Autonomous Robots, vol.25, no.3, pp. 287-304, 2008.

Geodesic Gaussian Kernels
for Value Function Approximation®

Masashi Sugiyama
Department of Computer Science, Tokyo Institute of Technology
2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
and
School of Informatics, University of Edinburgh
The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK
sugi@cs.titech.ac. jp

Hirotaka Hachiya
Department of Computer Science, Tokyo Institute of Technology
2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
hachiya@sg.cs.titech.ac. jp

Christopher Towell
School of Informatics, University of Edinburgh
The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK
C.C.Towell@sms.ed.ac.uk

Sethu Vijayakumar
School of Informatics, University of Edinburgh

The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK
sethu.vijayakumar@ed.ac.uk

*The current paper is a complete version of our earlier manuscript (Sugiyama et al., 2007). The major
differences are that we included more technical details of the proposed method in Section 3, discussions
on the relation to related methods in Section 4, and the application to map buliding in Section 6. A demo
movie of the proposed method applied in simulated robot arm control and Khepera robot navigation is

available from ‘http://sugiyama-www.cs.titech.ac.jp/ sugi/2008/GGKvs0GK.wmv’ .

Geodesic Gaussian Kernels for Value Function Approximation 2

Abstract

The least-squares policy iteration approach works efficiently in value function ap-
proximation, given appropriate basis functions. Because of its smoothness, the
Gaussian kernel is a popular and useful choice as a basis function. However, it
does not allow for discontinuity which typically arises in real-world reinforcement
learning tasks. In this paper, we propose a new basis function based on geodesic
Gaussian kernels, which exploits the non-linear manifold structure induced by the
Markov decision processes. The usefulness of the proposed method is successfully
demonstrated in simulated robot arm control and Khepera robot navigation.

Keywords

reinforcement learning; value function approximation; Markov decision process;
least-squares policy iteration; Gaussian kernel;

1 Introduction

Designing a flexible controller of a complex robot is a difficult and time-consuming task
for robot engineers. Reinforcement learning (RL) is an approach that tries to ease this
difficulty (Sutton & Barto, 1998). Value function approximation is an essential ingredient
in RL, especially in the context of solving Markov Decision Processes (MDPs) using policy
iteration methods. Since real robots often involve large discrete state-spaces or continuous
state-spaces, it becomes necessary to use function approximation methods to represent the
value functions. A [east-squares approach using a linear combination of predetermined
under-complete basis functions has shown to be promising in this task (Lagoudakis &
Parr, 2003; Osentoski & Mahadevan, 2007). For general function approximation, Fourier
functions (trigonometric polynomials) Gaussian kernels (Girosi et al., 1995), and wavelets
(Daubechies, 1992) are typical basis function choices and they have been employed in
robotics domains (Lagoudakis & Parr, 2003; Kolter & Ng, 2007). Normalized-Gaussian
bases (Morimoto & Doya, 2007) as well as local linear approximation are also used in
humanoid robot control (Vijayakumar et al., 2002).

Fourier bases (global functions) and Gaussian kernels (localized functions) have certain
smoothness properties that make them particularly useful for modeling inherently smooth,
continuous functions. Wavelets provide basis functions at various different scales and may
also be employed for approximating smooth functions with local discontinuity.

Typical value functions in RL tasks are predominantly smooth with some discontinuous
parts (Mahadevan, 2005). To illustrate this, let us consider a toy RL task of guiding an
agent to a goal in a grid world (see Figure 1(a)). In this task, a state corresponds to a
two-dimensional Cartesian position of the agent. The agent cannot move over the wall, so
the value function of this task is highly discontinuous across the wall. On the other hand,
the value function is smooth along the maze since neighboring reachable states in the
maze have similar values (see Figure 1(b)). Due to the discontinuity, simply employing

Geodesic Gaussian Kernels for Value Function Approximation 3

Fourier functions or Gaussian kernels as basis functions tend to produce undesired, non-
optimal results around the discontinuity, affecting the overall performance significantly
(see Figure 3(b)). Wavelets could be a viable alternative, but are over-complete bases—
one has to appropriately choose a subset of basis functions, which is not a straightforward
task in practice.

Recently, Mahadevan (2005) proposed considering value functions defined not on the
Euclidean space, but on graphs induced by the MDPs (see Figure 1(c)). Value functions
which usually contain discontinuity in the Euclidean domain (e.g., across the wall) could
be smooth on graphs (e.g., along the maze) if the graph is built appropriately. Hence, ap-
proximating value functions on graphs can be expected to work better than approximating
them in the Euclidean domain.

The spectral graph theory (Chung, 1997) showed that Fourier-like smooth bases on
graphs are given as minor eigenvectors of the graph-Laplacian matrix (see Figure 2(c)).
However, their global nature implies that the overall accuracy of this method tends to
be degraded by local noise. Coifman and Maggioni (2006) defined diffusion wavelets,
which posses natural multi-resolution structure on graphs (see Figure 2(d)). Mahadevan
and Maggioni (2006) showed that diffusion wavelets could be employed in value function
approximation, although the issue of choosing a suitable subset of basis functions from
the over-complete set is not discussed—determining the resolution level as well as the
smoothness within the level may not be straightforward in practice.

In the machine learning community, Gaussian kernels seem to be more popular than
Fourier functions or wavelets because of their locality and smoothness (Girosi et al., 1995;
Vapnik, 1998; Scholkopf & Smola, 2002). Furthermore, Gaussian kernels have ‘centers’,
which alleviates the difficulty of basis subset choice, e.g., uniform allocation (Lagoudakis
& Parr, 2003) or sample-dependent allocation (Engel et al., 2005). In this paper, we
therefore define Gaussian kernels on graphs (which we call geodesic Gaussian kernel), and
propose using them for value function approximation (see Figure 2(a)). Our definition
of Gaussian kernels on graphs employs the shortest paths between states rather than
the Euclidean distance, which can be computed efficiently using the Dijkstra algorithm
(Dijkstra, 1959; Fredman & Tarjan, 1987). Moreover, an effective use of Gaussian kernels
opens up the possibility to exploit the recent advances in using Gaussian processes for
temporal-difference learning (Engel et al., 2005).

Basis functions defined on the state space can be used for approximating the state-
action value function by extending them over the action space. This is typically done
by simply copying the basis functions over the action space (Lagoudakis & Parr, 2003;
Mahadevan, 2005). In this paper, we propose a new strategy for this extension, which
takes into account the transition after taking actions. This new strategy is demonstrated
to work very well when the transition is predominantly deterministic.

The paper describes the notations employed for the RL problem succinctly in Sec-
tion 2. Section 3 formulates the Gaussian kernel based basis functions on graphs, in-
cluding a method to generalize them to the continuous domains. Section 4 qualitatively
discusses the characteristics of the proposed geodesic Gaussian kernel and the relation
between the proposed and existing basis functions. Section 5 is devoted to extensive

Geodesic Gaussian Kernels for Value Function Approximation 4

experimental comparison between the proposed and existing basis functions. Section 6
shows applications of the proposed method in simulated kinematic robot arm control and
mobile robot navigation. Section 7 provides concluding remarks and future directions.

