → R defined on a set of measurable functions G, we define its norm
as

∥Y ∥G := sup
g∈G
|Y (g)|.

For a class F of measurable functions such that ∀f ∈ F , ∥f∥∞ ≤ 1, the following
bound holds, which we refer to as the Bousquet bound (Bousquet, 2002):

P
{
∥Pn − P∥F ≥ E∥Pn − P∥F

+

√
2t

n
(σP (F)2 + 2E∥Pn − P∥F) +

t

3n

}
≤ e−t. (10)

We can easily see that E∥Pn−P∥F and σP (F) in the Bousquet bound can be replaced by
other functions bounding from above. For example, E∥Pn−P∥F can be upper-bounded by
the Rademacher complexity and σP (F) can be bounded by using the L2(P )-norm (Bartlett
et al., 2005)．By using the above inequality, we obtain the following theorem. The proof
is summarized in Appendix A.

Theorem 1 Let

an
0 := (Qng0)

−1,

γn := max{−Pn log(ĝn) + Pn log(an
0g0), 0}.
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Then
hQ(an

0g0, ĝn) = Op(n
− 1

2+γ +
√
γn).

The technical advantage of using the Hellinger distance instead of the KL-divergence is
that the Hellinger distance is bounded from above by a Lipschitz continuous function
while the KL-divergence is not Lipschitz continuous because log(x) diverges to −∞ as
x → 0. This allows us to utilize uniform convergence results of empirical processes. See
the proof for more details.

Remark 1 If there exists N such that ∀n ≥ N , g0 ∈ Gn, then γn = 0 (∀n ≥ N). In this
setting,

hQ(ĝn/a
n
0 , g0) = Op(n

− 1
2+γ ).

Remark 2 an
0 can be removed because

hQ(an
0g0, g0) =

√∫
g0(1−

√
an

0 )2dQ

= |1−
√
an

0 | = Op(1/
√
n) = Op(n

− 1
2+γ ).

Thus,

hQ(ĝn, g0) ≤ hQ(ĝn, a
n
0g0) + hQ(an

0g0, g0) = Op(n
− 1

2+γ +
√
γn).

We can derive another convergence theorem based on a different representation of the
bias term from Theorem 1. The proof is also included in Appendix A.

Theorem 2 In addition to Assumption 1, if there is g∗n ∈ Ĝn such that for some constant
c0, on the support of P and Q

g0

g∗n
≤ c20,

then
hQ(g0, ĝn) = Op(n

− 1
2+γ + hQ(g∗n, g0)).

Example 1 We briefly evaluate the convergence rate in a simple example in which d = 1,
the support of P is [0, 1] ⊆ R, F = {K1(x, x

′) | x′ ∈ [0, 1]}, and Fn = {K1(x, x
te
j ) | j =

1, . . . , n} (for simplicity, we consider the case where the Gaussian width σ is 1, but we
can apply the same argument to another choice of σ). Assume that P has a density p(x)
with a constant η2 such that p(x) ≥ η2 > 0 (∀x ∈ [−1, 1]). We also assume that the true
importance g0 is a mixture of Gaussian kernels, i.e.,

g0(x) =

∫
K1(x, x

′)dF (x′) (∀x ∈ [0, 1]),

where F is a positive finite measure the support of which is contained in [0, 1]. For a
measure F ′, we define gF ′(x) :=

∫
K1(x, x

′)dF ′(x′). By Lemma 3.1 of Ghosal and van der
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Vaart (2001), for every 0 < ϵn < 1/2, there exits a discrete positive finite measure F ′ on
[0, 1] such that

∥g0 − gF ′∥∞ ≤ ϵn, F ′([0, 1]) = F ([0, 1]).

Now divide [0, 1] into bins with width ϵn, then the number of sample points xte
j that fall

in a bin is a binomial random variable. If exp(−η2nϵn/4)/ϵn → 0, then by the Chernoff
bound6, the probability of the event

Wn := {max
j

min
x∈supp(F ′)

|x− xte
j | ≤ ϵn}

converges to 1 (supp(F ′) means the support of F ′) because the density p(x) is bounded
from below across the support. One can show that |K1(x, x1)−K1(x, x2)| ≤ |x1−x2|/

√
e+

|x1 − x2|2/2 (∀x) because

|K1(x, x1)−K1(x, x2)|
= exp(−(x− x1)

2/2)[1− exp(x(x2 − x1) + (x2
1 − x2

2)/2)]

≤ exp(−(x− x1)
2/2)|x(x2 − x1) + (x2

1 − x2
2)/2|

≤ exp(−(x− x1)
2/2)(|x− x1||x1 − x2|+ |x1 − x2|2/2)

≤ |x1 − x2|/
√
e+ |x1 − x2|2/2.

Thus there exists α̃j ≥ 0 (j = 1, . . . , n) such that for g̃∗n :=
∑

j α̃jK1(x, x
te
j ), the following

is satisfied on the event Wn: ∥g̃∗n− gF ′∥∞ ≤ F ′([0, 1])(ϵn/
√
e+ ϵ2n/2) = O(ϵn). Now define

g∗n :=
g̃∗n
Qng̃∗n

.

Then g∗n ∈ Ĝn.
Set ϵn = 1/

√
n. Noticing |1 − Qng̃

∗
n| = |1 − Qn(g̃∗n − gF ′ + gF ′ − g0 + g0)| ≤ O(ϵn) +

|1−Qng0| = Op(1/
√
n), we have

∥g∗n − g̃∗n∥∞ = ∥g∗n∥∞|1−Qng̃
∗
n| = Op(1/

√
n).

From the above discussion, we obtain

∥g∗n − g0∥∞ = Op(1/
√
n).

This indicates
hQ(g∗n, g0) = Op(1/

√
n),

and that g0/g
∗
n ≤ c20 is satisfied with high probability.

For the bias term of Theorem 1, set ϵn = C log(n)/n for sufficiently large C > 0 and
replace g0 with an

0g0. Then we obtain γn = Op(log(n)/n).

6Here we refer to the Chernoff bound as follows: let {Xi}n
i=1 be independent random variables taking

values on 0 or 1, then P (
∑n

i=1 Xi < (1 − δ)
∑n

i=1 E[Xi]) < exp(−δ2
∑n

i=1 E[Xi]/2) for any δ > 0.
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As for the complexity of the model, a similar argument to Theorem 3.1 of Ghosal and
van der Vaart (2001) gives

logN(ϵ,GM , ∥ · ∥∞) ≤ K

(
log

M

ϵ

)2

for 0 < ϵ < M/2. This gives both conditions (8) and (9) of Assumption 1.3 for arbitrary
small γ > 0 (but the constant K depends on γ). Thus the convergence rate is evaluated
as hQ(g0, ĝn) = Op(n

−1/(2+γ)) for arbitrary small γ > 0.

3.3 Parametric Case

Next, we show asymptotic normality of KLIEP in a finite-dimensional case. We do not
assume that g0 is contained in the model, but it can be shown that KLIEP has asymptotic
normality around the point that is “nearest” to the true. The finite-dimensional model
we consider here is

F = Fn = {φl | l = 1, . . . , b} (∀n).

We define φ as

φ(x) :=

φ1(x)
...

φb(x)

 .
Gn and GM

n are independent of n and we can write them as

Gn = G =
{
αTφ | α ≥ 0

}
,

GM
n = GM =

{
αTφ | α ≥ 0, ∥αTφ∥∞ ≤M

}
.

We define g∗ as the optimal solution in the model, and α∗ as the coefficient of g∗:

g∗ := arg max
g∈G,Qg=1

P log g, g∗ = αT
∗ φ. (11)

In addition to Assumption 1, we assume the following conditions:
Assumption 2

1. Q(φφT) ≻ O (positive definite).

2. There exists η3 > 0 such that g∗ ≥ η3.

Let
ψ(α)(x) = ψ(α) := log(αTφ(x)).

Note that if Q(φφT) ≻ O is satisfied, then we obtain the following inequality:

∀β ̸= 0, βT∇∇TPψ(α∗)β = βT∇P φT

αTφ

∣∣∣
α=α∗

β = −βTP
φφT

(αT
∗ φ)2

β

= −βTQ

(
φφT g0

g2
∗

)
β ≤ −βTQ(φφT)βη0ϵ

2
0/ξ

2
0 < 0.
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Thus, −∇∇TPψ(α∗) is positive definite. We write it as

I0 := −∇∇TPψ(α∗) (≻ O).

We set

α̌n :=
α̂n

an
∗
,

where an
∗ := (Qng∗)

−1 and α̂T
nφ = ĝn. We first show the

√
n-consistency of α̂n/a

n
∗ (i.e.,

∥α̌n − α∗∥ = Op(1/
√
n)). From now on, let ∥ · ∥0 denote a norm defined as

∥α∥20 := αTI0α.

