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Abstract

We propose a new statistical approach to the problem of
inlier-based outlier detection, i.e., finding outliers in the test
set based on the training set consisting only of inliers. Our
key idea is to use theratio of training and test data densi-
ties as an outlier score; we estimate the ratio directly in a
semi-parametric fashion without going through density es-
timation. Thus our approach is expected to have better per-
formance in high-dimensional problems. Furthermore, the
applied algorithm for density ratio estimation is equipped
with a natural cross-validation procedure, allowing us to
objectively optimize the value of tuning parameters such as
the regularization parameter and the kernel width. The al-
gorithm offers a closed-form solution as well as a closed-
form formula for the leave-one-out error. Thanks to this,
the proposed outlier detection method is computationally
very efficient and is scalable to massive datasets. Simula-
tions with benchmark and real-world datasets illustrate the
usefulness of the proposed approach.
Keywords: outlier detection, density ratio, importance

1 Introduction

The goal ofoutlier detection(a.k.a.anomaly detection,
novelty detection, or one-class classification) is to find un-
common instances (‘outliers’) in a given dataset. Outlier
detection is useful in various applications such as topic de-
tection in news documents [14], intrusion detection in net-
work systems [24], and defect detection from behavior pat-
terns of industrial machines [3, 9]. For this reason, outlier
detection has been studied thoroughly in statistics, machine
learning, and data mining communities for decades [7].

A standard outlier detection problem falls into the cate-

gory of unsupervised learningdue to lack of prior knowl-
edge on the ‘anomalous data’. In contrast, the papers [4,
5] addressed asemi-supervisedoutlier detection problem
where examples of outlier and inlier are available as a
training set. The semi-supervised outlier detection meth-
ods could perform better than unsupervised methods thanks
to additional label information, but such training samples
are not always available in practice. Furthermore, the type
of outliers may be diverse and thus the semi-supervised
methods—learning fromknowntypes of outliers—are not
necessarily useful in detectingunknowntypes of outliers.

In this paper, we address a problem ofinlier-basedout-
lier detection where examples of inlier are available. More
formally, the inlier-based outlier detection problem is to find
outlier instances in the test set based on the training set con-
sisting only of inlier instances. The setting of inlier-based
outlier detection would be more practical than the semi-
supervised setting since inlier samples are often available
abundantly. For example, in defect detection of industrial
machines, we already know that there is no outlier (i.e., a
defect) in the past since no failure has been observed in the
machinery. Therefore, it is reasonable to separate the mea-
surement data into a training set consisting only of inlier
samples observed in the past and the test set consisting of
recent samples from which we try to find outliers.

As opposed to supervised learning, the outlier detection
problem is vague and it is not possible to universally define
what the outliers are. In this paper, we consider a statistical
framework and regard instances with low probability den-
sities as outliers. In light of inlier-based outlier detection,
outliers may be identified via density estimation of inlier
samples. However, density estimation is known to be a hard
problem particularly in high dimensions, so outlier detec-
tion via density estimation may not work well in practice.

To avoid density estimation, we may useOne-class Sup-



port Vector Machine (OSVM)[19] or Support Vector Data
Description (SVDD)[23], which finds an inlier region con-
taining a certain fraction of training instances; samples out-
side the inlier region are regarded as outliers. However,
these methods cannot make use of inlier information avail-
able in the inlier-based settings. Furthermore, the solutions
of OSVM and SVDD depend heavily on the choice of tun-
ing parameters (e.g., the Gaussian kernel width) and there
seems to be no reasonable method to appropriately deter-
mine the values of the tuning parameters.

To overcome the weakness of the existing methods,
we propose a new approach to inlier-based outlier detec-
tion. Our key idea is not to directly model the training
and test data densities, but only to estimate theratio of
training and test data densities in a semi-parametric fash-
ion. Among existing methods of density ratio estimation
[1, 8, 10, 16, 21, 22], we adopt an algorithm calleduncon-
strained Least-Squares Importance Fitting (uLSIF)[10] for
outlier detection. The reason for this choice is that uLSIF
is equipped with a variant of cross-validation, so the values
of tuning parameters such as the regularization parameter
can be objectively determined without subjective trial and
error. Furthermore, uLSIF-based outlier detection allows us
to compute the outlier score just by solving a system of lin-
ear equations—the leave-one-out cross-validation error can
also be computed analytically. Thus, the proposed method
is computationally very efficient and therefore is scalable
to massive datasets. Through experiments using benchmark
datasets and a real-world dataset of failure detection in hard
disk drives, our approach is shown to compare favorably
with existing outlier detection methods and other density
ratio estimation methods with higher scalability.