2 Formulation of the Reinforcement Learning Prob-
lem

In this section, we briefly introduce the notation and reinforcement learning (RL) formu-
lation that we will use across the manuscript.

2.1 Markov Decision Processes

Let us consider a Markov decision process (MDP) specified by

(S, A,P,R,7), (1)
where
o S=1{sM 52 .. sM}isa finite! set of states,
o A=1{aM,a®, ... al™} is a finite set of actions,
e P(s'|s,a): S x Ax S — [0,1] is the conditional probability of making a transition

to state s if action a is taken in state s,

R(s,a,s"): 8 x A xS — R is an immediate reward for making a transition from s
to s’ by action a,

e 7 €[0,1) is the discount factor for future rewards.

The expected reward R (s, a) for a state-action pair (s,a) is given as

R(s,a) = ZP(S'|S,@)R(S,@, s'). (2)

s'eS

Let
m(s): 8 — A (3)

be a deterministic policy which the agent follows. In this paper, we focus on deterministic
policies since there always exists an optimal deterministic policy (Lagoudakis & Parr,
2003). Let

Q"(s,a):Sx A—R (4)

!For the moment, we focus on discrete state spaces. In Section 3.4, we extend the proposed method
to continuous state spaces.

Geodesic Gaussian Kernels for Value Function Approximation 5

be a state-action value function for policy 7, which indicates the expected long-term
discounted sum of rewards the agent receives when the agent takes action a in state s and
follows policy 7 thereafter. Q7 (s, a) satisfies the following Bellman equation:

Q"(s,a) = R(s,a) +7 Y _ P(s']s,0)Q"(s', 7(s")). (5)
s'eS
The goal of RL is to obtain a policy which produces the maximum amount of long-term
rewards. The optimal policy 7*(s) is defined as

7 (s) = argmax Q" (s, a), (6)
a€EA

where QQ*(s, a) is the optimal state-action value function defined by

Q*(s,a) = max Q" (s,a). (7)

2.2 Least-Squares Policy Iteration

In practice, the optimal policy 7*(s) cannot be directly obtained since R(s,a) and
P(s'|s,a) are usually unknown; even when they are known, direct computation of 7*(s)
is often intractable.

To cope with this problem, Lagoudakis and Parr (2003) proposed approximating the
state-action value function Q7 (s, a) using a linear model:

@W(Saa; ’UJ) = Zwid)i(saa)v (8)

where k is the number of basis functions which is usually chosen to be much smaller than
|S|x|A]. w = (wy,wy, ..., wg) " are the parameters to be learned, " denotes the transpose,
and {¢;(s,a)}¥_, are pre-determined basis functions. Note that k and {¢;(s,a)}*_, can
depend on policy 7, but we do not show the explicit dependence for the sake of simplicity.
Assume we have roll-out samples from a sequence of actions:

{(Sivaia’rias;’) f:la (9)
where each tuple denotes the agent experiencing a transition from s; to s, on taking action
a; with immediate reward r;. We suppose that we have an enough amount of samples to
estimate the transition probability P(s'|s, a).

Under the Least-Squares Policy Iteration (LSPI) formulation (Lagoudakis & Parr,
2003), the parameter w is learned so that the Bellman equation (5) is optimally approxi-
mated in the least-squares sense?. Consequently, based on the approximated state-action
value function with learned parameter w”, the policy is updated as

7(s) «— argmax Q" (s, a; ™). (10)
acA
Approximating the state-action value function and updating the policy is iteratively car-
ried out until some convergence criterion is met.

2There are two alternative approaches: Bellman residual minimization and fized point approzimation.
We take the latter approach following the suggestion in Lagoudakis and Parr (2003).

Geodesic Gaussian Kernels for Value Function Approximation 6

123456789 101112131415161718192021

O
@,
O
O
O
O
0
’.
O

83580008
sfetetetatetetete
ofetetetatetotets
eetetetotetetete
setetetotetitete
tetetetetetitets

BBE3BBEES

(a) Black areas are walls over (b) Optimal state value func- (c) Graph induced by the
which the agent cannot move tion (in log-scale). MDP and a random policy.
while the goal is represented

in gray. Arrows on the grids

represent one of the optimal

policies.

Figure 1: An illustrative example of an RL task of guiding an agent to a goal in the grid
world.

3 Gaussian Kernels on Graphs

In the LSPI algorithm, the choice of basis functions {¢;(s,a)}¥_, is an open design issue.
Traditionally, Gaussian kernels have been a popular choice (Lagoudakis & Parr, 2003;
Engel et al., 2005), but they cannot approximate discontinuous functions well. Recently,
more sophisticated methods of constructing suitable basis functions have been proposed,
which effectively make use of the graph structure induced by MDPs (Mahadevan, 2005).
In this section, we introduce a novel way of constructing basis functions by incorporating
the graph structure while the relation to the existing graph-based methods is discussed
in the next section.

3.1 MDP-Induced Graph

Let G be a graph induced by an MDP, where states S are nodes of the graph and the
transitions with non-zero transition probabilities from one node to another are edges.
The edges may have weights determined, e.g., based on the transition probabilities or
the distance between nodes. The graph structure corresponding to an example grid-
world shown in Figure 1(a) is illustrated in Figure 1(c). In practice, such graph structure
(including the connection weights) is estimated from samples of a finite length. We assume
that the graph G is connected. Typically, the graph is sparse in RL tasks, i.e.,

< n(n-1)/2, (11)

where / is the number of edges and n is the number of nodes.

Geodesic Gaussian Kernels for Value Function Approximation 7

3.2 Ordinary Gaussian Kernels

Ordinary Gaussian kernels (OGKs) on the Euclidean space are defined as

(s, o) = exp (~EEL7L). (12)

207
where ED(s, s') are the Euclidean distance between states s and s'; for example,
ED(s, s') = [l — '], (13)

when the Cartesian positions of s and s’ in the state space are given by @ and ', respec-
tively. o2 is the variance parameter of the Gaussian kernel.

The above Gaussian function is defined on the state space S, where s’ is treated as
a center of the kernel. In order to employ the Gaussian kernel in the LSPI algorithm, it
needs to be extended over the state-action space & x A. This is usually carried out by
simply ‘copying’ the Gaussian function over the action space (Lagoudakis & Parr, 2003;
Mahadevan, 2005). More precisely: let the total number k of basis functions be mp,
where m is the number of possible actions and p is the number of Gaussian centers. For
the i-th action a) (€ A) (i = 1,2,...,m) and for the j-th Gaussian center c¥) (€ S)
(j=1,2,...,p), the (i + (j — 1)m)-th basis function is defined as

bis(j-m(s,a) = I(a = aV)K(s,c), (14)

where I(-) is the indicator function:

: 1 ifa=a®
— gy = ’
I(a=a™) { 0 otherwise. (15)

3.3 Geodesic Gaussian Kernels

On graphs, a natural definition of the distance would be the shortest path. So we define
Gaussian kernels on graphs based on the shortest path:

K(s,s) = e (-0 (16)

202

where SP(s,s’) denotes the shortest path from state s to state s’. The shortest path
on a graph can be interpreted as a discrete approximation to the geodesic distance on a
non-linear manifold (Chung, 1997). For this reason, we call Eq.(16) a geodesic Gaussian
kernel (GGK).