By the positivity of I0, there exist 0 < ξ1 < ξ2 such that

ξ1∥α∥ ≤ ∥α∥0 ≤ ξ2∥α∥. (12)

Lemma 1 In a finite fixed dimensional model under Assumption 1 and Assumption 2,
the KLIEP estimator satisfies

∥α̂n/a
n
∗ − α∗∥ = ∥α̌n − α∗∥ = Op(1/

√
n).

From the relationship (12), this also implies ∥α̌n − α∗∥0 = Op(1/
√
n), which indicates

hQ(ĝn, a
n
∗g∗) = Op(1/

√
n).

The proof is provided in Appendix B.
Next we discuss the asymptotic law of the KLIEP estimator. To do this we should

introduce an approximating cone which is used to express the neighborhood of α∗. Let

S := {α | QαTφ = 1, α ≥ 0},
Sn := {α | Qnα

Tφ = 1/an
∗ , α ≥ 0}.

Note that α∗ ∈ S and α̌n, α∗ ∈ Sn. Let the approximating cones of S and Sn at α∗ be C
and Cn, where an approximating cone is defined in the following definition.

Definition 1 Let D be a closed subset in Rk and θ ∈ D be a non-isolated point in D.
If there is a closed cone A that satisfies the following conditions, we define A as an
approximating cone at θ:

• For an arbitrary sequence yi ∈ D − θ, yi → 0

inf
x∈A
∥x− yi∥ = o(∥yi∥).

• For an arbitrary sequence xi ∈ A, xi → 0

inf
y∈D−θ

∥xi − y∥ = o(∥xi∥).
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Now S and Sn are convex polytopes, so that the approximating cones at α∗ are also
convex polytopes and

C = {λ(α− α∗) | α ∈ S, λ ≥ 0, λ ∈ R},
Cn = {λ(α− α∗) | α ∈ Sn, λ ≥ 0, λ ∈ R},

for a sufficiently small ϵ. Without loss of generality, we assume for some j, α∗,i = 0 (i =
1, . . . , j) and α∗,i > 0 (i = j + 1, . . . , b). Let νi := Qφi. Then the approximating cone C
is spanned by µi (i = 1, . . . , b− 1) defined as

µ1 :=

[
1, 0, . . . , 0,−ν1

νb

]T

, . . . , µb−1 :=

[
0, . . . , 0, 1,−νb−1

νb

]T

.

That is,

C =

{
b−1∑
i=1

βiµi | βi ≥ 0 (i ≤ j), βi ∈ R

}
.

Let N (µ,Σ) be a multivariate normal distribution with mean µ and covariance Σ; we use
the same notation for a degenerate normal distribution (i.e., the Gaussian distribution
confined to the range of a rank deficient covariance matrix Σ). Then we obtain the
asymptotic law of

√
n(α̌n − α∗).

Theorem 3 Let7 Z1 ∼ N (0, I0 − P (φ/g∗)P (φ/g∗)
T) and Z2 ∼ N (0, QφφT − QφQφT),

where Z1 and Z2 are independent. Further define Z := I−1
0 (Z1+Z2) and λ∗ = ∇Pψ(α∗)−

Qφ. Then √
n(α̌n − α∗) arg min

δ∈C,λT
∗ δ=0

∥δ − Z∥0 (convergence in law).

The proof is provided in Appendix B. If α∗ > 0 (α∗ is an inner point of the feasible
set), asymptotic normality can be proven in a simpler way. Set Rn and R as follows:

Rn := I − QnφQnφ
T

∥Qnφ∥2
, R := I − QφQφT

∥Qφ∥2
.

Rn and R are projection matrices to linear spaces Cn = {δ | δTQnφ = 0} and C = {δ |
δTQφ = 0} respectively. Note that Rn(α̌n − α∗) = α̌n − α∗. Now α̌n

p→ α∗ indicates that
the probability of the event {α̌n > 0} goes to 1. Then on the event {α̌n > 0}, by the
KKT condition

0 =
√
nRn(∇Pnψ(α̌n)− an

∗Qnφ) =
√
nRn(∇Pnψ(α̌n)−Qnφ)

=
√
nR(∇Pnψ(α∗)−Qnφ)−

√
nRI0R(α̌n − α∗) + op(1)

⇒
√
n(α̌n − α∗) =

√
n(RI0R)†R(∇Pnψ(α∗)−∇Pψ(α∗)−Qnφ+Qφ) + op(1)

 (RI0R)†RI0Z, (13)

7Since αT
∗ (I0 − P (φ/g∗)P (φ/g∗)T)α∗ = 0, Z1 obeys a degenerate normal distribution.
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where † means the Moore-Penrose pseudo-inverse and in the third equality we used the
relation ∇Pψ(α∗)−Qφ = 0 according to the KKT condition. On the other hand, since
δ = Rδ for δ ∈ C, we have

∥Z − δ∥20 =(Z − δ)TI0(Z − δ) = (Z −Rδ)TI0(Z −Rδ)
=(δ − (RI0R)†RI0Z)TRI0R(δ − (RI0R)†RI0Z)

+ (the terms independent of δ).

The minimizer of the right-hand side of the above equality in C is δ = (RI0R)†RI0Z. This
and the result of Theorem 3 coincide with (13).

In addition to Theorem 3 we can show the asymptotic law of
√
n(α̂n−α∗). The proof

is also given in Appendix B.

Theorem 4 Let Z, Z2 and λ∗ be as in Theorem 3. Then
√
n(α̂n − α∗) arg min

δ∈C,λT
∗ δ=0

∥δ − Z∥0 + (ZTI0α∗)α∗ (convergence in law).

The second term of the right-hand side is expressed by (ZTI0α∗)α∗ = (ZT
2 α∗)α∗.

Remark 3 By the KKT condition and the definition of I0, it can be easily checked that

αT
∗ I0δ = 0 (∀δ ∈ C ∩ {δ′ | λT

∗ δ
′ = 0}), ∥α∗∥0 = αT

∗ I0α∗ = 1.

Thus Theorem 4 gives an orthogonal decomposition of the asymptotic law of
√
n(α̂n−α∗)

to a parallel part and an orthogonal part to C ∩ {δ′ | λT
∗ δ

′ = 0}. Hence in particular, if
α∗ > 0, then λ∗ = 0 and C is a linear subspace so that

√
n(α̂n − α∗) Z.

4 Illustrative Examples

We have shown that the KLIEP algorithm has preferable convergence properties. In this
section, we illustrate the behavior of the proposed KLIEP method and how it can be
applied in covariate shift adaptation.

4.1 Setting

Let us consider a one-dimensional toy regression problem of learning

f(x) = sinc(x).

Let the training and test input densities be

ptr(x) = N (x; 1, (1/2)2),

pte(x) = N (x; 2, (1/4)2),
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Figure 2: Illustrative example.

where N (x;µ, σ2) denotes the Gaussian density with mean µ and variance σ2. We create
training output value {ytr

i }ntr
i=1 by

ytr
i = f(xtr

i ) + ϵtri ,

where the noise {ϵtri }ntr
i=1 has density N (ϵ; 0, (1/4)2). Test output value {yte

j }nte
j=1 are also

generated in the same way. Let the number of training samples be ntr = 200 and the
number of test samples be nte = 1000. The goal is to obtain a function f̂(x) such that
the following generalization error G (or the mean test error) is minimized:

G :=
1

nte

nte∑
j=1

(
f̂(xte

j )− yte
j

)2

. (14)

This setting implies that we are considering a (weak) extrapolation problem (see Fig-
ure 2, where only 100 test samples are plotted for clear visibility).

4.2 Importance Estimation by KLIEP

First, we illustrate the behavior of KLIEP in importance estimation, where we only use
{xtr

i }ntr
i=1 and {xte

j }nte
j=1.

Figure 3 depicts the true importance and its estimates by KLIEP; the Gaussian kernel
model (7) with b = 100 is used and three different Gaussian widths are tested. The
graphs show that the performance of KLIEP is highly dependent on the Gaussian width;
the estimated importance function ŵ(x) is highly fluctuated when σ is small, while it is
overly smoothed when σ is large. When σ is chosen appropriately, KLIEP seems to work
reasonably well for this example.
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Figure 3: Results of importance estimation by KLIEP. w(x) is the true importance func-
tion and ŵ(x) is its estimation obtained by KLIEP.

Figure 4 depicts the values of the true J (see Eq.(3)) and its estimate by 5-fold LCV
(see Eq.(5)); the means, the 25 percentiles, and the 75 percentiles over 100 trials are
plotted as functions of the Gaussian width σ. This shows that LCV gives a very good
estimate of J , which results in an appropriate choice of σ.

4.3 Covariate Shift Adaptation by IWLS and IWCV

Next, we illustrate how the estimated importance could be used for covariate shift adapta-
tion. Here we use {(xtr

i , y
tr
i )}ntr

i=1 and {xte
j }nte

j=1 for learning; the test output values {yte
j }nte

j=1

are used only for evaluating the generalization performance.
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Figure 4: Model selection curve for KLIEP. J is the true score of an estimated importance
(see Eq.(3)) and ĴLCV is its estimate by 5-fold LCV (see Eq.(5)).