2 Outlier Detection via Direct Importance
Estimation

In this section, we propose a new statistical approach to
outlier detection.

Suppose we have two sets of samples—training samples
{xtr

j }
ntr
j=1 and test samples{xte

i }nte
i=1 in a domainD (⊂ Rd).

The training samples{xtr
j }

ntr
j=1 are all inliers, while the test

samples{xte
i }nte

i=1 can contain some outliers. The goal of
outlier detection here is to identify outliers in the test set
based on the training set consisting only of inliers. More
formally, we want to assign a suitableinlier score for the
test samples—the smaller the value of the inlier score is,
the more plausible the sample is an outlier.

Let us consider a statistical framework of the outlier de-
tection problem: suppose training samples{xtr

j }
ntr
j=1 are in-

dependent and identically distributed (i.i.d.) following a
training data distribution with densityptr(x) and test sam-
ples {xte

i }nte
i=1 are i.i.d. following a test data distribution

with strictly positive densitypte(x). Within this statisti-
cal framework, test samples with low training data densities
are regarded as outliers. However,ptr(x) is not accessi-
ble in practice and density estimation is known to be a hard
problem. Therefore, merely using the training data density
as an inlier score may not be promising in practice.

In this paper, we propose using the ratio of training and
test data densities, called theimportance, as an inlier score:

w(x) =
ptr(x)
pte(x)

.

If there exists no outlier sample in the test set (i.e., the train-
ing and test data densities are equivalent), the value of the
importance is one. The importance value tends to be small
in the regions where the training data density is low and the
test data density is high. Thus samples with small impor-
tance values are plausible to be outliers.

One may suspect that this importance-based approach
is not suitable when there exist only a small number of
outliers—since a small number of outliers cannot increase
the values ofpte(x) significantly. However, outliers are
drawn from a region with smallptr(x) and therefore a small
change inpte(x) significantly reduces the importance value.
For example, let the increase ofpte(x) be ϵ = 0.01; then

1
1+ϵ ≈ 1, but 0.001

0.001+ϵ ≪ 1. Thus the importancew(x)
would be a suitable inlier score (see Section 4.3 for illustra-
tive examples).

3 Direct Importance Estimation Methods

The values of the importance are unknown in practice, so
we need to estimate them from the data samples. If we es-
timate the training and test densities from the data samples,
it can suffer from thecurse of dimensionality. So we would
like to directly estimate the importance values without go-
ing through density estimation. In this section, we review
such direct importance estimation methods which could be
used for outlier detection.

3.1 Kernel Mean Matching (KMM)

The KMM method avoids density estimation and directly
gives an estimate of the importance at training points [8].

The basic idea of KMM is to find̂w(x) such that the
mean discrepancy between nonlinearly transformed sam-
ples drawn fromptr(x) andpte(x) is minimized in auni-
versal reproducing kernel Hilbert space[20]. The Gaussian
kernel

Kσ(x,x′) = exp
(
−∥x − x′∥2

2σ2

)
(1)

is an example of kernels that induce a universal reproducing
kernel Hilbert space. It has been shown that the solution



of the following optimization problem agrees with the true
importance:

min
w(x)

∥∥∥∥∫
Kσ(x, ·)ptr(x)dx −

∫
Kσ(x, ·)w(x)pte(x)dx

∥∥∥∥2

F

s.t.
∫

w(x)pte(x)dx = 1 and w(x) ≥ 0,

where∥ · ∥F denotes the norm in the Gaussian reproducing
kernel Hilbert space.

An empirical version of the above problem is reduced to
the following quadratic program:

min
{wi}nte

i=1

1
2

nte∑
i,i′=1

wiwi′Kσ(xte
i , xte

i′ ) −
nte∑
i=1

wiκi


s.t.