Shortest paths on graphs can be efficiently computed using the Dijkstra algorithm
(Dijkstra, 1959). With its naive implementation, computational complexity for computing
the shortest paths from a single node to all other nodes is O(n?), where n is the number
of nodes. If the Fibonacci heap is employed, computational complexity can be reduced
to O(nlogn + ¢) (Fredman & Tarjan, 1987), where ¢ is the number of edges. Since the

Geodesic Gaussian Kernels for Value Function Approximation 8

graph in value function approximation problems is typically sparse (i.e., { < n?), using
the Fibonacci heap provides significant computational gains. Furthermore, there exist
various approximation algorithms which are computationally very efficient (see Goldberg
& Harrelson, 2005 and references therein).

Analogous to OGKs, we need to extend GGKs to the state-action space for using them
in the LSPI method. A naive way is to just employ Eq.(14), but this can cause a ‘shift’
in the Gaussian centers since the state usually changes when some action is taken. To
incorporate this transition, we propose defining the basis functions as the expectation of
Gaussian functions after transition, i.e.,

Bis(i—tym(s,a) = I(a=aP) Y " P(s']|s,a)K(s', D). (17)

s'eS

This shifting scheme is shown to work very well when the transition is predominantly
deterministic (see Section 5 and Section 6.1 for experimental evaluation).

3.4 Extension to Continuous State Spaces

So far, we focused on discrete state spaces. However, the concept of GGKs can be naturally
extended to continuous state spaces, which is explained here. First, the continuous state
space is discretized, which gives a graph as a discrete approximation to the non-linear
manifold structure of the continuous state space. Based on the graph, we construct
GGKs in the same way as the discrete case. Finally, the discrete GGKs are interpolated,
e.g., using a linear method to give continuous GGKs.

Although this procedure discretizes the continuous state space, it must be noted that
the discretization is only for the purpose of obtaining the graph as a discrete approx-
imation of the continuous non-linear manifold; the resulting basis functions themselves
are continuously interpolated and hence, the state space is still treated as continuous, as
opposed to other conventional discretization procedures.

4 Comparison to Related Basis Function Approaches

In this section, we discuss the characteristics of GGKs in comparison to existing basis
functions using a toy RL task of guiding an agent to a goal in a deterministic grid-world
(see Figure 1(a)). The agent can take 4 actions: up/down/left/right. Note that actions
which make the agent collide with the wall are disallowed. A positive immediate reward
of +1 is given if the agent reaches a goal state; otherwise it receives no immediate reward.
The discount factor is set at v = 0.9.

In this task, a state s corresponds to a two-dimensional Cartesian grid position & of
the agent. For illustration purposes, let us display the state value function

VT(s): S — R, (18)

Geodesic Gaussian Kernels for Value Function Approximation 9

which is the expected long-term discounted sum of rewards the agent receives when the
agent takes actions following policy 7 from state s. From the definition, it can be confirmed
that V™ (s) is expressed in terms of Q™ (s, a) as

V7T(s) = Q(s,7(s)). (19)

The optimal state value function V*(s) (in log-scale) is illustrated in Figure 1(b). An
MDP-induced graph structure estimated from 20 series of random walk samples® of length
500 is illustrated in Figure 1(c). Here, the edge weights in the graph are set at 1 (which
is equivalent to the Euclidean distance between two nodes).

4.1 Geodesic Gaussian Kernels

An example of GGKs for this graph is depicted in Figure 2(a), where the variance of the
kernel is set at a large value (02 = 30) for illustration purposes. The graph shows that
GGKs have nice smooth surface along the maze, but not across the partition between
two rooms. Since GGKs have ‘centers’, they are extremely useful for adaptively choosing
a subset of bases, e.g., using a uniform allocation strategy, sample-dependent allocation
strategy, or maze-dependent allocation strategy of the centers—a practical advantage
over some non-ordered basis functions. Moreover, since GGKs are local by nature, the
ill-effects of local noise is constrained locally—another property that is useful in practice.

The approximated value function obtained by 40 GGKs* are depicted in Figure 3(a),
where we put one GGK center at the goal state and remaining 9 centers are chosen ran-
domly. For GGKs, kernel functions are extended over the action space using the shifting
scheme (see Eq.(17)) since the transition is deterministic (see Section 3.3). The proposed
GGK-based method produces a nice smooth function along the maze while the discon-
tinuity around the partition between two rooms is sharply maintained (cf. Figure 1(b)).
As a result, for this particular case, GGKs give the optimal policy (see Figure 4(a)).

As discussed in Section 3.3, the sparsity of the state transition matrix allows efficient
and fast computations of shortest paths on the graph. Therefore, the LSPI algorithm
with GGK-based bases is still computationally attractive (see Section 5). GGKs includes
an open parameter, i.e., variance o® in Eq.(16). The effect of choice of the variance
parameter will be discussed in Section 5.

4.2 Ordinary Gaussian Kernels

OGKs share some of the preferable properties of GGKs described above. However, as
illustrated in Figure 2(b), the ‘tail’ of OGKs extends beyond the partition between two
rooms. Therefore, OGKs tend to undesirably ‘smooth’ out the discontinuity of the value

3More precisely, in each random walk, we choose an initial state randomly. Then, an action is chosen
randomly and transition is made; this is repeated 500 times. This entire procedure is independently
repeated 20 times to generate the training set.

4Note that the total number k of basis functions is 160 since each GGK is copied over the action space
as per Eq.(17).

Geodesic Gaussian Kernels for Value Function Approximation

LR
““““““ uan

AT

(d) Diffusion wavelets

Figure 2: Examples of basis functions.

10

Geodesic Gaussian Kernels for Value Function Approximation 11

123456789 101112131415161718192021

SO

(a) Geodesic Gaussian kernels

123456789 101112131415161718192021

SO

e RN
B e e
B e o o = T Y
B e
S

(b) Ordinary Gaussian kernels

123456789 101112131415161718192021

R AR e e Mt

(c) Graph-Laplacian eigenbases (MSE = 4.73 x
107%)

1
1

(c) Graph-Laplacian eigenbases

123456789 101112131415161718192021

(d) Diffusion wavelets (MSE = 5.00 x 10™*%)

Figure 3: Approximated value functions in log-scale. (d) Diffusion wavelets
The errors are computed with respect to the optimal

value function illustrated in Figure 1(b) Figure 4: Obtained policies.

Geodesic Gaussian Kernels for Value Function Approximation 12

function around the barrier wall (see Figure 3(b)). This causes an error in the policy
around the partition (see z = 10, y = 2,3,...,9 of Figure 4(b)).

4.3 Graph-Laplacian Eigenbases

Mahadevan (2005) proposed employing the smoothest vectors on graphs as bases in value
function approximation. According to the spectral graph theory (Chung, 1997), such
smooth bases are given by the minor eigenvectors of the graph-Laplacian matrix, which are
called graph-Laplacian eigenbases (GLEs). GLEs may be regarded as a natural extension
of Fourier bases to graphs.