We use the following polynomial regression model:

f̂(x; θ) :=
t∑

ℓ=0

θix
ℓ, (15)

where t is the order of polynomials. The parameter vector θ is learned by importance-
weighted least-squares (IWLS):

θ̂IWLS := argmin
θ

[
ntr∑
i=1

ŵ(xtr
i )
(
f̂(xtr

i ; θ)− ytr
i

)2
]
.

It is known that IWLS is consistent when the true importance w(xtr
i ) is used as weights—

ordinary LS is not consistent due to covariate shift, given that the model f̂(x; θ) is not
correctly specified8 (Shimodaira, 2000). For the linear regression model (15), the above

minimizer θ̂IWLS is given analytically by

θ̂IWLS = (X⊤ŴX)−1X⊤Ŵy,

where

[X]i,ℓ = (xtr
i )ℓ−1,

Ŵ = diag
(
ŵ(xtr

1 ), ŵ(xtr
2 ), . . . , ŵ(xtr

ntr
)
)
,

y = (ytr
1 , y

tr
2 , . . . , y

tr
ntr

)⊤. (16)

8A model f̂(x;θ) is said to be correctly specified if there exists a parameter θ∗ such that f̂(x; θ∗) =
f(x).
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diag (a, b, . . . , c) denotes the diagonal matrix with diagonal elements a, b, . . . , c.
We choose the order t of polynomials based on importance-weighted CV (IWCV)

(Sugiyama et al., 2007). More specifically, we first divide the training samples {ztr
i | ztr

i =

(xtr
i , y

tr
i )}ntr

i=1 into R disjoint subsets {Ztr
r }Rr=1. Then we learn a function f̂r(x) from

{Ztr
j }j ̸=r by IWLS and compute its mean test error for the remaining samples Ztr

r :

Ĝr :=
1

|Ztr
r |

∑
(x,y)∈Ztr

r

ŵ(x)
(
f̂r(x)− y

)2

.

We repeat this procedure for r = 1, 2, . . . , R, compute the average of Ĝr over all r, and
use the average Ĝ as an estimate of G:

Ĝ :=
1

R

R∑
r=1

Ĝr. (17)

For model selection, we compute Ĝ for all model candidates (the order t of polynomials

in the current setting) and choose the one that minimizes Ĝ. We set the number of folds
in IWCV at R = 5. IWCV is shown to be unbiased, while ordinary CV with misspecified
models is biased due to covariate shift (Sugiyama et al., 2007).

Figure 5 depicts the functions learned by IWLS with different orders of polynomials.
The results show that for all cases, the learned functions reasonably go through the test
samples (note that the test output points are not used for obtaining the learned functions).
Figure 6(a) depicts the true generalization error of IWLS and its estimate by IWCV; the
means, the 25 percentiles, and the 75 percentiles over 100 runs are plotted as functions
of the order of polynomials. This shows that IWCV roughly grasps the trend of the true
generalization error. For comparison purposes, we also include the results by ordinary LS
and ordinary CV in Figure 5 and Figure 6. Figure 5 shows that the functions obtained by
ordinary LS go through the training samples, but not through the test samples. Figure 6
shows that the scores of ordinary CV tend to be biased, implying that model selection by
ordinary CV is not reliable.

Finally, we compare the generalization error obtained by IWLS/LS and IWCV/CV,
which is summarized in Figure 7 as box plots. This shows that IWLS+IWCV tends
to outperform other methods, illustrating the usefulness of the proposed approach in
covariate shift adaptation.

5 Discussion

In this section, we discuss the relation between KLIEP and existing approaches.
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Figure 5: Learned functions obtained by IWLS and LS, which are denoted by f̂IWLS(x)

and f̂LS(x), respectively.

5.1 Kernel Density Estimator

The kernel density estimator (KDE) is a non-parametric technique to estimate a density
p(x) from its i.i.d. samples {xk}nk=1. For the Gaussian kernel, KDE is expressed as

p̂(x) =
1

n(2πσ2)d/2

n∑
k=1

Kσ(x,xk), (18)

where Kσ(x,x′) is the Gaussian kernel (6) with width σ.
The estimation performance of KDE depends on the choice of the kernel width σ, which

can be optimized by LCV (Härdle et al., 2004)—a subset of {xk}nk=1 is used for density
estimation and the rest is used for estimating the likelihood of the held-out samples. Note
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eralization error of a learned function (see Eq.(14)), while ĜIWCV and ĜCV denote its
estimate by 5-fold IWCV and 5-fold CV, respectively (see Eq.(17)).
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Figure 7: Box plots of generalization errors.

that model selection based on LCV corresponds to choosing σ such that the Kullback-
Leibler divergence from p(x) to p̂(x) is minimized.

KDE can be used for importance estimation by first estimating p̂tr(x) and p̂te(x)
separately from {xtr

i }ntr
i=1 and {xte

j }nte
j=1, and then estimating the importance by ŵ(x) =

p̂te(x)/p̂tr(x). A potential limitation of this approach is that KDE suffers from the curse
of dimensionality (Härdle et al., 2004), i.e., the number of samples needed to maintain
the same approximation quality grows exponentially as the dimension of the input space
increases. Furthermore, model selection by LCV is unreliable in small sample cases since
data splitting in the CV procedure further reduces the sample size. Therefore, the KDE-
based approach may not be reliable in high-dimensional cases.
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5.2 Kernel Mean Matching

The kernel mean matching (KMM) method avoids density estimation and directly gives
an estimate of the importance at training input points (Huang et al., 2007).

The basic idea of KMM is to find ŵ(x) such that the mean discrepancy between
nonlinearly transformed samples drawn from pte(x) and ptr(x) is minimized in a universal
reproducing kernel Hilbert space (Steinwart, 2001). The Gaussian kernel (6) is an example
of kernels that induce universal reproducing kernel Hilbert spaces and it has been shown
that the solution of the following optimization problem agrees with the true importance:

min
w(x)

∥∥∥∥∫ Kσ(x, ·)pte(x)dx−
∫
Kσ(x, ·)w(x)ptr(x)dx

∥∥∥∥2

H

subject to

∫
w(x)ptr(x)dx = 1 and w(x) ≥ 0,

where ∥ · ∥H denotes the norm in the Gaussian reproducing kernel Hilbert space and
Kσ(x,x′) is the Gaussian kernel (6) with width σ.

An empirical version of the above problem is reduced to the following quadratic pro-
gram:

min
{wi}

ntr
i=1

[
1

2

ntr∑
i,i′=1

wiwi′Kσ(xtr
i ,x

tr
i′ )−

ntr∑
i=1

wiκi

]

subject to

∣∣∣∣∣
ntr∑
i=1

wi − ntr

∣∣∣∣∣ ≤ ntrϵ and 0 ≤ w1, w2, . . . , wntr ≤ B,

where

κi :=
ntr

nte

nte∑
j=1

Kσ(xtr
i ,x

te
j ).

B (≥ 0) and ϵ (≥ 0) are tuning parameters which control the regularization effects. The
solution {ŵi}ntr

i=1 is an estimate of the importance at the training input points {xtr
i }ntr

i=1.
Since KMM does not involve density estimation, it is expected to work well even in

high-dimensional cases. However, the performance is dependent on the tuning parame-
ters B, ϵ, and σ, and they can not be simply optimized, e.g., by CV since estimates of
the importance are available only at the training input points. Thus, an out-of-sample
extension is needed to apply KMM in the CV framework, but this seems to be an open
research issue currently.

A relation between KMM and a variant of KLIEP has been studied in Tsuboi et al.
(2008).

5.3 Logistic Regression

Another approach to directly estimating the importance is to use a probabilistic classifier.
Let us assign a selector variable δ = −1 to training input samples and δ = 1 to test input
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samples, i.e., the training and test input densities are written as

ptr(x) = p(x|δ = −1),

pte(x) = p(x|δ = 1).

An application of the Bayes theorem immediately yields that the importance can be
expressed in terms of δ as follows (Bickel et al., 2007):

w(x) =
p(x|δ = 1)

p(x|δ = −1)
=
p(δ = −1)

p(δ = 1)

p(δ = 1|x)

p(δ = −1|x)
.

The probability ratio of test and training samples may be simply estimated by the ratio
of the numbers of samples:

p(δ = −1)

p(δ = 1)
≈ ntr

nte

.

The conditional probability p(δ|x) could be approximated by discriminating test samples
from training samples using a logistic regression (LogReg) classifier, where δ plays the
role of a class variable. Below, we briefly explain the LogReg method.

The LogReg classifier employs a parametric model of the following form for expressing
the conditional probability p(δ|x):

p̂(δ|x) :=
1

1 + exp (−δ
∑u

ℓ=1 βℓϕℓ(x))
,

where u is the number of basis functions and {ϕℓ(x)}uℓ=1 are fixed basis functions. The
parameter β is learned so that the negative log-likelihood is minimized:

β̂ := argmin
β

[
ntr∑
i=1

log

(
1 + exp

(
u∑

ℓ=1

βℓϕℓ(x
tr
i )

))

+
nte∑
j=1

log

(
1 + exp

(
−

u∑
ℓ=1

βℓϕℓ(x
tr
j )

))]
.