∣∣∣∣∣
nte∑
i=1

wi − nte

∣∣∣∣∣ ≤ nteϵ and 0 ≤ w1, . . . , wnte ≤ B,

where

κi =
nte

ntr

ntr∑
j=1

Kσ(xte
i ,xtr

j ).

σ (≥ 0), B (≥ 0), andϵ (≥ 0) are tuning parameters. The
solution{ŵi}nte

i=1 is an estimate of the importance at the test
points{xte

i }nte
i=1.

Since KMM does not require the density estimates, it is
expected to work well. However, the performance of KMM
is dependent on the tuning parametersB, ϵ, andσ and they
cannot be simply optimized, e.g., by cross-validation since
estimates of the importance are available only at the test
points.

3.2 Logistic Regression (LogReg)

Another approach to directly estimating the importance
is to use a probabilistic classifier. Let us assign a selector
variableη = 1 to training samples andη = −1 to test
samples, i.e., the training and test densities are written as

ptr(x) = p(x|η = 1) and pte(x) = p(x|η = −1).

Application of the Bayes theorem yields that the impor-
tance can be expressed in terms ofη as follows [1]:

w(x) ∝ p(η = 1|x)
p(η = −1|x)

.

The conditional probabilityp(η|x) could be approximated
by discriminating test samples from training samples using
a LogReg classifier, whereη plays the role of a class vari-
able. Below we briefly explain the LogReg method.

The LogReg classifier employs the following parametric
model for expressing the conditional probabilityp(η|x):

p̂(η|x) =

{
1 + exp

(
−η

m∑
ℓ=1

ζℓϕℓ(x)

)}−1

,

wherem is the number of basis functions and{ϕℓ(x)}m
ℓ=1

are fixed basis functions. The parameterζ is learned so that
the negative regularized log-likelihood is minimized:

min
ζ

[
nte∑
i=1

log

(
1 + exp

(
m∑

ℓ=1

ζℓϕℓ(xte
i )

))

+
ntr∑
j=1

log

(
1 + exp

(
−

m∑
ℓ=1

ζℓϕℓ(xtr)

))
+ λζ⊤ζ

]
.

Since the above objective function is convex, the global op-
timal solution can be obtained by standard nonlinear opti-
mization methods such as Newton’s method, conjugate gra-
dient, and the BFGS method. Then the importance estimate
is given by

ŵ(x) = exp

(
m∑

ℓ=1

ζℓϕℓ(x)

)
.

An advantage of the LogReg method is that model selec-
tion (i.e., the choice of basis functions{ϕℓ(x)}m

ℓ=1 as well
as the regularization parameterλ) is possible by standard
cross-validation since the learning problem involved above
is a standard supervised classification problem.

3.3 Kullback-Leibler Importance Estimation
Procedure (KLIEP)

KLIEP [21, 22] also directly gives an estimate of the im-
portance function without going through density estimation
by matching the two distributions in terms of the Kullback-
Leibler divergence.

Let us model the importancew(x) by the following lin-
ear model:

ŵ(x) =
b∑

ℓ=1

αℓφℓ(x), (2)

where{αℓ}b
ℓ=1 are parameters and{φℓ(x)}b

ℓ=1 are basis
functions such thatφℓ(x) ≥ 0 for all x ∈ D and for
ℓ = 1, . . . , b. Then an estimate of the training data density
ptr(x) is given by

p̂tr(x) = ŵ(x)pte(x).

In KLIEP, the parametersα are determined so that the
Kullback-Leibler divergence fromptr(x) to p̂tr(x) is mini-



mized:

KL[ptr(x)∥p̂tr(x)] =
∫

ptr(x) log
ptr(x)

ŵ(x)pte(x)
dx

=
∫

ptr(x) log
ptr(x)
pte(x)

dx −
∫

ptr(x) log ŵ(x)dx. (3)

The first term is a constant, so it can be safely ignored.
Sincep̂tr(x) (= ŵ(x)pte(x)) is a probability density func-
tion, it should satisfy

1 =
∫

p̂tr(x)dx =
∫

ŵ(x)pte(x)dx. (4)

The KLIEP optimization problem is given by replacing the
expectations in Eqs. (3) and (4) with empirical averages:

max
{αℓ}b

ℓ=1

 ntr∑
j=1

log

(
b∑

ℓ=1

αℓφℓ(xtr
j )

)
s.t.

b∑
ℓ=1

αℓ

(
nte∑
i=1

φℓ(xte
i )

)
= nte and α1, . . . , αb ≥ 0.