Examples of GLEs are illustrated in Figure 2(c), showing that they have a nice Fourier-
like structure on the graph. It should be noted that GLEs are rather global in nature,
implying that noise in a local region can potentially degrade the global quality of approxi-
mation. An advantage of GLEs is that they have a natural ordering of the basis functions
according to the smoothness. This is practically very helpful in choosing a subset of basis
functions. Figure 3(c) depicts the approximated value function in log-scale, where top
40 smoothest GLEs out of 326 GLEs are used (note that the actual number of bases is
160 because of the duplication over the action space). It shows that GLEs globally give a
very good approximation (although the small local fluctuation is significantly emphasized
since the graph is in log-scale); indeed, the mean squared error (MSE) between the ap-
proximated and optimal value functions described in the captions of Figure 3 shows that
GLEs give a much smaller MSE than GGKs and OGKs. However, the obtained value
function contains systematic local fluctuation and this results in an inappropriate policy
(see Figure 4(c)).

MDP-induced graphs are typically sparse. In such cases, the resultant graph-Laplacian
matrix is also sparse and GLEs can be obtained just by solving a sparse eigenvalue
problem—which is computationally efficient (see Section 5). However, finding minor
eigenvectors could be numerically unstable.

4.4 Diffusion Wavelets

Coifman and Maggioni (2006) proposed diffusion wavelets (DWs), which are a natural
extension of wavelets to the graph. The construction is based on a symmetrized ran-
dom walk on a graph. It is diffused on the graph up to a desired level, resulting in a
multi-resolution structure. A detailed algorithm for constructing DWs and mathematical
properties are described in Coifman and Maggioni (2006), so we omit the detail here. We
use the software provided by one of the authors of the paper as it is®.

When constructing DWs, the maximum nest level of wavelets and tolerance used in
the construction algorithm needs to be specified by users. We set the maximum nest level
to 10 and the tolerance to 107'°, which are the default values used in the sample code.
Examples of DWs are illustrated in Figure 2(d), showing a nice multi-resolution structure
on the graph. DWs are over-complete bases, so one has to appropriately choose a subset

S‘http://www.math.yale.edu/ mmm82/DWCode_.html’.

Geodesic Gaussian Kernels for Value Function Approximation 13

123456789 1011121314151617181920

12 3 45 6 7 8 9 10111213 141516 17 18 19 20

®~NOURWN R

R 2 2

e B = G NN

55T T soso555
5555551717 Tso5-5-57
TTTT 55517 55511 >
55555557 55557 5T 17
5555533535555 55517 1T

R e e N e e

(a) Sutton’s maze (b) Three-room maze

Figure 5: Two benchmark mazes used for simulation. In this experiment, we put GGKs
at all the goal states and the remaining kernels are distributed uniformly over the maze;
the ‘shift’ scheme described by Eq.(17) is used in GGKs.

of bases for better approximation. Figure 3(d) depicts the approximated value function
obtained by DWs, where we chose the most global 40 DWs from 1626 over-complete
DWs (note that the actual number of bases is 160 because of the duplication over the
action space). The choice of the subset bases could possibly be enhanced using multiple
heuristics; however, the current choice is reasonable since the Figure 3(d) shows that DWs
give a much smaller MSE than Gaussian kernels. However, similar to GLEs, the obtained
value function contains a lot of small fluctuations (see Figure 3(d)) and this results in an
erroneous policy (see Figure 4(d)).

Thanks to the multi-resolution structure, computation of diffusion wavelets can be
carried out recursively. However, due to the over-completeness, it is still rather demanding
in computation time (see Section 5). Furthermore, appropriately determining the tuning
parameters as well as choosing an appropriate basis subset is not a straightforward task
in practice.

5 Experimental Comparison

In this section, we report the results of extensive and systematic experiments for illus-
trating the difference between GGKs and other basis function approaches.

We employ two deterministic grid-world problems illustrated in Figure 5, and evalu-
ate the accuracy of approximated value functions by computing the mean squared error
(MSE) with respect to the optimal value function and the performance of obtained policies
by calculating the fraction of states from which the agent can get to the goal optimally
(i.e., in the shortest number of steps). 20 series of random walk of length 300 are gath-
ered as training samples, which are used for estimating the graph as well as the transition
probability and expected reward. We set the edge weights in the graph at 1 (which is

Geodesic Gaussian Kernels for Value Function Approximation 14

equivalent to the Euclidean distance between two nodes).

This simulation is repeated 100 times for each maze and each method, randomly
changing training samples in each run. The mean of the above scores as a function of the
number of kernels is plotted in Figures 6-9. Note that the actual number of bases is four
times more because of the extension of basis functions over the action space (see Eq.(14)
and Eq.(17)).

First, we compare the performance of two kernel allocation strategies in GGKs:

(i) Kernels are put at all the goal states and the remaining kernels are distributed uni-
formly over the maze; the ‘shift’ strategy introduced in Section 3.3 is used.

(ii) All kernels are just uniformly distributed over the maze and the ‘shift’ strategy is
not used.

We test small (0 = 1), medium (0 = 5), and large (0 = 9) Gaussian widths. Figure 6
depicts MSEs of the approximated value functions, where the strategy (i) is denoted as
GGK and the strategy (ii) is denoted as GGK’. The graphs show that the difference
between the strategies (i) and (ii) is not so significant in terms of MSEs (dependence
of the accuracy on the Gaussian width will be discussed below). Figure 7 depicts the
fraction of optimal states in the obtained policy. The results show that when the number
of kernels is small, the strategy (i) tends to perform significantly better than the strategy
(ii) in terms of the quality of the obtained policy.

Next, we compare the performance of GGKs, OGKs, GLEs, and DWs. In OGKs,
kernels are put at all the goal states and the remaining kernels are distributed uniformly
over the maze; the ‘shift’ strategy is not used. Figure 8 depicts MSEs of the approximated
value functions for each method. The graphs show that MSEs of GGKs with small width,
OGKs with small width, GLEs, and DWs are very small and decrease as the number of
kernels increases. On the other hand, MSEs of GGKs and OGKs with medium/large width
are relatively large and counter-intuitively, increase as the number of kernels increases.
Therefore, from the viewpoint of approximation quality of the value functions, GGKs and
OGKs with smaller width seem to perform better.

Figure 9 depicts the fraction of optimal states in the obtained policy. The graphs show
that overall GGKs with medium /large width give much better policies than OGKs, GLEs,
and DWs. An interesting finding from the graphs is that GGKs tend to work better if
the Gaussian width is large, while OGKs show the opposite trend; this may be explained
as follows. Tails of OGKs extend across the wall as illustrated in Figure 2(b). Therefore,
OGKs with large width tend to produce undesired value functions and erroneous policies
around the partitions. This tail effect can be alleviated if the Gaussian width is made
small. However, this in turn makes the approximated value function non-smooth and
fluctuating®; so the resulting policies are still erroneous. The fluctuation problem with
a small Gaussian width seems to be improved if the number of bases is increased, while
the tail effect with a large Gaussian width still remains even when the number of bases is

6This is a well-known drawback of Gaussian kernel based methods, see a standard textbook such as
Bishop (1995).