Since the above objective function is convex, the global optimal solution can be ob-
tained by standard nonlinear optimization methods such as Newton’s method, conjugate
gradient, or the BFGS method (Minka, 2007). Then the importance estimate is given by

ŵ(x) =
ntr

nte

exp

(
u∑

ℓ=1

β̂ℓϕℓ(x)

)
.

An advantage of the LogReg method is that model selection (i.e., the choice of basis
functions {ϕℓ(x)}uℓ=1) is possible by standard CV, since the learning problem involved
above is a standard supervised classification problem.
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6 Experiments

In this section, we compare the experimental performance of KLIEP and existing ap-
proaches.

6.1 Importance Estimation for Artificial Datasets

Let ptr(x) be the d-dimensional Gaussian density with mean (0, 0, . . . , 0)⊤ and covariance
identity and pte(x) be the d-dimensional Gaussian density with mean (1, 0, . . . , 0)⊤ and
covariance identity. The task is to estimate the importance at training input points:

wi := w(xtr
i ) =

pte(x
tr
i )

ptr(xtr
i )

for i = 1, 2, . . . , ntr.

We compare the following methods:

KLIEP(σ): {wi}ntr
i=1 are estimated by KLIEP with the Gaussian kernel model (7). The

number of template points is fixed at b = 100. Since the performance of KLIEP is
dependent on the kernel width σ, we test several different values of σ.

KLIEP(CV): The kernel width σ in KLIEP is chosen based on 5-fold LCV (see Sec-
tion 2.3).

KDE(CV): {wi}ntr
i=1 are estimated by KDE with the Gaussian kernel (18). The kernel

widths for the training and test densities are chosen separately based on 5-fold LCV
(see Section 5.1).

KMM(σ): {wi}ntr
i=1 are estimated by KMM (see Section 5.2). The performance of KMM

is dependent on B, ϵ, and σ. We set B = 1000 and ϵ = (
√
ntr − 1)/

√
ntr following

Huang et al. (2007), and test several different values of σ. We used the CPLEX
software for solving quadratic programs in the experiments.

LogReg(σ): Gaussian kernels (7) are used as basis functions, where kernels are put at all
training and test input points9. Since the performance of LogReg is dependent on
the kernel width σ, we test several different values of σ. We used the LIBLINEAR
implementation of logistic regression for the experiments (Lin et al., 2007).

LogReg(CV): The kernel width σ in LogReg is chosen based on 5-fold CV.

We fixed the number of test input points at nte = 1000 and consider the following two
settings for the number ntr of training samples and the input dimension d:

(a) ntr = 100 and d = 1, 2, . . . , 20,

9We also tested another LogReg model where only 100 Gaussian kernels are used and the Gaussian
centers are chosen randomly from the test input points. Our preliminary experiments showed that this
does not degrade the performance.
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(b) d = 10 and ntr = 50, 60, . . . , 150.

We run the experiments 100 times for each d, each ntr, and each method, and evaluate
the quality of the importance estimates {ŵi}ntr

i=1 by the normalized mean squared error
(NMSE):

NMSE :=
1

ntr

ntr∑
i=1

(
ŵi∑ntr

i′=1 ŵi′
− wi∑ntr

i′=1wi′

)2

.

NMSEs averaged over 100 trials are plotted in log scale in Figure 8. Figure 8(a)
shows that the error of KDE(CV) sharply increases as the input dimension grows, while
KLIEP, KMM, and LogReg with appropriate kernel widths tend to give smaller errors
than KDE(CV). This would be the fruit of directly estimating the importance without
going through density estimation. The graph also shows that the performance of KLIEP,
KMM, and LogReg is dependent on the kernel width σ—the results of KLIEP(CV) and
LogReg(CV) show that model selection is carried out reasonably well. Figure 9(a) sum-
marizes the results of KLIEP(CV), KDE(CV), and LogReg(CV), where, for each input
dimension, the best method in terms of the mean error and comparable ones based on
the t-test at the significance level 5% are indicated by ‘◦’; the methods with significant
difference from the best method are indicated by ‘×’. This shows that KLIEP(CV) works
significantly better than KDE(CV) and LogReg(CV).

Figure 8(b) shows that the errors of all methods tend to decrease as the number
of training samples grows. Again, KLIEP, KMM, and LogReg with appropriate kernel
widths tend to give smaller errors than KDE(CV), and model selection in KLIEP(CV)
and LogReg(CV) is shown work reasonably well. Figure 9(b) shows that KLIEP(CV)
tends to give significantly smaller errors than KDE(CV) and LogReg(CV).

Overall, KLIEP(CV) is shown to be a useful method in importance estimation.

6.2 Covariate Shift Adaptation with Regression and Classifica-
tion Benchmark Datasets

Here we employ importance estimation methods for covariate shift adaptation in regres-
sion and classification benchmark problems (see Table 1).

Each dataset consists of input/output samples {(xk, yk)}nk=1. We normalize all the
input samples {xk}nk=1 into [0, 1]d and choose the test samples {(xte

j , y
te
j )}nte

j=1 from the
pool {(xk, yk)}nk=1 as follows. We randomly choose one sample (xk, yk) from the pool

and accept this with probability min(1, 4(x
(c)
k )2), where x

(c)
k is the c-th element of xk

and c is randomly determined and fixed in each trial of experiments; then we remove xk

from the pool regardless of its rejection or acceptance, and repeat this procedure until
we accept nte samples. We choose the training samples {(xtr

i , y
tr
i )}ntr

i=1 uniformly from the
rest. Intuitively, in this experiment, the test input density tends to be lower than the
training input density when x

(c)
k is small. We set the number of samples at ntr = 100 and

nte = 500 for all datasets. Note that we only use {(xtr
i , y

tr
i )}ntr

i=1 and {xte
j }nte

j=1 for training
regressors or classifiers; the test output values {yte

j }nte
j=1 are used only for evaluating the

generalization performance.



Direct Importance Estimation for Covariate Shift Adaptation 28

2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

A
ve

ra
ge

 N
M

S
E

 o
ve

r 
10

0 
T

ria
ls

 (
in

 L
og

 S
ca

le
)

d (Input Dimension)

KLIEP(0.5)
KLIEP(2)
KLIEP(7)
KLIEP(CV)
KDE(CV)
KMM(0.1)
KMM(1)
KMM(10)
LogReg(0.5)
LogReg(2)
LogReg(7)
LogReg(CV)

(a) When input dimension is changed

50 100 150

10
−6

10
−5

10
−4

10
−3

A
ve

ra
ge

 N
M

S
E

 o
ve

r 
10

0 
T

ria
ls

 (
in

 L
og

 S
ca

le
)

n
tr
 (Number of Training Samples)

KLIEP(0.5)
KLIEP(2)
KLIEP(7)
KLIEP(CV)
KDE(CV)
KMM(0.1)
KMM(1)
KMM(10)
LogReg(0.5)
LogReg(2)
LogReg(7)
LogReg(CV)

(b) When training sample size is changed

Figure 8: NMSEs averaged over 100 trials in log scale.
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Figure 9: NMSEs averaged over 100 trials in log scale. For each dimension/number of
training samples, the best method in terms of the mean error and comparable ones based
on the t-test at the significance level 5% are indicated by ‘◦’; the methods with significant
difference from the best method are indicated by ‘×’.
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We use the following kernel model for regression or classification:

f̂(x; θ) :=
t∑

ℓ=1

θℓKh(x,mℓ),

where Kh(x,x
′) is the Gaussian kernel (6) with width h and mℓ is a template point

randomly chosen from {xte
j }nte

j=1. We set the number of kernels10 at t = 50. We learn the
parameter θ by importance-weighted regularized least-squares (IWRLS) (Sugiyama et al.,
2007):

θ̂IWRLS := argmin
θ

[
ntr∑
i=1

ŵ(xtr
i )
(
f̂(xtr

i ; θ)− ytr
i

)2

+ λ∥θ∥2
]
. (19)

The solution θ̂IWRLS is analytically given by

θ̂IWRLS = (K⊤ŴK + λI)−1K⊤Ŵy,

where I is the identity matrix, y is defined by Eq.(16), and

[K]i,ℓ := Kh(x
tr
i ,mℓ),

Ŵ := diag (ŵ1, ŵ2, . . . , ŵntr) .

The kernel width h and the regularization parameter λ in IWRLS (19) are chosen by
5-fold IWCV. We compute the IWCV score by

1

5

5∑
r=1

1

|Ztr
r |

∑
(x,y)∈Ztr

r

ŵ(x)L
(
f̂r(x), y

)
,

where Ztr
r is the r-th held-out sample set (see Section 4.3) and

L (ŷ, y) :=

{
(ŷ − y)2 (Regression),
1
2
(1− sign{ŷy}) (Classification).

We run the experiments 100 times for each dataset and evaluate the mean test error :

1

nte

nte∑
j=1

L
(
f̂(xte

j ), yte
j

)
.

