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Overview: Density ratio as outlier score

Goal: to detect outliers in a test set given normal samples
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1. Outlier detection problem given inlier and test data sets

2. Direct density ratio estimation for scoring outlier-ness
3. Evaluation using benchmark and real-world data set
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Outline

= Algorithms
» Direct density ratio estimation: KLIEP & uLSIF

» Comparison with other detection algorithms

= Experiments

~ Artificial and benchmark data sets

» Fault prediction in hard disk systems
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Motivation: Outlier detection given inlier (regular) data sets

= Traditional outlier detection problem

~ Given a single data set
G J Single data set

- Regular samples and a few outliers Outlier

Given two data sets Test data set
. : : Outlier
1. Test data set: might include outliers

2. Inlier data set: only regular samples Inlier data set
~ Real-world applications

- Fault diagnosis: user usage data vs. controlled test data
*  New topic detection: recent documents vs. old documents

What to do for this new detection problem?
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|dea: Ratio of densities can be outlier score

= Qutlier score: output of outlier detection algorithms
» Then decide outliers based on a threshold

= "Density ratio = outlier score”: outliers have larger test density

~ For regular samples: pin(@) = pte(@)

» For outlier samples: pin(x) << pte(iL')
Density ratio Pin(x)

04/ Inlier 0.4y Test _ 3 pre(x)

0.3} density 0.3 density

0.2| pin(x) o2 pre(x) 0.5

il 01l outlier outlier
4 0 g 075 07— 0

Thus we estimate the density ratio, directly
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Why direct density ratio estimation?

» Ex. Kernel Density Estimator (KDE)
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» Curse of dimensionality: massive data samples required
Inlier density Pin (33) - Pin (:B)
hard
<) Pte ()

Test density Pte (x) .

Density ratio

Direct estimation must be easier and more accurate
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Our approach:
Inlier-based outlier detection by direct density ratio estimation

= Density ratio of inlier and test data sets as outlier score
= We could apply existing direct density ratio estimation methods

Directly estimated

outlier
Inlier density Pin (:B) Test density pte(a:) Density ratio Pin(%)
hard hard easier pre(x)

= Ex. lIrregular digits in USPS image database
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Outline

= Inlier-based outlier detection

» Problem definition and applications

~ Density ratio as an outlier score

= Experiments

~ Artificial and benchmark data sets

» Fault prediction in hard disk systems
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Problem: Minimize estimation error
using linear density ratio model

Data sets

Inlier data set : {:c'jn Test data set : {a;-te}”te

j=1

True density ratio

pin(x)

pte(x)

= Linear density ratio model 0.5
b

W(x) = > appe(x) 0

(=1 —S 0
Estimation using Gaussian kernel with widtk(

~ i _ 2
w(x) = E ayKqs(x, :c'n _ Ko(x, ') = exp {_Haz || }
for x € {x;" },2

Goal: to obtain the optimal coefficients &%j

w(x) =

Density ratio
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KLIEP: Kullback-Leibler Importance Estimation Procedure
Sugiyama, Nakajima, Kashima, von Bunau & Kawanabe (NIPS2007)

= Loss: Kullback-Leibler loss
. pin(x)
K L|pin(®)||pin(x)] = | pin(x)l0og — dx.
in(@)IIPin(@)] = [ pin(@)10g =18 =
= Objective: convex and not including true densities

1 Nin b :
maximize — Y~ log | Y app(x)

Min j=1 (=1
Nte b
subject to Z Z Oég(pg(il?}e) = Nnte and ay,an,...,ap > 0.
1=1/(=1

= Optimization: gradient ascent + constraint satisfaction (repeated)

= Advantage
» Global optima
» Equipped with model selection by likelihood cross validation (LCV)
» Good estimation accuracy in high dimension
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ULSIF: Unconstrained Least-Squares Importance Fitting
Kanamori, Hido & Sugiyama (NIPS2008)

= Loss: squared loss ,
1 in
IO RO
= Objective: with L2 regularization without non-negativity constraint

1 ——— —_~
minimize EaTHa — hTa —+ Ao ! o
7 I te te 7 1 " in
where H = — Y o(x;%)p(x;°) and h=— > e(x;’)

Nte ;—1 Min ;=1

for () = (p1(x), .., pp(®)) .