Geodesic Gaussian Kernels for Value Function Approximation 15

0.014

—8— GGK() pr——re P
—%— GGK(5) —k— GGK(5) .
0,09} —&— GGK(9) e —6—GGK(9) o
- B -GGK(1) , - B -GGK'(1) ,
- % - GGK() 2 o012~ 3 T 2K o
0.08FL= © ~GCK(9) - © - GGK'(9)

0.07 0.01

0.06

5 5
@ 5 0.008
k5 B
5 o
0.05 S
< c
3 § 0.006
= 0.04 >
0.03 0.004
0.02
0.002
0.01 B%S
0 0)
0 20 40 60 80 100 0 20 40 60 80 100
Number of kernels Number of kernels
(a) Sutton’s maze (b) Three-room maze

Figure 6: Mean squared error of approximated value functions averaged over 100 trials
for the Sutton and three room mazes. In the legend, GGK denotes the GGK method
with the kernel allocation strategy (i), i.e., kernels are put at all the goal states and the
remaining kernels are distributed uniformly over the maze; the ‘shift’ strategy introduced
in Section 3.3 is used. GGK’ denotes the GGK method with the kernel allocation strategy
(i), i.e., all kernels are just uniformly distributed over the maze and the ‘shift’ strategy
is not used. The standard deviation o of GGK and GGK’ is denoted in the bracket.

o
©

o
o

0.8

<)
~

o

~

o
o

o
o

Fraction of optimal states
o
(5]

o
~
Fraction of optimal states
o
(2]

o

w
©
IS

o

N
o
w

o
N

0 20 40 60 80 100 0 20 40 60 80 100

Number of kernels Number of kernels
(a) Sutton’s maze (b) Three-room maze

Figure 7: Fraction of optimal states averaged over 100 trials for the Sutton and three
room mazes. The legends are the same as Figure 6.

Geodesic Gaussian Kernels for Value Function Approximation 16

016 0,016
& GGKQ) —B— GGK(1) 2
—— GGK(5) * —— GGK(5)

—O&—GGK(9) e —6— GGK(9) L

0.14{ - B - OGK(1) * 00141 - B - OGK(1) o,
— % — OGK(5) * — % — OGK(5) "

- © - 0GK(9) . - © - 0GK(9) o,
+ GLE x + . GLE S
012 A= DW ’ 0.012} ' —A-DW g "

o

o
o
o
=

Mean squared error
o
o
[+3)

Mean squared error
o
o
o
{e5)

o
o
>

0.006

0.04 0.004

0.02 Hgh 0.002

I 1 1
0 20 40 60 80 100 0 20 40 60 80 100

Number of kernels Number of kernels
(a) Sutton’s maze (b) Three-room maze

Figure 8: Mean squared error of approximated value functions averaged over 100 trials
for the Sutton and three room mazes. In the legend, the standard deviation o of GGKs
and OGKs is denoted in the bracket.

I <
IS

Fraction of optimal states
o
(%]

Fraction of optimal states
o
(9]

041
03t 03
0.2 0.2
0.1ph 0.1 *4'__#‘ s
s — A~ oA lhihedhe Atk
0 0 ; ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100
Number of kernels Number of kernels
(a) Sutton’s maze (b) Three-room maze

Figure 9: Fraction of optimal states averaged over 100 trials for the Sutton and three
room mazes. The legends are the same as Figure 8.

Geodesic Gaussian Kernels for Value Function Approximation 17

350

—B— GGK(1) —8— GGK(1)

—*— GGK(5) —*— GGK(5)
300 || —&— GGK(9) 3501 —e— GGK(9)

- B - 0GK(1) - B - 0GK(1)

— % — OGK(5) 300l = * ~OGKG)
2501 | = © = OGK(9) - © - 0GK(9)

-+ GLE * o+ GLE

- —A— DW / 50l L =A= DW

200
200 -
150+

Computation time [sec]
o
Computation time [sec]

i

ol

o
T

100~
100+

50 [50 n 0000000

0 20 40 60 80 100 0 20 40 60 80 100

Number of kernels Number of kernels
(a) Sutton’s maze (b) Three-room maze

Figure 10: Computation time.

increased. On the other hand, GGKs do not suffer from the tail problem thanks to the
geodesic construction. Therefore, GGKs allow us to make the width large without being
affected by the discontinuity across the wall. Consequently, smooth value functions along
the maze are produced and hence better policies can be obtained by GGKs with large
widths. This result highlights a helpful property since it alleviates the practical issue of
determining the values of the Gaussian width parameter.

The computation time of each method using our MATLAB implementation is sum-
marized in Figure 10, showing that the proposed GGKs are slightly slower than other
methods with the same number of bases. However, given that GGKs give much better
policies with a small number of bases than others (see Figure 9), GGKs are computation-
ally very efficient. Note that the running time of the Dijkstra algorithm was less than 0.1
second in the current simulations, which is negligibly small; the computation time was
dominated by the LSPI iteration.

6 Applications

As discussed in the previous section, the proposed GGKs bring a number of preferable
properties for making value function approximation effective. In this section, we investi-
gate the application of the GGK-based method to the challenging problems of (simulated)
robot arm control and mobile robot navigation and demonstrate its usefulness. Since
GLEs and DWs appeared not to perform robustly in the pilot experiments carried out in
the previous sections, we only test GGKs and OGKs here.

Geodesic Gaussian Kernels for Value Function Approximation 18

—
[O]
[
=
[@)]
(]
e
=

100

0
Joint 1 (degree)
(a) A schematic (b) State space

Figure 11: A two-joint robot arm. In this experiment, we put GGKs at all the goal states
and the remaining kernels are distributed uniformly over the maze; the ‘shift’ scheme is
used in GGKs.

6.1 Robot Arm Control

We use a simulator of a two-joint robot arm (moving in a plane) illustrated in Figure 11(a).
The task is to lead the end-effector (‘hand’) of the arm to an object while avoiding the
obstacles. Possible actions are to increase or decrease the angle of each joint (‘shoulder’
and ‘elbow’) by 5 degrees in the plane, simulating coarse stepper-motor joints. Thus
the state space S is the 2-dimensional discrete space consisting of two joint-angles as
illustrated in Figure 11(b). The black area in the middle corresponds to the obstacle in
the joint-angle state space. The action space A involves 4 actions: increase or decrease one
of the joint angles. We give a positive immediate reward +1 when the robot’s end-effector
touches the object; otherwise the robot receives no immediate reward. Note that actions
which make the arm collide with obstacles are disallowed. The discount factor is set at
v =0.9. In this environment, we can change the joint angle exactly by 5 degrees, so the
environment is deterministic. However, because of the obstacles, it is difficult to explicitly
compute an inverse kinematic model; furthermore, the obstacles introduce discontinuity
in value functions. Therefore, this robot-arm control task is an interesting test bed for
investigating the behavior of GGKs.