The results are summarized in Table 1, where ‘Uniform’ denotes uniform weights, i.e., no
importance weight is used. The table shows that KLIEP(CV) compares favorably with
Uniform, implying that the importance weighting techniques combined with KLIEP(CV)

10We fixed the number of kernels at a rather small number since we are interested in investigating the
prediction performance under model misspecification; for over-specified models, importance-weighting
methods have no advantage over the no importance method.
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Table 1: Mean test error averaged over 100 trials. The numbers in the brackets are
the standard deviation. All the error values are normalized so that the mean error by
‘Uniform’ (uniform weighting, or equivalently no importance weighting) is one. For each
dataset, the best method and comparable ones based on the Wilcoxon signed rank test at
the significance level 5% are described in bold face. The upper half are regression datasets
taken from DELVE (Rasmussen et al., 1996) and the lower half are classification datasets
taken from IDA (Rätsch et al., 2001). ‘KMM(σ)’ denotes KMM with kernel width σ.

Data Dim Uniform KLIEP
(CV)

KDE
(CV)

KMM
(0.01)

KMM
(0.3)

KMM
(1)

LogReg
(CV)

kin-8fh 8 1.00(0.34) 0.95(0.31) 1.22(0.52) 1.00(0.34) 1.12(0.37) 1.59(0.53) 1.38(0.40)
kin-8fm 8 1.00(0.39) 0.86(0.35) 1.12(0.57) 1.00(0.39) 0.98(0.46) 1.95(1.24) 1.38(0.61)
kin-8nh 8 1.00(0.26) 0.99(0.22) 1.09(0.20) 1.00(0.27) 1.04(0.17) 1.16(0.25) 1.05(0.17)
kin-8nm 8 1.00(0.30) 0.97(0.25) 1.14(0.26) 1.00(0.30) 1.09(0.23) 1.20(0.22) 1.14(0.24)
abalone 7 1.00(0.50) 0.97(0.69) 1.02(0.41) 1.01(0.51) 0.96(0.70) 0.93(0.39) 0.90(0.40)
image 18 1.00(0.51) 0.94(0.44) 0.98(0.45) 0.97(0.50) 0.97(0.45) 1.09(0.54) 0.99(0.47)

ringnorm 20 1.00(0.04) 0.99(0.06) 0.87(0.04) 1.00(0.04) 0.87(0.05) 0.87(0.05) 0.93(0.08)
twonorm 20 1.00(0.58) 0.91(0.52) 1.16(0.71) 0.99(0.50) 0.86(0.55) 0.99(0.70) 0.92(0.56)
waveform 21 1.00(0.45) 0.93(0.34) 1.05(0.47) 1.00(0.44) 0.93(0.32) 0.98(0.31) 0.94(0.33)
Average 1.00(0.38) 0.95(0.35) 1.07(0.40) 1.00(0.36) 0.98(0.37) 1.20(0.47) 1.07(0.36)

are useful for improving the prediction performance under covariate shift. KLIEP(CV)
works much better than KDE(CV); actually KDE(CV) tends to be worse than Uniform,
which may be due to high dimensionality. We tested 10 different values of the kernel
width σ for KMM and described three representative results in the table. KLIEP(CV)
is slightly better than KMM with the best kernel width. Finally, LogReg(CV) is overall
shown to work reasonably well, but it performs very poorly for some datasets. As a result,
the average performance is not good.

Overall, we conclude that the proposed KLIEP(CV) is a promising method for covari-
ate shift adaptation.

7 Conclusions

In this paper, we addressed the problem of estimating the importance for covariate shift
adaptation. The proposed method, called KLIEP, does not involve density estimation so it
is more advantageous than a naive KDE-based approach particularly in high-dimensional
problems. Compared with KMM which also directly gives importance estimates, KLIEP
is practically more useful since it is equipped with a model selection procedure. Our
experiments highlighted these advantages and therefore KLIEP is shown to be a promising
method for covariate shift adaptation.

In KLIEP, we modeled the importance function by a linear (or kernel) model, which
resulted in a convex optimization problem with a sparse solution. However, our framework
allows the use of any models. An interesting future direction to pursue would be to search
for a class of models which has additional advantages, e.g., faster optimization (Tsuboi
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et al., 2008).
LCV is a popular model selection technique in density estimation and we used a vari-

ant of LCV for optimizing the Gaussian kernel width in KLIEP. In density estimation,
however, it is known that LCV is not consistent under some condition (Schuster and Gre-
gory, 1982; Hall, 1987). Thus it is important to investigate whether a similar inconsistency
phenomenon is observed also in the context of importance estimation.

We used IWCV for model selection of regressors or classifiers under covariate shift.
IWCV has smaller bias than ordinary CV and the model selection performance was shown
to be improved by IWCV. However, the variance of IWCV tends to be larger than ordinary
CV (Sugiyama et al., 2007) and therefore model selection by IWCV could be rather
unstable. In practice, slightly regularizing the importance weight involved in IWCV can
ease the problem, but this introduces an additional tuning parameter. Our important
future work in this context is to develop a method to optimally regularize IWCV, e.g.,
following the line of Sugiyama et al. (2004).

Finally, the range of application of importance weights is not limited to covariate shift
adaptation. For example, the density ratio could be used for anomaly detection, feature
selection, independent component analysis, and conditional density estimation. Exploring
possible application areas will be important future directions.

A Proofs of Theorem 1 and Theorem 2

A.1 Proof of Theorem 1

The proof follows the line of Nguyen et al. (2007). From the definition of γn, it follows
that

−Pn log ĝn ≤ −Pn log(an
0g0) + γn.

Then, by the convexity of − log(·), we obtain

− Pn log

(
ĝn + an

0g0

2

)
≤ −Pn log ĝn − Pn log an

0g0

2
≤ −Pn log an

0g0 +
γn

2

⇔− Pn log

(
ĝn + an

0g0

2an
0g0

)
− γn

2
≤ 0.

log(g/g′) is unstable when g is close to 0, while log
(

g+g′

2g′

)
is a slightly increasing function

with respect to g ≥ 0, its minimum is attained at g = 0, and − log(2) > −∞. Therefore,
the above expression is easier to deal with than log(ĝn/g0). Note that this technique can
be found in van der Vaart and Wellner (1996) and van de Geer (2000).
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We set g′ :=
an
0 g0+ĝn

2an
0

. Since Qng
′ = Qng0 = 1/an

0 ,

− Pn log

(
ĝn + an

0g0

2an
0g0

)
− γn

2
≤ 0

⇒ (Qn −Q)(g′ − g0)− (Pn − P ) log

(
g′

g0

)
− γn

2

≤ −Q(g′ − g0) + P log

(
g′

g0

)
≤ 2P

(√
g′

g0

− 1

)
−Q(g′ − g0) = Q

(
2
√
g′g0 − 2g0

)
−Q(g′ − g0)

= Q
(
2
√
g′g0 − g′ − g0

)
= −hQ(g′, g0)

2. (20)

The Hellinger distance between ĝn/a
n
0 and g0 has the following bound (see Lemma 4.2 in

van de Geer, 2000):
1

16
hQ(ĝn/a

n
0 , g0) ≤ hQ(g′, g0).

Thus it is sufficient to bound |(Qn −Q)(g′ − g0)| and |(Pn − P ) log
(

g′

g0

)
| from above.

From now on, we consider the case where the inequality (8) in Assumption 1.3 is
satisfied. The proof for the setting of the inequality (9) can be carried out along the line
of Nguyen et al. (2007). We will utilize the Bousquet bound (10) to bound |(Qn−Q)(g′−
g0)| and |(Pn−P ) log

(
g′

g0

)
|. In the following, we prove the assertion in 4 steps. In the first

and second steps, we derive upper bounds of |(Qn−Q)(g′− g0)| and |(Pn−P ) log
(

g′

g0

)
|,

respectively. In the third step, we bound the ∞-norm of ĝn which is needed to prove the
convergence. Finally, we combine the results of Steps 1 to 3 and obtain the assertion.
The following statements heavily rely on Koltchinskii (2006).

Step 1. Bounding |(Qn −Q)(g′ − g0)|.
Let

ι(g) :=
g + g0

2
,

and
GM

n (δ) := {ι(g) | g ∈ GM
n , Q(ι(g)− g0)− P log(ι(g)/g0) ≤ δ} ∪ {g0}.

Let ϕM
n (δ) be

ϕM
n (δ) := ((M + η1)

γ/2δ1−γ/2/
√
n) ∨ ((M + η1)n

−2/(2+γ)) ∨ (δ/
√
n).

Then applying Lemma 2 to F = {2(g − g0)/(M + η1) | g ∈ GM
n (δ)}, we obtain that there

is a constant C that only depends on K and γ such that

EQ

[
sup

g∈GM
n ,∥g−g0∥Q,2≤δ

|(Qn −Q)(g − g0)|

]
≤ CϕM

n (δ), (21)
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where ∥f∥Q,2 :=
√
Qf2.