This is a convex optimization problem and the global
solution—which tends to be sparse—can be obtained, e.g.,
by simply performing gradient ascent and feasibility satis-
faction iteratively. See [16] for the convergence proof.

Model selection of KLIEP is possible by a variant oflike-
lihood cross-validation(LCV) [6] as follows. We first di-
vide the training samples{xtr

j }
ntr
j=1 into a training part and

a validation part, the model is trained based on the training
part, and then its likelihood is verified using the validation
part; the model with the largest estimated likelihood is cho-
sen. Note that this LCV procedure corresponds to choosing
the model with the smallestKL[ptr(x)∥p̂tr(x)].

3.4 Unconstrained Least-Squares Importance
Fitting (uLSIF)

In uLSIF, the linear importance model (2) is used and the
parameters are determined so that the following objective
function is minimized [10]:

1
2

∫ (
ŵ(x) − ptr(x)

pte(x)

)2

pte(x)dx

=
1
2

∫
ŵ(x)2pte(x)dx−

∫
ŵ(x)ptr(x)dx+

1
2

∫
ptr(x)2

pte(x)
dx,

where the last term in the right-hand side is a constant and
therefore can be safely ignored. By the empirical approxi-
mation, the following optimization problem is obtained.

α̃ = argmin
α

[
1
2
α⊤Ĥα − ĥ

⊤
α + λα⊤α

]
,

where, forφ(x) = (φ1(x), . . . , φb(x))⊤,

Ĥ =
1

nte

nte∑
i=1

φ(xte
i )φ(xte

i ) and ĥ =
1

ntr

ntr∑
j=1

φ(xtr
j ).

λα⊤α is a regularization term. The solutioñα is given
analyticallyby

α̃ = (Ĥ + λIb)−1ĥ,

whereIb is the b-dimensional identity matrix. Since ele-
ments ofα̃ could be negative, it is modified as

α̂ = max(0b, α̃),

where0b is b-dimensional vector with all zeros. This is the
solution of uLSIF, which can be computed analytically.

Let us consider the leave-one-out cross-validation
(LOOCV) score of uLSIF:

1
nte

nte∑
i=1

[
1
2

(
φ(xte

i )⊤α̂
(i)
λ

)2

− φ(xtr
i )⊤α̂

(i)
λ

]
,

whereα̂
(i)
λ is a parameter learned withoutxte

i andxtr
i . By

using the well-known Woodbury inversion formula,̂α
(i)
λ

can be expressed as

α̂
(i)
λ =max

{
0b,

(nte − 1)ntr

nte(ntr − 1)

(
a+

φ(xte
i )⊤a

nte − φ(xte
i )⊤ate

ate

)

− (nte − 1)
nte(ntr − 1)

(
atr +

φ(xte
i )⊤atr

nte − φ(xte
i )⊤ate

ate

) }
,

where

a = A−1ĥ, ate = A−1φ(xte
i ),

atr = A−1φ(xtr
i ), A = Ĥ +

(nte − 1)λ
nte

Ib.

This expression implies that the matrix inverse needs to be
computed only once (i.e.,A−1) for computing the LOOCV
score. Note that the size ofA−1 is b × b, which is inde-
pendent of the numbers of training and test samples. Thus
LOOCV can be carried out very efficiently without repeat-
ing the hold-out loop.

4 Outlier Detection by uLSIF

In this section, we discuss the characteristics of impor-
tance estimation methods reviewed in the previous section
and propose a practical outlier detection procedure based on
uLSIF.



4.1 Discussions

For KMM, there is no objective model selection method.
Therefore, model parameters such as the Gaussian width
need to be determined by hand, which is highly subjec-
tive in outlier detection. On the other hand, LogReg and
KLIEP give an estimate of the entire importance function.
Therefore, the importance values at unseen points can be
estimated and CV becomes available for model selection.
However, LogReg and KLIEP are computationally rather
expensive since non-linear optimization problems have to
be solved.

uLSIF inherits the preferable properties of LogReg and
KLIEP. Furthermore, the solution of uLSIF can be com-
puted analytically through matrix inversion and therefore
uLSIF is computationally very efficient. Thanks to the
availability of the closed-form solution, the LOOCV score
can also be analytically computed without repeating the
hold-out loop, which highly contributes to reducing the
computation time in the model selection phase.