We collected training samples from 50 series of 1000 random arm movements, where
the start state is chosen randomly in each trial. The graph induced by the above MDP
consists of 1605 nodes and we assigned uniform weights to the edges. There are totally
16 goal states in this environment (see Figure 11(b)), so we put the first 16 Gaussian
centers at the goals and the remaining centers are chosen randomly in the state space.
For GGKSs, kernel functions are extended over the action space using the shifting scheme
(see Eq.(17)) since the transition is deterministic in this experiment.

Figure 12 illustrates the value functions approximated using GGKs and OGKs (similar
to Section 4, we display state value functions although state-action value functions are

Geodesic Gaussian Kernels for Value Function Approximation 19

0.5

S
S —
77

==
e
T—]

SO
NS
S

DS

S

TS

N

W
o
/

SouSS

““

—<

7 ///Z/ % ’f"l“%
775
%@%’m{n

i

—

———~

<
e

—

(—
5
—
\

Q
%

l

Y

Joint 2 (degree) Joint 2 (degree)

-180 -100 Joint 1 (degree) -180 -100 Joint 1 (degree)

(a) Geodesic Gaussian kernels (b) Ordinary Gaussian kernels

Figure 12: Approximated value functions with 10 kernels (the actual number of bases is
40 because of the duplication over the action space).

o
[2)

Fraction of successful trials
o
o

03
02 —— GGK(5)
I —6— GGK(9)
0.1f — % - OGK(5)
¥ - © - 0GK(9)
o ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100

Number of kernels

Figure 13: Number of successful trials.

approximated). The graphs show that GGKs give a nice smooth surface with obstacle-
induced discontinuity sharply preserved, while OGKs tend to smooth out the discon-
tinuity. This makes a significant difference in avoiding the obstacle: from ‘A’ to ‘B’
in Figure 11(b), the GGK-based value function results in a trajectory that avoids the
obstacle (see Figure 12(a)). On the other hand, the OGK-based value function yields
a trajectory that tries to move the arm through the obstacle by following the gradient
upward (see Figure 12(b)), causing the arm to get stuck behind the obstacle’.

TA demo movie is available from ‘http://sugiyama-www.cs.titech.ac.jp/ sugi/2008/

Geodesic Gaussian Kernels for Value Function Approximation 20

Figure 13 summarizes the performance of GGKs and OGKs measured by the percent-
age of successful trials (i.e., the end-effector reaches the object) averaged over 30 inde-
pendent runs. More precisely, in each run, totally 50000 training samples are collected
using a different random seed, a policy is then computed by the GGK- or OGK-based
LSPI method, and the obtained policy is tested. This graph shows that GGKs remarkably
outperform OGKs since the arm can successfully avoid the obstacle. The performance
of OGKs does not go beyond 0.6 even when the number of kernels is increased. This is
caused by the ‘tail effect’ of OGKs; the OGK-based policy cannot lead the end-effector
to the object if it starts from the bottom-left half of the state space

When the number of kernels is increased, the performance of both GGKs and OGKs
once gets worse at around £ = 20. This would be caused by our kernel allocation strategy:
the first 16 kernels are put at the goal states and the remaining kernel centers are chosen
randomly. When k is less than or equal to 16, the approximated value function tends
to have a unimodal profile since all kernels are put at the goal states. However, when k
is larger than 16, this unimodality is broken and the surface of the approximated value
function has slight fluctuations, causing an error in policies and degrading performance at
around k£ = 20. This performance degradation tends to recover as the number of kernels
is further increased.

Overall, the above result shows that when GGKs are combined with our kernel-center
allocation strategy, almost perfect policies can be obtained with a very small number of
kernels. Therefore, the proposed method is computationally very advantageous.

6.2 Robot Agent Navigation

The above simple robot-arm control simulation shows that the GGK method is promising.
Here we apply GGKs to a more challenging task of mobile robot navigation, which involves
a high-dimensional, very large state space.

We employ a Khepera robot illustrated in Figure 14(a) on the navigation task. A
Khepera is equipped with 8 infra-red sensors (‘s1’ to ‘s8” in the figure), each of which
gives a measure of the distance from the surrounding obstacles. Each sensor produces
a scalar value between 0 and 1023: the sensor obtains the maximum value 1023 if an
obstacle is just in front of the sensor and the value decreases as the obstacle gets farther
till it reaches the minimum value 0. Therefore, the state space S is 8-dimensional. The
Khepera has two wheels and takes the following 4 defined actions: forward, left-rotation,
right-rotation, and backward (i.e., the action space A contains 4 actions). The speed of
the left and right wheels for each action is described in Figure 14(a) in the bracket (the
unit is pulse per 10 milliseconds). Note that the sensor values and the wheel speed are
highly stochastic due to the cross talk, sensor noise, slip etc. Furthermore, perceptual
aliasing occurs due to the limited range and resolution of sensors. Therefore, the state
transition is also highly stochastic. We set the discount factor at v = 0.9.

The goal of the navigation task is to make the Khepera explore the environment as
much as possible. To this end, we give a positive reward +1 when the Khepera moves

GGKvs0GK.wmv’.

Geodesic Gaussian Kernels for Value Function Approximation 21

N s7 s8 /

Yad

(-2,-2)

_400 L L L L L L L L L)
-1000 -800 —600 -400 —200 [200 400 600 800 1000

(a) A schematic (b) State space projected onto a 2-dimensional subspace for
visualization.

Figure 14: Khepera robot. In this experiment, GGKs are distributed uniformly over the
maze without the ‘shift’ scheme.

forward and a negative reward —2 when the Khepera collides with an obstacle. We do
not give any reward to the left/right rotation and backward actions. This reward design
encourages the Khepera to go forward without hitting obstacles, through which extensive
exploration in the environment could be achieved.

We collected training samples from 200 series of 100 random movements in a fixed
environment with several obstacles (see Figure 15(a)). Then we constructed a graph from
the gathered samples by discretizing the continuous state space using the Self-Organizing
Map (SOM) (Kohonen, 1995). A SOM consists of neurons located on a regular grid.
Each neuron corresponds to a cluster and neurons are connected to adjacent ones by
neighborhood relation. The SOM is similar to the k-means clustering algorithm, but it
is different in that topological structure of the entire map is taken into account; by that,
the entire space tends to be covered. The number of nodes (states) in the graph is set
at 696 (equivalent with the SOM map size of 24 x 29); this value is computed by the
standard rule-of-thumb formula 5y/n (Vesanto et al., 2000), where n is the number of
samples. The connectivity of the graph is determined by state transitions occurred in the
samples, i.e., if there is a state transition from one node to another in the samples, an
edge is established between these two nodes and the edge weight is set according to the
Euclidean distance between them.

Figure 14(b) illustrates an example of the obtained graph structure. For visualization
purposes, we projected the 8-dimensional state space onto a 2-dimensional subspace®
spanned by

(-1 -1 00 1 1 0 0),
11

00 —1 —1). (20)

The i-th element in the above bases corresponds to the output of the i-th sensor (see

8We note that the projection is done only for the purpose of visualization; all the computations are
carried out using the entire 8-dimensional data.