Next, we define the “diameter” of a set {g − g0 | g ∈ GM
n (δ)} as

D̃M(δ) := sup
g∈GM

n (δ)

√
Q(g − g0)2 = sup

g∈GM
n (δ)

∥g − g0∥Q,2.

It is obvious that

D̃M(δ) ≥ sup
g∈GM

n (δ)

√
Q(g − g0)2 − (Q(g − g0))2.

Note that for all g ∈ GM
n (δ),

Q(g − g0)
2 = Q(

√
g −√g0)

2(
√
g +
√
g0)

2

≤ (M + 3η1)Q(
√
g −√g0)

2 = (M + 3η1)hQ(g, g0)
2.

Thus from the inequality (20), it follows that

∀g ∈ GM
n (δ), δ ≥ Q(g − g0)− P log(g/g0)

≥ hQ(g, g0)
2 ≥ ∥g − g0∥2Q,2/(M + 3η1),

which implies
D̃M(δ) ≤

√
(M + 3η1)δ =: DM(δ).

So, by the inequality (21), we obtain

EQ

[
sup

g∈GM
n (δ)

|(Qn −Q)(g − g0)|

]
≤ CϕM

n (DM(δ))

≤ CM

(
δ(1−γ/2)/2

√
n

∨ n−2/(2+γ) ∨ δ
1/2

√
n

)
,

where CM is a constant depending on M , γ, η1, and K.
Let q > 1 be an arbitrary constant. For some δ > 0, let δj := qjδ, where j is an

integer, and let

HM
δ :=

∪
δj≥δ

{ δ
δj

(g − g0) | g ∈ GM
n (δj)}.

Then, by Lemma 3, there exists KM for all M > 1 such that for

UM
n,t(δ) := KM

[
ϕM

n (DM(δ)) +

√
t

n
DM(δ) +

t

n

]
,

and an event EM
δ

EM
n,δ :=

{
sup

g∈HM
δ

|(Qn −Q)g| ≤ UM
n,t(δ)

}
,
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the following is satisfied:
Q(EM

δ ) ≥ 1− e−t.

Step 2. Bounding |(Pn − P )(log(g′/g0)|.
Along the same arguments with Step 1 using the Lipschitz continuity of the function

g 7→ log(g+g0

2g0
) on the support of P , we also obtain a similar inequality for

H̃M
n,δ :=

∪
δj≥δ

{
δ

δj
log

(
g

g0

)
| g ∈ GM

n (δj)

}
,

i.e., there exists a constant K̃M that depends on K, M , γ, η1, and η0 such that

P (ẼM
δ ) ≥ 1− e−t,

where ẼM
δ is an event defined by

ẼM
n,δ :=

{
sup

f∈H̃M
δ

|(Pn − P )f | ≤ ŨM
n,t(δ)

}
,

and

ŨM
n,t(δ) := K̃M

[
ϕM

n (DM(δ)) +

√
t

n
DM(δ) +

t

n

]
.

Step 3. Bounding the ∞-norm of ĝn/a
n
0 .

We can show that all elements of Ĝn are uniformly bounded from above with high
probability. Let

Sn :=

{
inf

φ∈Fn

Qnφ ≥ ϵ0/2

}
∩ {3/4 < an

0 < 5/4}.

Then by Lemma 4, we can take a sufficiently large M̄ such that g/an
0 ∈ GM̄

n (∀g ∈ Ĝn) on
the event Sn and Q(Sn)→ 1.

Step 4. Combining Steps 1,2, and 3.
We consider an event

En := EM̄
n,δ ∩ ẼM̄

n,δ ∩ Sn.

On the event En, ĝn ∈ GM̄
n . For ψ : R+ → R+, we define the #-transform and the

♭-transform as follows (Koltchinskii, 2006):

ψ♭(δ) := sup
σ≥δ

ψ(σ)

σ
, ψ#(ϵ) := inf{δ > 0 | ψ♭(δ) ≤ ϵ}.

Here we set

δM
n (t) := (UM

n,t)
#(1/4q), V M

n,t (δ) := (UM
n,t)

♭(δ),

δ̃M
n (t) := (ŨM

n,t)
#(1/4q), Ṽ M

n,t (δ) := (ŨM
n,t)

♭(δ).
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Then on the event En,

sup
g∈GM̄

n (δj)

|(Qn −Q)(g − g0)| ≤
δj
δ
U M̄

n,t(δ) ≤ δjV
M̄
n,t (δ), (22)

sup
g∈GM̄

n (δj)

∣∣∣∣(Pn − P ) log

(
g

g0

)∣∣∣∣ ≤ δj
δ
Ũ M̄

n,t(δ) ≤ δjṼ
M̄
n,t (δ). (23)

Take arbitrary j and δ such that

δj ≥ δ ≥ δM̄
n (t) ∨ δ̃M̄

n (t) ∨ 2qγn.

Let
GM̄

n (a, b) := GM̄
n (b)\GM̄

n (a) (a < b).

Here, we assume ι(ĝn/a
n
0 ) ∈ GM̄

n (δj−1, δj). Then we will derive a contradiction. In these
settings, for g′ := ι(ĝn/a

n
0 ),

δj−1 ≤ |Q(g′ − g0) + P log
g′

g0

| ≤ |(Qn −Q)(g′ − g0)|+ |(Pn − P ) log
g′

g0

|+ γn

2

≤ δjV
M̄
n,t (δ) + δjṼ

M̄
n,t (δ) +

γn

2
,

which implies
3

4q
≤ 1

q
− γn

2δj
≤ V M̄

n,t (δ) + Ṽ M̄
n,t (δ). (24)

So, either V M̄
n,t (δ) or Ṽ M̄

n,t (δ) is greater than 3
8q

. This contradicts the definition of the
#-transform.

We can show that δM̄
n (t) ∨ δ̃M̄

n (t) = O(n− 2
2+γ t). To see this, for some s > 0, set

δ̂1 =

(
δ(1−γ/2)/2

√
n

)#

(s), δ̂2 =
(
n−2/(2+γ)

)#
(s), δ̂3 =

(
δ1/2

√
n

)#

(s),

δ̂4 =

(√
t

n
δ

)#

(s), δ̂5 =

(
t

n

)#

(s),

where all the #-transforms are taken with respect to δ. Then they satisfy

s =
δ̂
(1−γ/2)/2
1 /

√
n

δ̂1
, s =

n−2/(2+γ)

δ̂2
, s =

δ̂
1/2
3 /
√
n

δ̂3
, s =

√
δ̂4t/n

δ̂4
, s =

t/n

δ̂5
.

Thus, by using some constants c1, . . . , c4, we obtain

δ̂1 = c1n
−2/(2+γ), δ̂2 = c2n

−2/(2+γ), δ̂3 = c3n
−1, δ̂4 = c4t/n, δ̂5 = c5t/n.

Following the line of Koltchinskii (2006), for ϵ = ϵ1 + · · ·+ ϵm, we have

(ψ1 + · · ·+ ψm)#(ϵ) ≤ ψ#
1 (ϵ1) ∨ · · · ∨ ψ#

m(ϵm).
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Thus we obtain δM̄
n (t) ∨ δ̃M̄

n (t) = O(n− 2
2+γ t).

The above argument results in

1

16
hQ(ĝn/a

n
0 , g0) ≤ hQ(g′, g0) = Op(n

− 1
2+γ +

√
γn).

In the following, we show lemmas used in the proof of Theorem 1. We use the same
notations as those in the proof of Theorem 1.

Lemma 2 Consider a class F of functions such that −1 ≤ f ≤ 1 for all f ∈ F and
supQ̃ logN(ϵ,F , L2(Q̃)) ≤ T

ϵγ , where the supremum is taken over all finitely discrete prob-
ability measures. Then there is a constant CT,γ depending on γ and T such that for
δ2 = supf∈F Qf

2,

E[∥Qn −Q∥F ] ≤ CT,γ

[
(n− 2

2+γ ) ∨ (δ1−γ/2/
√
n) ∨ (δ/

√
n)
]
. (25)

Proof
This lemma can be shown along a similar line to Mendelson (2002), but we shall pay

attention to the point that F may not contain the constant function 0. Let (ϵi)1≤i≤n be
i.i.d. Rademacher random variables, i.e., P (ϵi = 1) = P (ϵi = −1) = 1/2, Rn(F) be the
Rademacher complexity of F defined as

Rn(F) =
1

n
EQEϵ sup

f∈F
|

n∑
i=1

ϵif(xtr
i )|.