= Optimization: analytically solved + non-negativity satisfaction

= Advantage
» Stability of analytical solution
» Leave-one-out cross validation (LOOCYV) at one time: much faster
- Based on Sherman-W oodbury-Morrison formula
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Conventional outlier detection algorithms:
Could be used for inlier-based outlier detection

* One-class SVM (OCSVM)
Scholkopf, Platt, Shawe-Taylor, Smola and Williamson (Neural Comp. 2001)

» Modified SVM to find outlier boundary by QP solver
» NO model selection of a few parameters at once

= Local Outlier Factor (LOF)
Breunig, Kriegel, Ng and Sander (SIGKDD2000)

» Nearest neighbor-based locality sensitive algorithm

» NO model selection for parameter k

= Kernel Density Estimator (KDE)
» Naturally applied

Single data set
Outlier

Test data set Inlier data set
» Gaussian width can be chosen via LCV Outlier

We apply them on the single merged data set
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Comparison of algorithms

Our methods are qualitatively efficient

Advantage Disadvantage
Density Model Running
estimation | selection time
uLSIF - LOOGCV Short
Density KLIEP — LCV Normal
ratio
estimation LogReg - CV Long
KMM - - Long
OCSVM - - L
Traditional <Mk
outlier LOF - - Longest
detecti
erecton KDE Required LCV Shortest

Kernel Mean Matching (KMM): Huang, Smola, Gretton, Borgwardt and Scholkopf (NIPS2006)
Logistic Regression method (LogReg): Bickel, Bruckner and Scheffer (ICML2007)
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Outline

= Inlier-based outlier detection
» Problem definition and applications
~ Density ratio as an outlier score
= Algorithms
» Direct density ratio estimation: KLIEP & uLSIF

» Comparison with other detection algorithms
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Artificial and USPS datasets:
Detected outliers by our methods

O uLSIF score | 'f O uLSIF score
X OQutliers 141 x Outliers

= Toy example 12
> Inlier: Gaussians '
» Test: Gaussians
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= Hard test examples in USPS image database
» Unclear and mislabeled samples were detected as outliers

SVIeDV SIS
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Experimental setting: comparison with density ratio
estimation and outlier detection methods

= Data set
» 12 data set from Raetsch: converted into outlier detection problem

Negative samples Testset @ \[EUNG pos't“‘,'eﬂs
set: good hard disks under reliability test and user’s failed disks
Inlier set Good disks Test set
ood 7
= Parameters failed

» Model selection for Gaussian width: CV/LCV / LOOCV
» k ={5, 30, 50} : Number of Neighbors for LOF
» r=1{0.01, 0.02, 0.05} : Changing outlier population

Inlier set

» SMART data

> b =100 : Number of Gaussian centers is fixed

= Evaluation metric:
» AUC (Area under ROC curves) value
» Computation time (normalized with that of uLSIF)
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SMART data sets:
uLSIF worked well for the real-world application

Window  f outliers | uLsiF | kuEP | LogReg | kMM | osvm | LOF
size (k=5)

0.842
3} 0.810
0.858
0.805
10 0.845
0.857
Average 0.881 0.836
Comp. time 1.00 1.07

Our methods are practically effective

LOF
(k=30)

LOF
(k=50)

0.937
0.934
0.911
0.925
0.919
0.915

0.933
0.928
0.923
0.920
0.917
0.916

0918
0.892
0.883
0.557
0.546
0.619

0.843 | 0.847
26.98

4.36

0.924
69.31

0.923

0.736
2.19
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Conclusion

v' Statistical approach for inlier-based outlier detection
v" Applying Direct density ratio estimation

v KLIEP and uLSIF

v Model selection capability is the major advantage

v" Evaluation using benchmark and real-world data set
v KLIEP and uLSIF works much faster

v The performances are competitively accurate
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