Geodesic Gaussian Kernels for Value Function Approximation 22

(a) Training (b) Test

Figure 15: Simulation environment

Figure 14(a)). The projection onto this subspace roughly means that the horizontal axis
corresponds to the distance to the left /right obstacle, while the vertical axis corresponds
to the distance to the front/back obstacle. For clear visibility, we only displayed the
edges whose weight is less than 250. Representative local poses of the Khepera with
respect to the obstacles are illustrated for salient nodes of the state-space MDP graph in
Figure 14(b). This graph has a notable feature: the nodes around the region ‘B’ in the
figure are directly connected to the nodes at ‘A’, but are very sparsely connected to the
nodes at ‘C’, ‘D’, and ‘E’. This implies that the geodesic distance from ‘B’ to ‘C’, ‘B’ to
‘D’ or ‘B’ to ‘E’ is typically larger than the Euclidean distance.

Since the transition from one state to another is highly stochastic in the current
experiment, we decided to simply duplicate the GGK function over the action space (see
Eq.(14)). For obtaining continuous GGKs, GGK functions need to be interpolated (see
Section 3.4). We may employ a simple linear interpolation method in general. However,
the current experiment has unique characteristics—at least one of the sensor values is
always zero since the Khepera is never completely surrounded by obstacles. Therefore,
samples are always on the surface of the 8-dimensional hypercube-shaped state space. On
the other hand, the node centers determined by the SOM are not generally on the surface.
This means that any sample is not included in the convex hull of its nearest nodes and
we need to extrapolate the function value. Here, we simply add the Euclidean distance
between the sample and its nearest node when computing kernel values; more precisely,
for a state s that is not generally located on a node center, the GGK-based basis function
is defined as

202 (21)

5 3 W)
¢i+(jfl)m(5a a)=1I(a= a(i)) exp <— (ED(s, 8) + SP(3, ¥))2> ,

where 5 is the node closest to s in the Euclidean distance.

Figure 16 illustrates an example of actions selected at each node by the GGK-based
and OGK-based policies. We used 100 kernels and set the width at 1000. The symbols “1’,
'}, ‘C’, and ‘D’ in the figure indicate forward, backward, left-rotation, and right-rotation

Geodesic Gaussian Kernels for Value Function Approximation 23

1000 1000

By
%
i
7

AT o
T e

u
SNV

&
goof >, 557> > Pae 800} B Wy
> 2 33 E DT c < T¢CCC S Cégc CECCC@C 2 3o + J,rﬂLﬁTﬂr ¢ Lill' < c S
23 2, T, 2 ¢ < 22 3H 72 { 27) C cao
600|255 ~ 5 T T3 < 11 S cccca 600|525 "5 2 5 LT { S Ccca
DDDDDD TTDD > TT c TCTT C ccac 333333 DDJ’T TT T ’LCCCCCCC@
2> TJTTTDTTT <1 T17 Car 25757570 TTT TTT CCCCCCCCE
C
400-2’33;33 TT 1 TTT T TTTTT TCCC % j Cc‘é 4oo-§D;D;DDDT TTT TTTTTTTT TTTlECCCC < cc,;é
52527 T A TDT ' TTTTT 1 TTTTT’?T TC CC CC@ 52252 N TTT A TTTTT 1 TTTTT CC CC CC%
w0t 2> 54 1 47 PO L c< w0t 2> 5 " 5 417 TTTTTT T < c
RN T 1 T TT T TT T S cc 2 242 TT 1 T T T T o 1T < < cc
> 21T e 7 TTTTTTTTT 1 c >5 "5 2>) TTTTTTTTT T S cx
2 2> T T 1 ce 2 ~>5 C c cec
== X e sl
200} % 200} %
-400 g -400 g
T1000 -800 -600 400 -200 O 200 400 600 800 1000 T1000 -800 -600 -400 -200 O 200 400 600 800 1000
(a) Geodesic Gaussian kernels (b) Ordinary Gaussian kernels

Figure 16: Examples of obtained policies. The symbols ‘17, ’}’, ‘C’, and ‘D’ indicate
forward, backward, left-rotation, and right-rotation actions.

—%— GGK(200) 4500

65} | —6— GGK(1000)
- % - OGK(200)
- ©- 0GK(1000),

—6— GGK(1000)
- © - OGK(1000) ®
4000

3500

w
S
<3
S

2500

Averaged total rewards
»
(4
N
5]
S
3

Computation time [sec]

i
a
=]
S

w
a

* S Sewr” N %

30k Rl * * THe T 1000
5l 80--0--0---0---0--0---0--0--0--0 500
200 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 9‘0 1(‘)0 G0 10 20 3‘0 4‘0 5‘0 BIO 7‘0 8‘0 E;O 1(‘)0
Number of kernels Number of kernels
Figure 17: Average amount of exploration. Figure 18: Computation time.

actions. This shows that there is a clear difference in the obtained policies at the state
‘C’; the backward action is most likely to be taken by the OGK-based policy while the
left /right rotation are most likely to be taken by the GGK-based policy. This causes a
significant difference in the performance. To explain this, let us assume that the Khepera
is at the state ‘C’, i.e., it faces a wall. The GGK-based policy guides the Khepera from
‘C’ to ‘A’ via ‘D’ or ‘E’ by taking left /right rotation actions and it can avoid the obstacle
successfully. On the other hand, the OGK-based policy tries to plan a path from ‘C’ to
‘A’ via ‘B’ by activating the backward action; then, the forward action is taken at ‘B’.
Thus, the Khepera returns to ‘C’ again and ends up moving back and forth between ‘C’
and ‘B”.

For the performance evaluation, we use a more complicated environment than the

%A demo movie is available from ‘http://sugiyama-www.cs.titech.ac.jp/ sugi/2008/
GGKvsOGK . wmv’.

Geodesic Gaussian Kernels for Value Function Approximation 24

(a) Geodesic Gaussian kernels (b) Ordinary Gaussian kernels

Figure 19: Results of map building (cf. Figure 15(b)).

one used for gathering training samples (see Figure 15). Thus we are evaluating how
well the obtained policies can be generalized to an unknown environment. In this test
environment, we let the Khepera run from a fixed starting position (see Figure 15(b))
and take 150 steps following the obtained policy. We compute the sum of rewards, i.e.,
+1 for the forward action. If the Khepera collides with an obstacle before 150 steps, we
stop the evaluation. The mean test performance over 30 independent runs is depicted in
Figure 17 as a function of the number of kernels. More precisely, in each run, we construct
a graph based on the training samples taken from the training environment and put the
specified number of kernels randomly on the graph. Then, a policy is learned by the GGK
or OGK-based LSPI method using the training samples. Note that the actual number of
bases is four times more because of the extension of basis functions over the action space.
The test performance is measured 5 times for each policy and the average is outputted.
Figure 17 shows that GGKs significantly outperform OGKs, demonstrating that GGKs
are promising even in the challenging setting with a high-dimensional huge state space.
Figure 18 depicts the computation time of each method as a function of the number of
kernels. This shows that the computation time monotonically increases as the number of
kernels increases and the GGK-based and OGK-based methods have comparable compu-
tation time. Given that the GGK-based method works much better than the OGK-based
method with a smaller number of kernels (see Figure 17), the proposed method could be
regarded as a computationally efficient alternative to the standard OGK-based method.
Finally, we apply the learned Khepera robot to map building. Starting from an initial
position (indicated by a square in Figure 19), the Khepera robot takes an action 2000 times
following the learned policy. We used 80 kernels with Gaussian width o = 1000 in value
function approximation. The results of GGKs and OGKs are depicted in Figure 19(a)
and Figure 19(b). The graphs show that the GGK result gives a broader profile of the
environment, while the OGK result only reveals a local area around the initial position.