Then by Talagrand (1994),

EQ sup
f∈F
∥Qnf

2∥ ≤ sup
f∈F

Qf2 + 8Rn(F). (26)

Set δ̂2 = supf∈F Qnf
2. Then noticing that logN(ϵ, F ∪ {0}, L2(Qn)) ≤ T

ϵγ + 1, it can be
shown that there is a universal constant C such that

1

n
Eϵ sup

f∈F

∣∣∣∣∣
n∑

i=1

ϵif(xtr
i )

∣∣∣∣∣ ≤ C√
n

∫ δ̂

0

√
1 + logN(ϵ, F, L2(Qn))dϵ

≤ C√
n

( √
T

1− γ/2
δ̂1−γ/2 + δ̂

)
. (27)

See van der Vaart and Wellner (1996) for detail. Taking the expectation with respect Q
and employing Jensen’s inequality and (26), we obtain

Rn(F) ≤ CT,γ√
n

[(
δ2 +Rn(F)

)(1−γ/2)/2
+
(
δ2 +Rn(F)

)1/2
]
,
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where CT,γ is a constant depending on T and γ. Thus we have

Rn(F) ≤ CT,γ

[
(n− 2

2+γ ) ∨ (δ1−γ/2/
√
n) ∨ (δ/

√
n)
]
. (28)

By the symmetrization argument (van der Vaart and Wellner, 1996), we have

E[sup
f∈F
|(Qn −Q)f |] ≤ 2Rn(F). (29)

Combining (28) and (29), we obtain the assertion.

Lemma 3 For all M > 1, there exists KM depending on γ, η1, q, and K such that

Q

(
sup

g∈HM
δ

|(Qn −Q)g| ≥ KM

[
ϕM

n (DM(δ)) +

√
t

n
DM(δ) +

t

n

])
≤ e−t.

Proof
Since ϕM

n (DM(δ))/δ and DM(δ)/δ are monotone decreasing, we have

E

[
sup

f∈HM
δ

|(Qn −Q)f |

]
≤
∑
δj≥δ

δ

δj
E

[
sup

g∈GM
n (δj)

|(Qn −Q)(g − g0)|

]

≤
∑
δj≥δ

δ

δj
CϕM

n (DM(δj)) ≤
∑
δj≥δ

δ

δ1−γ′

j

C
ϕM

n (DM(δj))

δγ′

j

≤
∑
δj≥δ

δ

δ1−γ′

j

C
ϕM

n (DM(δ))

δγ′ = CϕM
n (DM(δ))

∑
δj≥δ

δ1−γ′

δ1−γ′

j

≤ CϕM
n (DM(δ))

∑
j≥0

q−j(1−γ′) = cγ,qϕ
M
n (DM(δ)), (30)

where cγ,q is a constant that depends on γ, K, and q, and

sup
f∈HM

δ

√
Qf2 ≤ sup

δj≥δ

δ

δj
sup

g∈GM
n (δj)

√
Q(g − g0)2

≤ δ sup
δj≥δ

DM(δj)

δj
≤ δ

DM(δ)

δ
= DM(δ). (31)

Using the Bousquet bound, we obtain

Q

(
sup

g∈HM
δ

|(Qn −Q)g|/M ≥ C

[
cγ,q

ϕM
n (DM(δ))

M
+

√
t

n

DM(δ)

M
+
t

n

])
≤ e−t,

where C is some universal constant. Thus, there exists KM for all M > 1 such that

Q

(
sup

g∈HM
δ

|(Qn −Q)g| ≥ KM

[
ϕM

n (DM(δ)) +

√
t

n
DM(δ) +

t

n

])
≤ e−t.
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Lemma 4 For an event Sn := {infφ∈Fn Qnφ ≥ ϵ0/2} ∩ {3/4 < an
0 < 5/4}, we have

Q (Sn)→ 1.

Moreover, there exists a sufficiently large M̄ > 0 such that g/an
0 ∈ GM̄

n (∀g ∈ Ĝn) on the
event Sn.

Proof
It is obvious that

(Qn −Q)g0 = Op

(
1√
n

)
.

Thus, because of Qg0 = 1,

an
0 = 1 +Op

(
1√
n

)
.

Moreover, Assumption 1.3 implies

∥Qn −Q∥Fn = Op

(
1√
n

)
.

Thus,
inf

φ∈Fn

Qnφ ≥ ϵ0 −Op(1/
√
n),

implying

Q(S̄n)→ 1 for S̄n :=

{
inf

φ∈Fn

Qnφ ≥ ϵ0/2

}
.

On the event Sn, all the elements of Ĝn is uniformly bounded from above:

1 = Qn(
∑

l

αlφl) =
∑

l

αlQn(φl) ≥
∑

l

αlϵ0/2

⇒
∑

l

αl ≤ 2/ϵ0.

Set M̃ = 2ξ0/ϵ0, then on the event Sn, Ĝn ⊂ GM̃
n is always satisfied. Since an

0 is bounded
from above and below on the event Sn, we can take a sufficiently large M̄ > M̃ such that
g/an

0 ∈ GM̄
n (∀g ∈ Ĝn).
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A.2 Proof of Theorem 2

The proof is a version of Theorem 10.13 in van de Geer (2000). We set g′ := g∗n+ĝn

2
. Since

Qng
′ = Qnĝn = 1,

− Pn log

(
ĝn + g∗n

2g∗n

)
≤ 0

⇒ δn := (Qn −Q)(g′ − g∗n)− (Pn − P ) log

(
g′

g∗n

)
≤ 2P

(√
g′

g∗n
− 1

)
−Q(g′ − g∗n)

= 2P

[(
1− g∗n

g0

)(√
g′

g∗n
− 1

)]
+ 2P

[
g∗n
g0

(√
g′

g∗n
− 1

)]
−Q(g′ − g∗n)

= 2Q
(√

g0 −
√
g∗n
)(√g0

g∗n
+ 1

)(√
g′ −

√
g∗n

)
− hQ(g′, g∗n)2

≤ (1 + c0)hQ(g0, g
∗
n)hQ(g′, g∗n)− hQ(g′, g∗n)2. (32)

If (1+ c0)hQ(g0, g
∗
n)hQ(g′, g∗n) ≥ |δn|, the assertion immediately follows. Otherwise we can

apply the same arguments as Theorem 1 replacing g0 with g∗n.

B Proofs of Lemma 1, Theorem 3 and Theorem 4

B.1 Proof of Lemma 1

First we prove the consistency of α̌n. Note that for g′ = g∗+ĝn/an
∗

2

P log

(
g′

Q(g′)g∗

)
≤ 0, − Pn log

(
g′

g∗

)
≤ 0.

Thus , we have

− logQg′ − (Pn − P ) log

(
g′

g∗

)
≤ P log

(
g′

Q(g′)g∗

)
≤ 0. (33)

In a finite dimensional situation, the inequality (8) is satisfied with arbitrary γ > 0; see
Lemma 2.6.15 in van der Vaart and Wellner (1996). Thus, we can show that the left-hand
side of (33) converges to 0 in probability in a similar way to the proof of Theorem 1. This

and ∇∇P log
(

αTφ+g∗
2g∗

) ∣∣∣
α=α∗

= −I0/4 ≺ O give α̂n
p→ α∗.

Next we prove
√
n-consistency. By the KKT condition, we have

∇Pnψ(α̂n)− λ̂+ ŝ(Qnφ) = 0, λ̂Tα̂n = 0, λ̂ ≤ 0, (34)

∇Pψ(α∗)− λ∗ + s∗(Qφ) = 0, λT
∗ α∗ = 0, λ∗ ≤ 0, (35)
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with the Lagrange multiplier λ̂, λ∗ ∈ Rb and ŝ, s∗ ∈ R (note that KLIEP “maximizes”
Pnψ(α), thus λ̂ ≤ 0). Noticing that ∇ψ(α) = φ

αTφ
, we obtain

α̂T
n∇Pnψ(α̂n) + ŝ(Qnα̂

T
nφ) = 1 + ŝ = 0. (36)

Thus we have ŝ = −1. Similarly we obtain s∗ = −1. This gives

λ̂ = ∇Pnψ(α̂n)−Qnφ, λ∗ = ∇Pψ(α∗)−Qφ. (37)

Therefore, α̂n
p→ α∗ and g∗ ≥ η3 > 0 gives

λ̂
p−→ λ∗.

Thus the probability of {i | λ̂i < 0} ⊇ {i | λ∗,i < 0} goes to 1 (λ̂i and λ∗,i mean the i-th

element of λ̂ and λ∗ respectively). Recalling the complementary condition λ̂Tα̂n = 0, the
probability of {i | α̂n,i = 0} ⊇ {i | λ∗,i < 0} goes to 1. Again by the complementary
condition λT

∗ α∗ = 0, the probability of

(α̌n − α∗)
Tλ∗ = 0

goes to 1. In particular (α̌n − α∗)
Tλ∗ = op(1/n).

Set Z ′
n :=

√
n(∇Pnψ(α∗) − Qnφ − (∇Pψ(α∗)−Qφ)). By the optimality and consis-

tency of α̌n, we obtain

0 ≤Pnψ(α̌n)− Pnψ(α∗)

=(α̌n − α∗)
T∇Pnψ(α∗)−

1

2
(α̌n − α∗)

TI0(α̌n − α∗) + op

(
∥α̌n − α∗∥2

)
=(α̌n − α∗)

T(λ∗ +
Z ′

n√
n

)− 1

2
(α̌n − α∗)

TI0(α̌n − α∗) + op

(
∥α̌n − α∗∥2

)
=(α̌n − α∗)

T Z
′
n√
n
− 1

2
(α̌n − α∗)

TI0(α̌n − α∗) + op

(
∥α̌n − α∗∥2 + 1/n

)
(38)

because∇∇TPnψ(α∗) = −I0+op(1) and (α̌n−α∗)
Tλ∗ = op(1/n). Thus noticing Zn/

√
n =

Op(1/
√
n), we obtain the assertion.