Based on the above discussion, we decided to use uLSIF
in our outlier detection procedure.

4.2 Heuristic of Basis Function Choice

In uLSIF, a good model may be chosen by LOOCV,
given that a set of promising model candidates is prepared.
Here we propose using a Gaussian kernel model centered at
the training points{xtr

j }
ntr
j=1 as model candidates, i.e.,

ŵ(x) =
ntr∑
ℓ=1

αℓKσ(x, xtr
ℓ ),

where Kσ(x, x′) is the Gaussian kernel (1) with kernel
width σ.

The reason why the training points{xtr
j }

ntr
j=1 are cho-

sen as the Gaussian centers, not the test points{xte
i }nte

i=1,
is as follows. By definition, the importancew(x) tends to
take large values if the training densityptr(x) is large and
the test densitypte(x) is small; conversely,w(x) tends to
be small (i.e., close to zero) ifptr(x) is small andpte(x)
is large. When a function is approximated by a Gaussian
kernel model, many kernels may be needed in the region
where the output of the target function is large; on the other
hand, only a small number of kernels would be enough in
the region where the output of the target function is close
to zero. Following this heuristic, we decided to allocate
many kernels at high training density regions, which can
be achieved by setting the Gaussian centers at the training
points{xtr

j }
ntr
j=1.

Alternatively, we may locate(ntr + nte) Gaussian ker-
nels at both{xtr

j }
ntr
j=1 and{xte

i }nte
i=1. However, in our pre-

liminary experiments, this did not further improve the per-
formance, but just slightly increased the computational cost.

Sincentr is typically very large, just using all the training
points {xtr

j }
ntr
j=1 as Gaussian centers is already computa-

tionally rather demanding. To ease this problem, we practi-
cally propose using a subset of{xtr

j }
ntr
j=1 as Gaussian cen-

ters for computational efficiency, i.e.,

ŵ(x) =
b∑

ℓ=1

αℓKσ(x, cℓ),

where cℓ is a template point randomly chosen from
{xtr

j }
ntr
j=1.

We use the above basis functions in LogReg, KLIEP, and
uLSIF in the experiments.

4.3 Illustrative Examples

Here, we illustrate how uLSIF behaves in outlier detec-
tion.

4.3.1 Toy Dataset

Let the dimension of the data domain bed = 1, and let the
training density be
(a) ptr(x) = N (x; 0, 1),
(b) ptr(x) = 0.5N (x;−5, 1) + 0.5N (x; 5, 1),
whereN (x; µ, σ2) denotes the Gaussian density with mean
µ and varianceσ2. We drawntr = 300 training samples and
99 test samples fromptr(x), and we add an outlier sample
atx = 5 for the case (a) and atx = 0 for the case (b) in the
test set; thus the total number of test samples isnte = 100.
The number of basis functions in uLSIF is fixed atb = 100,
and the Gaussian widthσ and the regularization parameter
λ are chosen from a wide range of values based on LOOCV.
The data densities as well as the importance values (i.e., the
inlier scores) obtained by uLSIF are depicted in Figure 1.
The graphs show that the outlier sample has the smallest
inlier score among all samples and therefore the outlier can
be successfully detected.

Since the solution of uLSIF tends to be sparse, it may be
natural to have a Gaussian-like curve as the inlier score (see
Figure 1 again).

4.3.2 USPS Dataset

USPS is a dataset which contains images of hand-written
digits provided by U.S. Postal Service. Each image consists
of 256 (= 16 × 16) pixels, each of which takes a value
between−1 to +1 representing its color in gray-scale. The
class labels attached to the images are integers between0
and9 denoting the digits the images represent. Here, we try
to find irregular samples in the USPS dataset by uLSIF.

To the256-dimensional image vectors, we append10 ad-
ditional dimensions indicating the true class to identify mis-
labeled images. In uLSIF, we setb = 100 andσ andλ are
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Figure 1. Illustration of uLSIF-based outlier
detection.