Geodesic Gaussian Kernels for Value Function Approximation 25

7 Conclusions and Outlook

We proposed a new basis-construction method for value function approximation. The pro-
posed geodesic Gaussian kernels (GGKs) have several preferable properties such as the
smoothness along the graph and easy computability. We demonstrated the practical use-
fulness of the proposed method for challenging applications: both the robot-arm reaching
experiments with obstacles and the Khepera exploration experiments showed quantitative
improvements as well as intuitive, interpretable behavioral advantages evident from the
experiments.

Experiments in Section 5 showed that GGKs with large width has larger MSEs than
that with smaller width, but GGKs with large width gave better policies than that with
smaller width. We conjecture that GGKs with large width give smoother value func-
tions and hence, result in stable policies. Although this explanation would be intuitively
reasonable, it needs to be elucidated in a more rigorous way.

It is shown that the policies obtained by GGKs are not so sensitive to the choice of
the width of the Gaussian kernels, i.e., a reasonably large width works very well. This
is a very useful property in practice. Also, the heuristics of putting Gaussian centers on
goal states is shown to work quite well. Even so, it is an important future direction to
develop a method for optimally tuning the width as well as the location parameters, e.g.,
based on the statistical machine learning theory (Vapnik, 1998; Hachiya et al., 2008).

When the transition is highly stochastic (i.e., the transition probability has a wide
support), the graph constructed based on the transition samples could be noisy. When
an erroneous transition results in a short-cut over obstacles, the graph-based approach
may not work well since the topology of the state space changes significantly. Therefore,
it is an important future work to evaluate the robustness of the proposed approach under
very noisy environment and to develop a more robust method of building a graph from
noisy transition samples.

In Section 3.4, we extended the proposed GGKs to continuous state space. A signifi-
cant research direction will be to further explore the properties of the continuous GGKs
and their application to real world, high-dimensional problems such as planning in an-
thropomorphic robots.

We defined the Gaussian kernels on the state space, and then extended them over the
action space. If we define basis functions directly on the state-action space, the quality of
value function approximation and the computational efficiency could be further improved.
Our future research will focus on this topic.

In this paper, we have focused on a batch RL scenario where samples are gathered
in the beginning. Another practical situation would be an online scenario where samples
are gathered incrementally through the policy iteration process. Such an online scenario
induces an off-policy situation, i.e., the policy used for data sampling and the policy used
for evaluation are mismatched (Sutton & Barto, 1998). It is therefore essential to develop
a method that can handle the off-policy situation efficiently, e.g., following the lines of
Precup et al. (2000) and Hachiya et al. (2008).

Geodesic Gaussian Kernels for Value Function Approximation 26

Acknowledgements

The authors acknowledge financial support from MEXT (Grant-in-Aid for Young Scien-
tists 17700142 and Grant-in-Aid for Scientific Research (B) 18300057), the Okawa Foun-
dation, and EU Erasmus Mundus Scholarship.

References

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Clarendon Press.

Chung, F. R. K. (1997). Spectral graph theory. Providence, R.I.: American Mathematical
Society.

Coifman, R., & Maggioni, M. (2006). Diffusion wavelets. Applied and Computational
Harmonic Analysis, 21, 53-94.

Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia and Pennsylvania: Society
for Industrial and Applied Mathematics.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1, 269-271.

Engel, Y., Mannor, S., & Meir, R. (2005). Reinforcement learning with Gaussian pro-
cesses. Proceedings of International Conference on Machine Learning. Bonn, Germany.

Fredman, M. L., & Tarjan, R. E. (1987). Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34, 569-615.

Girosi, F., Jones, M., & Poggio, T. (1995). Regularization theory and neural networks
architectures. Neural Computation, 7, 219-2609.

Goldberg, A. V., & Harrelson, C. (2005). Computing the shortest path: A* search meets
graph theory. 16th Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 156
165). Vancouver, Canada.

Hachiya, H., Akiyama, T., Sugiyama, M., & Peters, J. (2008). Adaptive importance
sampling with automatic model selection in value function approximation. Proceedings
of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-08). Chicago,
USA.

Kohonen, T. (1995). Self-organizing maps. Berlin: Springer.

Kolter, J. Z., & Ng, A. Y. (2007). Learning omnidirectional path following using dimen-
sionality reduction. In Proceedings of Robotics: Science and Systems.

Lagoudakis, M. G., & Parr, R. (2003). Least-squares policy iteration. Journal of Machine
Learning Research, 4, 1107-1149.

Geodesic Gaussian Kernels for Value Function Approximation 27

Mahadevan, S. (2005). Proto-value functions: Developmental reinforcement learning.
Proceedings of International Conference on Machine Learning. Bonn, Germany.

Mahadevan, S., & Maggioni, M. (2006). Value function approximation with diffusion
wavelets and Laplacian eigenfunctions. Advances in Neural Information Processing
Systems 18 (pp. 843-850). Cambridge, MA: MIT Press.

Morimoto, J., & Doya, K. (2007). Acquisition of stand-up behavior by a real robot using
hierarchical reinforcement learning. Robotics and Autonomous Systems, 36, 37-51.

Osentoski, S., & Mahadevan, S. (2007). Learning state-action basis functions for hierar-
chical MDPs. Proceedings of the 24th International Conference on Machine Learning.

Precup, D., Sutton, R. S., & Singh, S. (2000). Eligibility traces for off-policy policy eval-
uation. Proceedings of the Seventeenth International Conference on Machine Learning
(pp. 759-766). Morgan Kaufmann.

Schélkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge, MA: MIT Press.

Sugiyama, M., Hachiya, H., Towell, C., & Vijayakumar, S. (2007). Value function ap-
proximation on non-linear manifolds for robot motor control. Proceedings of 2007 IEEE
International Conference on Robotics and Automation (ICRA2007) (pp. 1733-1740).

Sutton, R. S., & Barto, G. A. (1998). Reinforcement learning: An introduction. Cam-
bridge, MA: MIT Press.

Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley.

Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankangas, J. (2000). SOM toolboz for
Matlab 5 (Technical Report A57). Helsinki University of Technology.

Vijayakumar, S., D’Souza, A., Shibata, T., Conradt, J., & Schaal, S. (2002). Statistical
learning for humanoid robots. Autonomous Robot, 12, 55-69.