B.2 Proof of Theorem 3

The proof relies on Self and Liang (1987) and Fukumizu et al. (2004), but we shall pay
attention to the fact that the feasible parameter set stochastically behaves and the true
importance g0 may not be contained in the model. Set

Zn :=
√
nI−1

0 (∇Pnψ(α∗)−Qnφ− (∇Pψ(α∗)−Qφ)) .

By Lemma 1 and the inequality (38), we obtain

0 ≤ (α̌n − α∗)
T∇Pnψ(α∗)−

1

2
(α̌n − α∗)

TI0(α̌n − α∗) + op (1/n)

= −1

2
∥α̌n − α∗ − Zn/

√
n∥20 +

1

2
∥Zn/

√
n∥20 + op (1/n) .
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We define

ρ(α) := ∥α− α∗ − Zn/
√
n∥20,

α̃n := arg min
α∈Sn,λT

∗ α=0

ρ(α), α̈n := arg min
α∈S,λT

∗ α=0

ρ(α).

In the following, we show (Step 1)
√
n(α̌n − α̃n) = op(1), (Step 2)

√
n(α̃n − α̈n) = op(1),

and finally (Step 3) derive the asymptotic law of
√
n(α̈n−α∗) and simultaneously it gives

the asymptotic law of
√
n(α̌n − α∗).

Step 1. Derivation of
√
n(α̌n − α̃n) = op(1).

ρ(α∗) ≥ ρ(α̃n) implies

∥α̃n − α∗∥0 ≤ ∥α̃n − α∗ − Zn/
√
n∥0 + ∥Zn/

√
n∥0 ≤ 2∥Zn/

√
n∥0 = Op(1/

√
n).

As shown in the proof of Lemma 1, the probability of λT
∗ α̌n = 0 goes to 1. This and the

optimality of α̃n gives

−1

2
ρ(α̃n) ≥ −1

2
ρ(α̌n)− op(1/n). (39)

Due to the optimality of α̌n, and applying the Taylor expansion of log-likelihood as in
(38) to α̃n instead of α̌n we have

−1

2
ρ(α̃n) ≤ −1

2
ρ(α̌n) + op (1/n) . (40)

The condition λT
∗ α̃n = 0 is needed to ensure this inequality. If this condition is not

satisfied, we cannot assure more than λT
∗ (α̃n − α∗) = Op(1/

√
n). Combining (39) and

(40), we obtain

−op(1/n) ≤ 1

2
(ρ(α̌n)− ρ(α̃n)) ≤ op(1/n).

By the optimality of α̃n and the convexity of Sn, we obtain

∥
√
n(α̌n − α̃n)∥20 ≤ ∥

√
n(α̌n − α∗)− Zn∥20 − ∥

√
n(α̃n − α∗)− Zn∥20

= op(1). (41)

Step 2. Derivation of
√
n(α̃n − α̈n) = op(1).

In a similar way to the case of α̃n, we can show

α̈n − α∗ = Op(1/
√
n).

Let α̃′
n and α̈′

n denote the projection of α̃n to S and α̈n to Sn:

α̃′
n := arg min

α∈S,λT
∗ α=0

∥α̃n − α∥0, α̈′
n := arg min

α∈Sn,λT
∗ α=0

∥α̈n − α∥0.
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Then

∥
√
n(α̈n − α∗)− Zn∥0 ≥ ∥

√
n(α̈′

n − α∗)− Zn∥0 − ∥
√
n(α̈′

n − α̈n)∥0
≥ ∥
√
n(α̃n − α∗)− Zn∥0 − ∥

√
n(α̈′

n − α̈n)∥0,

and similarly

∥
√
n(α̃n − α∗)− Zn∥0 ≥ ∥

√
n(α̈n − α∗)− Zn∥0 − ∥

√
n(α̃′

n − α̃n)∥0.

Thus

−∥
√
n(α̃′

n − α̃n)∥0 ≤ ∥
√
n(α̃n − α∗)− Zn∥0 − ∥

√
n(α̈n − α∗)− Zn∥0

≤ ∥
√
n(α̈′

n − α̈n)∥0.

So, if we can show

∥
√
n(α̃′

n − α̃n)∥0 = op(1), ∥
√
n(α̈′

n − α̈n)∥0 = op(1), (42)

then

∥
√
n(α̈n − α̃n)∥0 = ∥

√
n(α̈n − α∗)−

√
n(α̃′

n − α∗) +
√
n(α̃′

n − α̃n)∥0
≤ ∥
√
n(α̈n − α∗)−

√
n(α̃′

n − α∗)∥0 + ∥
√
n(α̃′

n − α̃n)∥0

≤
√
∥
√
n(α̃′

n − α∗)− Zn∥20 − ∥
√
n(α̈n − α∗)− Zn∥20 + op(1)

≤
√
op(1) + ∥

√
n(α̃n − α∗)− Zn∥20 − ∥

√
n(α̈n − α∗)− Zn∥20 + op(1)

≤ op(1). (43)

Thus it is sufficient to prove (42).
Note that as n → ∞, the probabilities of α̈n ∈ α∗ + C and α̃n ∈ α∗ + Cn tend to 1

because ∥α̃n−α∗∥, ∥α̈n−α∗∥ = op(1). Similar to µi, we define µ̂i using ν̂i := Qnφi instead
of νi. It can be easily seen that

µ̂i
p−→ µi,

and with high probability

Cn =

{
b−1∑
i=1

βiµ̂i | βi ≥ 0 (i ≤ j), βi ∈ R

}
,

where j is the number satisfying α∗,i = 0 (i = 1, . . . , j) and α∗,i > 0 (i = j + 1, . . . , b).
As mentioned above, α̃n − α∗ ∈ Cn and α̈n − α∗ ∈ C with high probability. Thus,

α̃n and α̈n can be expressed as α̃n − α∗ =
∑
β̃iµ̂i and α̈n − α∗ =

∑
β̈iµi. Moreover

α̃n−α∗ = Op(1/
√
n) and α̈n−α∗ = Op(1/

√
n) imply β̃i, β̈i = Op(1/

√
n). Since α̃n, α̈n, α∗ ∈

{α | λT
∗ α = 0}, β̃i = 0 and β̈i = 0 for all i such that λ∗,i ̸= 0. This gives∑

β̃iµi ∈ C ∩ {δ | λT
∗ δ = 0},

∑
β̈iµ̂i ∈ Cn ∩ {δ | λT

∗ δ = 0}.
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Thus, with high probability, the following is satisfied:

√
n∥α̃n − α̃′

n∥0 ≤
√
n
∥∥∥∑ β̃iµ̂i −

∑
β̃iµi

∥∥∥
0
≤
√
n
∑
|β̃i|∥µ̂i − µi∥0 = op(1),

√
n∥α̈n − α̈′

n∥0 ≤
√
n
∥∥∥∑ β̈iµi −

∑
β̈iµ̂i

∥∥∥
0
≤
√
n
∑
|β̈i|∥µ̂i − µi∥0 = op(1),

which imply (42). Consequently (43) is obtained.

Step 3. Derivation of the asymptotic law of
√
n(α̌n − α∗).

By (41) and (43), we have obtained

√
n∥α̌n − α̈n∥0 = op(1). (44)

By the central limit theorem,

√
n(∇Pnψ(α∗)−∇Pψ(α∗)) Z1,

√
n(Qnφ−Qφ) Z2.

The independence of Z1 and Z2 follows from the independence of Pn and Qn. Thus by
the continuous mapping theorem, we have

Zn  I−1
0 (Z1 + Z2).

A projection to a closed convex set is a continuous map. Thus, by the continuous mapping
theorem, it follows that

√
n(α̈n − α∗) arg min

δ∈C,λT
∗ δ=0

∥δ − Z∥0.

By (44) and Slusky’s lemma,

√
n(α̌n − α∗) arg min

δ∈C,λT
∗ δ=0

∥δ − Z∥0.

This concludes the proof.

B.3 Proof of Theorem 4

Note that √
n(α̂n − α∗)−

√
n(α̌n − α∗) =

√
n(1− 1/an

∗ )α̂n.

From the definition,
√
n(1/an

∗ − 1) =
√
n(Qn(g∗) − 1)  αT

∗ Z2. Now αT
∗ (I0 −

P (φ/g∗)P (φT/g∗))α∗ = 0 which implies αT
∗ Z1 = 0 (a.s.), thus αT

∗ Z2 = αT
∗ I0Z (a.s.).

Recalling α̂n
p→ α∗, we obtain the assertion by Slusky’s lemma and the continuous map-

ping theorem.
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