5 0 0 0 0
Figure 2. Outliers in the USPS test set.

4 3 2 3 9
Figure 3. Outliers in the USPS training set.

chosen from a wide range of values based on LOOCV. Fig-
ure 2 shows the top5 outlier samples in the original USPS
test set (of size2007) found by uLSIF where their original
labels are attached next to the images. This result clearly
shows that the proposed method successfully detects outlier
samples that are very hard to recognize even by humans.

We also consider an inverse scenario: we switch the
training and test sets and examine the original USPS train-
ing set (of size7291). Figure 3 depicts the top5 outliers
found by uLSIF, showing that they are relatively ‘good’
samples. This implies that the USPS training set consists
only of high-quality samples.

5 Relation to Existing Outlier Detection
Methods

In this section, we discuss the relation between the pro-
posed density-ratio based outlier detection approach with
existing outlier detection methods.

The outlier detection problem we are addressing in this
paper is to find outliers in the test set{xte

i }nte
i=1 based on

the training set{xtr
j }

ntr
j=1 consisting only of inliers. On

the other hand, the outlier detection problem that the ex-
isting methods reviewed here are solving is to find out-
liers in the test set without the training set. Thus the set-
ting is slightly different. However, the existing methods
can also be employed in our setting by simply using the

union of training and test samples as a test set:{xk}n
k=1 =

{xtr
j }

ntr
j=1 ∪ {xte

i }nte
i=1.

5.1 Kernel Density Estimator (KDE)

KDE is a non-parametric technique to estimate a den-
sity p(x) from samples{xk}n

k=1. KDE with the Gaussian
kernel is expressed as

p̂(x) =
1

nte(2πσ2)d/2

n∑
k=1

Kσ(x, xk),

whereKσ(x, x′) is the Gaussian kernel (1).
The performance of KDE depends on the choice of the

kernel widthσ, but its value can be objectively determined
based on LCV [6]: a subset of{xk}n

k=1 is used for density
estimation and the rest is used for estimating the likelihood
of the held-out samples. Note that this LCV procedure cor-
responds to choosingσ such that the Kullback-Leibler di-
vergence fromp(x) to p̂(x) is minimized. The estimated
density values could be directly used as an inlier score. A
variation of the KDE approach has been studied in the pa-
per [11], where local outliers are detected from multi-modal
datasets.

However, density estimation is known to suffer from the
curse of dimensionality, and therefore the KDE-based out-
lier detection method may not be reliable in practice1. In
our experiment, we will use a global KDE-based outlier de-
tection method since we do not assume the multi-modality
of the datasets.

5.2 One-class Support Vector Machine (OSVM)

SVM is one of the most successful classification algo-
rithms in machine learning. The core idea of SVM is to
separate samples in different classes by the maximum mar-
gin hyperplane in a kernel-induced feature space.

OSVM is an extension of SVM to outlier detection
[19]. The basic idea of OSVM is to separate data sam-
ples{xk}n

k=1 into outliers and inliers by a hyperplane in
a Gaussian reproducing kernel Hilbert space. More specif-
ically, the solution of OSVM is given as the solution of the
following quadratic programming problem:

min
{wk}n

k=1

1
2

n∑
k,k′=1

wkwk′Kσ(xk, xk′)

s.t.
n∑

k=1

wk = 1 and 0 ≤ w1, . . . , wn ≤ 1
νn

,

1The density ratio can also be estimated by KDE, i.e., first estimating
the training and test densities and then taking the ratio. However, the es-
timation error tends to be accumulated in this two-step process and our
preliminary experiments showed that this is not useful.



whereν (0 ≤ ν ≤ 1) is the maximum fraction of outliers.
OSVM inherits the concept of SVM, so it is expected to

work well. However, the OSVM solution is dependent on
the outlier ratioν and the Gaussian kernel widthσ; choos-
ing these tuning parameter values could be highly subjective
in unsupervised outlier detection. This is a critical limita-
tion in practice. Furthermore, inlier scores cannot be di-
rectly obtained by OSVM; the distance from the separating
hyperplane may be used as an inlier score, but its statistical
meaning is rather unclear.

A similar algorithm namedSupport Vector Data De-
scription(SVDD) [23] is known to be equivalent to OSVM
if the Gaussian kernel is used.

5.3 Local Outlier Factor (LOF)

The LOF is an outlier score suitable for detecting local
outliers apart from dense regions [2]. The LOF value of an
examplex is defined using the ratio of the average distance
from the nearest neighbors as

LOFk(x) =
1
k

k∑
i=1

lrdk(nearesti(x))
lrdk(x)

,

wherenearesti(x) represents thei-th nearest neighbor of
x and lrdk(x) denotes the inverse of the average distance
from thek nearest neighbors ofx. If x lies around a high
density region and its nearest neighbor samples are close
to each other in the high density region,lrdk(x) tends to
become much smaller thanlrdk(nearesti(x)) for every i.
In such cases,LOFk(x) has a large value andx is regarded
as a local outlier.

Although the LOF values seem to be a suitable outlier
measure, the performance strongly depends on the choice
of the parameterk. To the best of our knowledge, there
is no systematic method to select an appropriate value of
k. In addition, the computational cost of the LOF scores
is expensive since it involves a number of nearest neighbor
search procedures.

5.4 Learning from Positive and Unlabeled data

A formulation calledlearning from positive and unla-
beled datahas been introduced in the paper [13]: given pos-
itive and unlabeled datasets, the goal is to detect positive
samples contained in the unlabeled dataset. The assump-
tion behind this formulation is that most of the unlabeled
samples are negative (outlier) samples, which is different
from the current outlier detection setup. In the paper [12],
a modified formulation has been addressed in the context
of text data analysis—the unlabeled dataset contains only
a small number of negative documents. The key idea is to
construct a single representative document of the negative

(outlier) class based on the difference between the distri-
butions of positive and unlabeled documents. Though the
problem setup is similar to ours, the method is specialized
in text data, i.e., thebag-of-wordsexpression.

Since these above methods do not suit general inlier-
based outlier detection scenarios, we will not include them
in the experiments in Section 6.

5.5 Discussions

In summary, the proposed density-ratio based approach
with direct density-ratio estimation would be more advan-
tageous than KDE since it can avoid solving an unnecessar-
ily difficult problem of density estimation. Compared with
OSVM and LOF, the density-ratio based approach with Lo-
gReg, KLIEP, and uLSIF would be more useful since it is
equipped with a model selection procedure. Furthermore,
uLSIF is computationally more efficient than OSVM and
LOF thanks to the analytic-form solution.

6 Experiments

In this section, we experimentally compare the perfor-
mance of the proposed and existing algorithms. For all ex-
periments, we used the standard statistical language envi-
ronmentR [17]. We implemented uLSIF, KLIEP, LogReg,
KDE, and KMM by ourselves. uLSIF and KLIEP are im-
plemented following the pseudo codes provided in the pa-
pers [10, 21, 22]. A package of theL-BFGS-Bmethod
called theoptimis used in our LogReg implementation, and
a quadratic program solver called theipop contained in the
kernlabpackage is used in our KMM implementation. We
use theksvmfunction contained in thekernlabpackage for
OSVM and thelofactor function included indpreppackage
for LOF.

6.1 Benchmark Datasets

We use12 datasets available from Rätsch’s Benchmark
Repository [18]. Note that they are originally binary clas-
sification datasets—here we regard the positive samples as
inliers and the negative samples as outliers. All the negative
samples are removed from the training set, i.e., the training
set only contains inlier samples. In contrast, a fractionρ of
the negative samples are retained in the test set, i.e., the test
set includes all inlier samples and some outliers.

When evaluating the performance of outlier detection al-
gorithms, it is important to take into account both thede-
tection rate(the amount of true outliers an outlier detection
algorithm can find) and thedetection accuracy(the amount
of true inliers that an outlier detection algorithm misjudges
as outliers). Since there is a trade-off between the detection



rate and detection accuracy, we decided to adopt theArea
Under the ROC Curve(AUC) as our error metric here.

We compare the AUC values of the density-ratio based
methods (KMM, LogReg, KLIEP, and uLSIF) and other
methods (KDE, OSVM, and LOF). All the tuning param-
eters included in KDE, LogReg, KLIEP and uLSIF are cho-
sen based on CV from a wide range of values. CV is not
available to KMM, OSVM, and LOF; the Gaussian kernel
width in KMM and OSVM is set as the median distance be-
tween samples, which has been shown to be a useful heuris-
tic2. The number of basis functions in uLSIF is fixed at
b = 100. Note thatb can also be optimized by CV, but
our preliminary experimental results showed that the per-
formance is not so sensitive to the choice ofb andb = 100
seems to be a reasonable choice. For LOF, we test3 differ-
ent values for the number of nearest neighborsk.

The AUC values as well as the normalized computation
time are summarized in Table 1, showing that uLSIF and
KLIEP work very well. Though the other methods per-
form well for some datasets, they also exhibit poor perfor-
mance in other cases. On the other hand, the performance
of uLSIF and KLIEP is relatively stable. In addition, from
the viewpoint of computation time, uLSIF is much faster
than KLIEP and other methods. Thus, the proposed uLSIF-
based method could be a reliable and computationally effi-
cient alternative to existing outlier detection methods.

6.2 Real-world Datasets

Finally, let us consider a real-world failure predic-
tion problem in hard-disk drives equipped with theSelf-
Monitoring and Reporting Technology(SMART). The
SMART system monitors individual drives and stores some
attributes (e.g., the number of read errors) as time-series
data. We use the SMART dataset provided by a manufac-
turer [15]. The dataset consists of 369 drives, where 178
drives are labeled as good and 191 drives are labeled as
failed. Each drive stores up to the last 300 records that are
logged almost every 2 hours. Although each record origi-
nally includes 59 attributes, we use only 25 variables cho-
sen based on the feature selection test [15]. The sequence of
records are converted into data samples in a sliding-window
manner with window sizeℓ.

In practice, the training set may contain a few “bad” sam-
ples. To simulate such realistic situations, we construct
the training set by choosing all records of the 178 good
drives and adding a small fractionτ of ‘before-fail’ exam-
ples taken from the 191 failed drives which are more than
300 hours prior to failure. The test set is made of the records
of the good drives and the records of the 191 failed drives

2We experimentally confirmed that this heuristic works reasonably well
in the current experiments.

less than 100 hours prior to failure; the “fail” samples are
regarded as outliers in this experiment.

First, we perform experiments for the window sizeℓ =
5, 10 and evaluate the dependence of the feature dimen-
sion on the outlier detection performance. The fractionτ
of before-fail examples in the training set is fixed to 0.05.
Other settings including the fractionρ of outliers andb are
the same as the previous experiments. The results are sum-
marized in Table 2. Next, we change the fraction of before-
fail examples in the training set asτ = 0.05, 0.1, 0.15, 0.2
and evaluate the effect of heterogeneousness of the training
set on the outlier detection performance. The fractionρ of
outliers in the test set is fixed to 0.05 and the window sizeℓ
is fixed to 10. The results are summarized in Table 3.

Overall, the density-ratio based methods work very well;
among them, uLSIF has the lowest computational cost. The
performance of OSVM tends to be degraded as the outlier
fraction ρ increases and the performance of KDE rapidly
gets worse as the feature dimensionℓ increases. LOF works
very well if the number of nearest neighborsk is large.
However, a good choice ofk may be problem-dependent
and there seems no systematic way to determinek appropri-
ately. The computation of LOF is very slow due to extensive
nearest neighbor search, and the performance of LOF tends
to be degraded if the fractionτ of before-fail examples in
the training set is increased.

These results indicate that our algorithm using the den-
sity ratio is accurate and computationally efficient in real-
world failure prediction tasks—in particular, the use of
KLIEP and uLSIF seems promising.

7 Concluding Remarks

We cast the inlier-based outlier detection problem as a
problem of estimating the ratio of probability densities (i.e.,
the importance), and proposed a practical outlier detection
algorithm based on uLSIF. Our method is equipped with
a model selection procedure, which allows us to obtain a
purely objective solution. This is a highly valuable feature
in ill-defined problems such as outlier detection. Further-
more, the proposed method is computationally very effi-
cient and therefore useful in practice. Through extensive
simulations with benchmark and real-world datasets, the
usefulness of the proposed approach was demonstrated.
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B. Scḧolkopf. Correcting sample selection bias by unla-
beled data. InAdvances in Neural Information Processing
Systems, volume 19, 2007.
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